Search results for: Privacy Preserving Data Publication (PPDP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26011

Search results for: Privacy Preserving Data Publication (PPDP)

24961 Analysis of Expression Data Using Unsupervised Techniques

Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.

Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation

Procedia PDF Downloads 152
24960 A Sequence of Traumatic Pain: Feminist Issues within Laila Al-Othman’s Ṣamt al-Farāshāt (Silence of the Butterflies)

Authors: Khaled Igbaria

Abstract:

Laila Al-Othman is a well-known feminist writer in Kuwait and the entire Arab world. She was born in 1943 in Kuwait to a large and wealthy family. The author has written several short stories, as well as novels, such as The Woman and the Cat (1985) and Wasumayya Comes out of the Sea (1986), which was chosen as one of the best 100 Arab novels of the 21st century. Another prominent novel of hers is Ṣamt al-Farāshāt [Silence of the Butterflies] (2007), which was highly controversial in her native Kuwait upon publication. For this study, her engagement in feminism was achieved by exploring the different ways in which her novel, Ṣamt al-Farāshāt [Silence of the Butterflies], addresses several feminist issues, mainly forced marriage, rape and sexual abuse, gender-based physical, sexual violence, and enforced silence. This paper focuses on demonstrating social obstacles and continuous trauma caused by a sequence of pain experienced by Arab females in their patriarchal society. This study argues that the novel reveals a sustained effort to raise the banner of feminism and a strong desire to liberate Arab women from patriarchal domination. Al-Othman successfully and uniquely represents women as gender-based traumatic victims of sexual and physical violence, forced silence, and general oppression in the patriarchal Arab society, as those needing help, support, protection, and liberation. They are not represented as independent or free. Methodologically, the study employs a qualitative literary analysis method in addition to trauma theory psychoanalysis, concentrating on feminist issues highlighted in the novel.

Keywords: Al-Othman, Arab women pain, trauma within narration., Silence of the Butterflies

Procedia PDF Downloads 70
24959 Learning Analytics in a HiFlex Learning Environment

Authors: Matthew Montebello

Abstract:

Student engagement within a virtual learning environment generates masses of data points that can significantly contribute to the learning analytics that lead to decision support. Ideally, similar data is collected during student interaction with a physical learning space, and as a consequence, data is present at a large scale, even in relatively small classes. In this paper, we report of such an occurrence during classes held in a HiFlex modality as we investigate the advantages of adopting such a methodology. We plan to take full advantage of the learner-generated data in an attempt to further enhance the effectiveness of the adopted learning environment. This could shed crucial light on operating modalities that higher education institutions around the world will switch to in a post-COVID era.

Keywords: HiFlex, big data in higher education, learning analytics, virtual learning environment

Procedia PDF Downloads 206
24958 Li-Fi Technology: Data Transmission through Visible Light

Authors: Shahzad Hassan, Kamran Saeed

Abstract:

People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.

Keywords: communication, LED, Li-Fi, Wi-Fi

Procedia PDF Downloads 350
24957 An Analysis of Humanitarian Data Management of Polish Non-Governmental Organizations in Ukraine Since February 2022 and Its Relevance for Ukrainian Humanitarian Data Ecosystem

Authors: Renata Kurpiewska-Korbut

Abstract:

Making an assumption that the use and sharing of data generated in humanitarian action constitute a core function of humanitarian organizations, the paper analyzes the position of the largest Polish humanitarian non-governmental organizations in the humanitarian data ecosystem in Ukraine and their approach to non-personal and personal data management since February of 2022. Both expert interviews and document analysis of non-profit organizations providing a direct response in the Ukrainian crisis context, i.e., the Polish Humanitarian Action, Caritas, Polish Medical Mission, Polish Red Cross, and the Polish Center for International Aid and the applicability of theoretical perspective of contingency theory – with its central point that the context or specific set of conditions determining the way of behavior and the choice of methods of action – help to examine the significance of data complexity and adaptive approach to data management by relief organizations in the humanitarian supply chain network. The purpose of this study is to determine how the existence of well-established and accurate internal procedures and good practices of using and sharing data (including safeguards for sensitive data) by the surveyed organizations with comparable human and technological capabilities are implemented and adjusted to Ukrainian humanitarian settings and data infrastructure. The study also poses a fundamental question of whether this crisis experience will have a determining effect on their future performance. The obtained finding indicate that Polish humanitarian organizations in Ukraine, which have their own unique code of conduct and effective managerial data practices determined by contingencies, have limited influence on improving the situational awareness of other assistance providers in the data ecosystem despite their attempts to undertake interagency work in the area of data sharing.

Keywords: humanitarian data ecosystem, humanitarian data management, polish NGOs, Ukraine

Procedia PDF Downloads 96
24956 An Approach for Estimation in Hierarchical Clustered Data Applicable to Rare Diseases

Authors: Daniel C. Bonzo

Abstract:

Practical considerations lead to the use of unit of analysis within subjects, e.g., bleeding episodes or treatment-related adverse events, in rare disease settings. This is coupled with data augmentation techniques such as extrapolation to enlarge the subject base. In general, one can think about extrapolation of data as extending information and conclusions from one estimand to another estimand. This approach induces hierarchichal clustered data with varying cluster sizes. Extrapolation of clinical trial data is being accepted increasingly by regulatory agencies as a means of generating data in diverse situations during drug development process. Under certain circumstances, data can be extrapolated to a different population, a different but related indication, and different but similar product. We consider here the problem of estimation (point and interval) using a mixed-models approach under an extrapolation. It is proposed that estimators (point and interval) be constructed using weighting schemes for the clusters, e.g., equally weighted and with weights proportional to cluster size. Simulated data generated under varying scenarios are then used to evaluate the performance of this approach. In conclusion, the evaluation result showed that the approach is a useful means for improving statistical inference in rare disease settings and thus aids not only signal detection but risk-benefit evaluation as well.

Keywords: clustered data, estimand, extrapolation, mixed model

Procedia PDF Downloads 140
24955 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System

Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu

Abstract:

Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.

Keywords: communication, GEO satellite, data relay system, coverage

Procedia PDF Downloads 446
24954 The Development of Encrypted Near Field Communication Data Exchange Format Transmission in an NFC Passive Tag for Checking the Genuine Product

Authors: Tanawat Hongthai, Dusit Thanapatay

Abstract:

This paper presents the development of encrypted near field communication (NFC) data exchange format transmission in an NFC passive tag for the feasibility of implementing a genuine product authentication. We propose a research encryption and checking the genuine product into four major categories; concept, infrastructure, development and applications. This result shows the passive NFC-forum Type 2 tag can be configured to be compatible with the NFC data exchange format (NDEF), which can be automatically partially data updated when there is NFC field.

Keywords: near field communication, NFC data exchange format, checking the genuine product, encrypted NFC

Procedia PDF Downloads 283
24953 Preserving the Cultural Values of the Mararoa River and Waipuna–Freshwater Springs, Southland New Zealand: An Integration of Traditional and Scientific Knowledge

Authors: Erine van Niekerk, Jason Holland

Abstract:

In Māori culture water is considered to be the foundation of all life and has its own mana (spiritual power) and mauri (life force). Water classification for cultural values therefore includes categories like waitapu (sacred water), waimanawa-whenua (water from under the land), waipuna (freshwater springs), the relationship between water quantity and quality and the relationship between surface and groundwater. Particular rivers and lakes have special significance to iwi and hapu for their rohe (tribal areas). The Mararoa River, including its freshwater springs and wetlands, is an example of such an area. There is currently little information available about the sources, characteristics and behavior of these important water resources and this study on the water quality of the Mararoa River and adjacent freshwater springs will provide valuable information to be used in informed decisions about water management. The regional council of Southland, Environment Southland, is required to make changes under their water quality policy in order to comply with the requirements for the New National Standards for Freshwater to consult with Maori to determine strategies for decision making. This requires an approach that includes traditional knowledge combined with scientific knowledge in the decision-making process. This study provided the scientific data that can be used in future for decision making on fresh water springs combined with traditional values for this particular area. Several parameters have been tested in situ as well as in a laboratory. Parameters such as temperature, salinity, electrical conductivity, Total Dissolved Solids, Total Kjeldahl Nitrogen, Total Phosphorus, Total Suspended Solids, and Escherichia coli among others show that recorded values of all test parameters fall within recommended ANZECC guidelines and Environment Southland standards and do not raise any concerns for the water quality of the springs and the river at the moment. However, the destruction of natural areas, particularly due to changes in farming practices, and the changes to water quality by the introduction of Didymosphenia geminate (Didymo) means Māori have already lost many of their traditional mahinga kai (food sources). There is a major change from land use such as sheep farming to dairying in Southland which puts freshwater resources under pressure. It is, therefore, important to draw on traditional knowledge and spirituality alongside scientific knowledge to protect the waters of the Mararoa River and waipuna. This study hopes to contribute to scientific knowledge to preserve the cultural values of these significant waters.

Keywords: cultural values, freshwater springs, Maori, water quality

Procedia PDF Downloads 286
24952 Data Hiding by Vector Quantization in Color Image

Authors: Yung Gi Wu

Abstract:

With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.

Keywords: data hiding, vector quantization, watermark, color image

Procedia PDF Downloads 369
24951 Applying ASHRAE Standards on the Hospital Buildings of UAE

Authors: Hanan M. Taleb

Abstract:

Energy consumption associated with buildings has a significant impact on the environment. To that end, and as a transaction between the inside and outside and between the building and urban space, the building skin plays an especially important role. It provides protection from the elements; demarcates private property and creates privacy. More importantly, it controls the admission of solar radiation. Therefore, designing the building skin sustainably will help to achieve optimal performance in terms of both energy consumption and thermal comfort. Unfortunately, with accelerating construction expansion, many recent buildings do not pay attention to the importance of the envelope design. This piece of research will highlight the importance of this part of the creation of buildings by providing evidence of a significant reduction in energy consumption if the envelopes are redesigned. Consequently, the aim of this paper is to enhance the performance of the hospital envelope in order to achieve sustainable performance. A hospital building sited in Abu Dhabi, in the UAE, has been chosen to act as a case study. A detailed analysis of the annual energy performance of the case study will be performed with the use of a computerised simulation; this is in order to explore their energy performance shortcomings. The energy consumption of the base case will then be compared with that resulting from the new proposed building skin. The results will inform architects and designers of the savings potential from various strategies.

Keywords: ASHREA, building skin, building envelopes, hospitals, Abu Dhabi, UAE, IES software

Procedia PDF Downloads 368
24950 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: anomaly detection, autoencoder, data centers, deep learning

Procedia PDF Downloads 198
24949 Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage

Authors: Sajid Maqsood, Aysha Al Rashedi, Aisha Abushelaibi, Kusaimah Manheem

Abstract:

Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves.

Keywords: natural antioxidants, lipid oxidation, quality, camel meat

Procedia PDF Downloads 439
24948 Securing Online Voting With Blockchain and Smart Contracts

Authors: Anant Mehrotra, Krish Phagwani

Abstract:

Democratic voting is vital for any country, but current methods like ballot papers or EVMs have drawbacks, including transparency issues, low voter turnout, and security concerns. Blockchain technology offers a potential solution by providing a secure, decentralized, and transparent platform for e-voting. With features like immutability, security, and anonymity, blockchain combined with smart contracts can enhance trust and prevent vote tampering. This paper explores an Ethereum-based e-voting application using Solidity, showcasing a web app that prevents duplicate voting through a token-based system, while also discussing the advantages and limitations of blockchain in digital voting. Voting is a crucial component of democratic decision-making, yet current methods, like paper ballots, remain outdated and inefficient. This paper reviews blockchain-based voting systems, highlighting strategies and guidelines to create a comprehensive electronic voting system that leverages cryptographic techniques, such as zero-knowledge proofs, to enhance privacy. It addresses limitations of existing e-voting solutions, including cost, identity management, and scalability, and provides key insights for organizations looking to design their own blockchain-based voting systems.

Keywords: electronic voting, smart contracts, blockchain nased voting, security

Procedia PDF Downloads 19
24947 Digitizing Masterpieces in Italian Museums: Techniques, Challenges and Consequences from Giotto to Caravaggio

Authors: Ginevra Addis

Abstract:

The possibility of reproducing physical artifacts in a digital format is one of the opportunities offered by the technological advancements in information and communication most frequently promoted by museums. Indeed, the study and conservation of our cultural heritage have seen significant advancement due to the three-dimensional acquisition and modeling technology. A variety of laser scanning systems has been developed, based either on optical triangulation or on time-of-flight measurement, capable of producing digital 3D images of complex structures with high resolution and accuracy. It is necessary, however, to explore the challenges and opportunities that this practice brings within museums. The purpose of this paper is to understand what change is introduced by digital techniques in those museums that are hosting digital masterpieces. The methodology used will investigate three distinguished Italian exhibitions, related to the territory of Milan, trying to analyze the following issues about museum practices: 1) how digitizing art masterpieces increases the number of visitors; 2) what the need that calls for the digitization of artworks; 3) which techniques are most used; 4) what the setting is; 5) the consequences of a non-publication of hard copies of catalogues; 6) envision of these practices in the future. Findings will show how interconnection plays an important role in rebuilding a collection spread all over the world. Secondly how digital artwork duplication and extension of reality entail new forms of accessibility. Thirdly, that collection and preservation through digitization of images have both a social and educational mission. Fourthly, that convergence of the properties of different media (such as web, radio) is key to encourage people to get actively involved in digital exhibitions. The present analysis will suggest further research that should create museum models and interaction spaces that act as catalysts for innovation.

Keywords: digital masterpieces, education, interconnection, Italian museums, preservation

Procedia PDF Downloads 177
24946 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R

Authors: Pavel H. Llamocca, Victoria Lopez

Abstract:

The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.

Keywords: open data, R language, data integration, environmental data

Procedia PDF Downloads 317
24945 Excision and Reconstruction of a Hypertrophic and Functional Bleb with Bovine Pericardium (Tutopatch®) and Amniotic Membrane: A Case Report

Authors: Blanca Fatela Cantillo, Silvia Iglesias Cerrato, Guadalupe Garrido Ceca

Abstract:

Purpose: Bleb dysfunction is a late complication following glaucoma filtration surgery. We describe our surgical technique for excision and reconstruction of a hypertrophic bleb complication using bovine pericardium patch graft (Tutopatch®) and amniotic membrane. Material and methods: The case report presents a hypertrophic bleb over the cornea with good intraocular pressure control. The hanging bleb without leak caused dysesthesia and high irregular astigmatism. Bleb reconstruction involved the excision of corneal fibrous material and avascular conjunctiva, preserving the original scleral and tennon. Bovine pericardium patch graft (Tutopatch®) was sited over these with fixed sutures, reinforcing the underlying scleral, and the conjunctiva advanced. The superior epithelium corneal defect was covered using an amniotic membrane. Conclusion: Repair of bleb dysfunction with varied techniques has been reported, including conjunctival advancement, use of scleral patch graft, dural patch graft, or pericardium. Additional use of amniotic membrane promotes epithelialization and exhibits anti-fibrotic and anti-inflammatory features. Reconstruction with bovine pericardium patch graft and amniotic membrane resulted in pain relief, visual rehabilitation, and good aesthetic results, with preservation of bleb function.

Keywords: reconstruction, hypertrophic bleb, bovine pericardium, amniotic membrane, dysesthesia of the bleb

Procedia PDF Downloads 81
24944 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: instance selection, data reduction, MapReduce, kNN

Procedia PDF Downloads 257
24943 A Design Framework for an Open Market Platform of Enriched Card-Based Transactional Data for Big Data Analytics and Open Banking

Authors: Trevor Toy, Josef Langerman

Abstract:

Around a quarter of the world’s data is generated by financial with an estimated 708.5 billion global non-cash transactions reached between 2018 and. And with Open Banking still a rapidly developing concept within the financial industry, there is an opportunity to create a secure mechanism for connecting its stakeholders to openly, legitimately and consensually share the data required to enable it. Integration and data sharing of anonymised transactional data are still operated in silos and centralised between the large corporate entities in the ecosystem that have the resources to do so. Smaller fintechs generating data and businesses looking to consume data are largely excluded from the process. Therefore there is a growing demand for accessible transactional data for analytical purposes and also to support the rapid global adoption of Open Banking. The following research has provided a solution framework that aims to provide a secure decentralised marketplace for 1.) data providers to list their transactional data, 2.) data consumers to find and access that data, and 3.) data subjects (the individuals making the transactions that generate the data) to manage and sell the data that relates to themselves. The platform also provides an integrated system for downstream transactional-related data from merchants, enriching the data product available to build a comprehensive view of a data subject’s spending habits. A robust and sustainable data market can be developed by providing a more accessible mechanism for data producers to monetise their data investments and encouraging data subjects to share their data through the same financial incentives. At the centre of the platform is the market mechanism that connects the data providers and their data subjects to the data consumers. This core component of the platform is developed on a decentralised blockchain contract with a market layer that manages transaction, user, pricing, payment, tagging, contract, control, and lineage features that pertain to the user interactions on the platform. One of the platform’s key features is enabling the participation and management of personal data by the individuals from whom the data is being generated. This framework developed a proof-of-concept on the Etheruem blockchain base where an individual can securely manage access to their own personal data and that individual’s identifiable relationship to the card-based transaction data provided by financial institutions. This gives data consumers access to a complete view of transactional spending behaviour in correlation to key demographic information. This platform solution can ultimately support the growth, prosperity, and development of economies, businesses, communities, and individuals by providing accessible and relevant transactional data for big data analytics and open banking.

Keywords: big data markets, open banking, blockchain, personal data management

Procedia PDF Downloads 76
24942 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways

Authors: Anirudh Lahiri

Abstract:

Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.

Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.

Procedia PDF Downloads 54
24941 Experimental Evaluation of Succinct Ternary Tree

Authors: Dmitriy Kuptsov

Abstract:

Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.

Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation

Procedia PDF Downloads 168
24940 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement

Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti

Abstract:

Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.

Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing

Procedia PDF Downloads 111
24939 Prosperous Digital Image Watermarking Approach by Using DCT-DWT

Authors: Prabhakar C. Dhavale, Meenakshi M. Pawar

Abstract:

In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacks

Keywords: watermarking, digital, DCT-DWT, security

Procedia PDF Downloads 426
24938 The Impact of Physical Exercise on Gestational Diabetes and Maternal Weight Management: A Meta-Analysis

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Physiological changes during pregnancy, such as alterations in the circulatory, respiratory, and musculoskeletal systems, can negatively impact daily physical activity. This reduced activity is often associated with an increased risk of adverse maternal health outcomes, particularly gestational diabetes mellitus (GDM) and excessive weight gain. This meta-analysis aims to evaluate the effectiveness of structured physical exercise interventions during pregnancy in reducing the risk of GDM and managing maternal weight gain. A comprehensive search was conducted across six major databases: PubMed, Cochrane Library, EMBASE, Web of Science, ScienceDirect, and ClinicalTrials.gov, covering the period from database inception until 2023. Randomized controlled trials (RCTs) that explored the effects of physical exercise programs on pregnant women with low physical activity levels were included. The search was performed using EndNote and results were managed using RevMan (Review Manager) for meta-analysis. RCTs involving healthy pregnant women with low levels of physical activity or sedentary lifestyles were selected. These RCTs must have incorporated structured exercise programs during pregnancy and reported on outcomes related to GDM and maternal weight gain. From an initial pool of 5,112 articles, 65 RCTs (involving 11,400 pregnant women) met the inclusion criteria. Data extraction was performed, followed by a quality assessment of the selected studies using the Cochrane Risk of Bias tool. The meta-analysis was conducted using RevMan software, where pooled relative risks (RR) and weighted mean differences (WMD) were calculated using a random-effects model to address heterogeneity across studies. Sensitivity analyses, subgroup analyses (based on factors such as exercise intensity, duration, and pregnancy stage), and publication bias assessments were also conducted. Structured physical exercise during pregnancy led to a significant reduction in the risk of developing GDM (RR = 0.68; P < 0.001), particularly when the exercise program was performed throughout the pregnancy (RR = 0.62; P = 0.035). In addition, maternal weight gain was significantly reduced (WMD = −1.18 kg; 95% CI −1.54 to −0.85; P < 0.001). There were no significant adverse effects reported for either the mother or the neonate, confirming that exercise interventions are safe for both. This meta-analysis highlights the positive impact of regular moderate physical activity during pregnancy in reducing the risk of GDM and managing maternal weight gain. These findings suggest that physical exercise should be encouraged as a routine part of prenatal care. However, more research is required to refine exercise recommendations and determine the most effective interventions based on individual risk factors and pregnancy stages.

Keywords: gestational diabetes, maternal weight management, meta-analysis, randomized controlled trials

Procedia PDF Downloads 28
24937 Machine Learning Data Architecture

Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap

Abstract:

Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.

Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning

Procedia PDF Downloads 71
24936 A Comparison of Image Data Representations for Local Stereo Matching

Authors: André Smith, Amr Abdel-Dayem

Abstract:

The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.

Keywords: colour data, local stereo matching, stereo correspondence, disparity map

Procedia PDF Downloads 375
24935 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System

Authors: Karima Qayumi, Alex Norta

Abstract:

The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.

Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)

Procedia PDF Downloads 437
24934 Timing and Noise Data Mining Algorithm and Software Tool in Very Large Scale Integration (VLSI) Design

Authors: Qing K. Zhu

Abstract:

Very Large Scale Integration (VLSI) design becomes very complex due to the continuous integration of millions of gates in one chip based on Moore’s law. Designers have encountered numerous report files during design iterations using timing and noise analysis tools. This paper presented our work using data mining techniques combined with HTML tables to extract and represent critical timing/noise data. When we apply this data-mining tool in real applications, the running speed is important. The software employs table look-up techniques in the programming for the reasonable running speed based on performance testing results. We added several advanced features for the application in one industry chip design.

Keywords: VLSI design, data mining, big data, HTML forms, web, VLSI, EDA, timing, noise

Procedia PDF Downloads 257
24933 Laparoscopic Resection Shows Comparable Outcomes to Open Thoracotomy for Thoracoabdominal Neuroblastomas: A Meta-Analysis and Systematic Review

Authors: Peter J. Fusco, Dave M. Mathew, Chris Mathew, Kenneth H. Levy, Kathryn S. Varghese, Stephanie Salazar-Restrepo, Serena M. Mathew, Sofia Khaja, Eamon Vega, Mia Polizzi, Alyssa Mullane, Adham Ahmed

Abstract:

Background: Laparoscopic (LS) removal of neuroblastomas in children has been reported to offer favorable outcomes compared to the conventional open thoracotomy (OT) procedure. Critical perioperative measures such as blood loss, operative time, length of stay, and time to postoperative chemotherapy have all supported laparoscopic use rather than its more invasive counterpart. Herein, a pairwise meta-analysis was performed comparing perioperative outcomes between LS and OT in thoracoabdominal neuroblastoma cases. Methods: A comprehensive literature search was performed on PubMed, Ovid EMBASE, and Scopus databases to identify studies comparing the outcomes of pediatric patients with thoracoabdominal neuroblastomas undergoing resection via OT or LS. After deduplication, 4,227 studies were identified and subjected to initial title screening with exclusion and inclusion criteria to ensure relevance. When studies contained overlapping cohorts, only the larger series were included. Primary outcomes include estimated blood loss (EBL), hospital length of stay (LOS), and mortality, while secondary outcomes were tumor recurrence, post-operative complications, and operation length. The “meta” and “metafor” packages were used in R, version 4.0.2, to pool risk ratios (RR) or standardized mean differences (SMD) in addition to their 95% confidence intervals in the random effects model via the Mantel-Haenszel method. Heterogeneity between studies was assessed using the I² test, while publication bias was assessed via funnel plot. Results: The pooled analysis included 209 patients from 5 studies (141 OT, 68 LS). Of the included studies, 2 originated from the United States, 1 from Toronto, 1 from China, and 1was from a Japanese center. Mean age between study cohorts ranged from 2.4 to 5.3 years old, with female patients occupying between 30.8% to 50% of the study populations. No statistically significant difference was found between the two groups for LOS (SMD -1.02; p=0.083), mortality (RR 0.30; p=0.251), recurrence(RR 0.31; p=0.162), post-operative complications (RR 0.73; p=0.732), or operation length (SMD -0.07; p=0.648). Of note, LS appeared to be protective in the analysis for EBL, although it did not reach statistical significance (SMD -0.4174; p= 0.051). Conclusion: Despite promising literature assessing LS removal of pediatric neuroblastomas, results showed it was non-superior to OT for any explored perioperative outcomes. Given the limited comparative data on the subject, it is evident that randomized trials are necessary to further the efficacy of the conclusions reached.

Keywords: laparoscopy, neuroblastoma, thoracoabdominal, thoracotomy

Procedia PDF Downloads 135
24932 Introduction of Electronic Health Records to Improve Data Quality in Emergency Department Operations

Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe

Abstract:

In its simplest form, data quality can be defined as 'fitness for use' and it is a concept with multi-dimensions. Emergency Departments(ED) require information to treat patients and on the other hand it is the primary source of information regarding accidents, injuries, emergencies etc. Also, it is the starting point of various patient registries, databases and surveillance systems. This interventional study was carried out to improve data quality at the ED of the National Hospital of Sri Lanka (NHSL) by introducing an e health solution to improve data quality. The NHSL is the premier trauma care centre in Sri Lanka. The study consisted of three components. A research study was conducted to assess the quality of data in relation to selected five dimensions of data quality namely accuracy, completeness, timeliness, legibility and reliability. The intervention was to develop and deploy an electronic emergency department information system (eEDIS). Post assessment of the intervention confirmed that all five dimensions of data quality had improved. The most significant improvements are noticed in accuracy and timeliness dimensions.

Keywords: electronic health records, electronic emergency department information system, emergency department, data quality

Procedia PDF Downloads 279