Search results for: train schedule
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1085

Search results for: train schedule

65 Change of Education Business in the Age of 5G

Authors: Heikki Ruohomaa, Vesa Salminen

Abstract:

Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.

Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation

Procedia PDF Downloads 176
64 User Experience Evaluation on the Usage of Commuter Line Train Ticket Vending Machine

Authors: Faishal Muhammad, Erlinda Muslim, Nadia Faradilla, Sayidul Fikri

Abstract:

To deal with the increase of mass transportation needs problem, PT. Kereta Commuter Jabodetabek (KCJ) implements Commuter Vending Machine (C-VIM) as the solution. For that background, C-VIM is implemented as a substitute to the conventional ticket windows with the purposes to make transaction process more efficient and to introduce self-service technology to the commuter line user. However, this implementation causing problems and long queues when the user is not accustomed to using the machine. The objective of this research is to evaluate user experience after using the commuter vending machine. The goal is to analyze the existing user experience problem and to achieve a better user experience design. The evaluation method is done by giving task scenario according to the features offered by the machine. The features are daily insured ticket sales, ticket refund, and multi-trip card top up. There 20 peoples that separated into two groups of respondents involved in this research, which consist of 5 males and 5 females each group. The experienced and inexperienced user to prove that there is a significant difference between both groups in the measurement. The user experience is measured by both quantitative and qualitative measurement. The quantitative measurement includes the user performance metrics such as task success, time on task, error, efficiency, and learnability. The qualitative measurement includes system usability scale questionnaire (SUS), questionnaire for user interface satisfaction (QUIS), and retrospective think aloud (RTA). Usability performance metrics shows that 4 out of 5 indicators are significantly different in both group. This shows that the inexperienced group is having a problem when using the C-VIM. Conventional ticket windows also show a better usability performance metrics compared to the C-VIM. From the data processing, the experienced group give the SUS score of 62 with the acceptability scale of 'marginal low', grade scale of “D”, and the adjective ratings of 'good' while the inexperienced group gives the SUS score of 51 with the acceptability scale of 'marginal low', grade scale of 'F', and the adjective ratings of 'ok'. This shows that both groups give a low score on the system usability scale. The QUIS score of the experienced group is 69,18 and the inexperienced group is 64,20. This shows the average QUIS score below 70 which indicate a problem with the user interface. RTA was done to obtain user experience issue when using C-VIM through interview protocols. The issue obtained then sorted using pareto concept and diagram. The solution of this research is interface redesign using activity relationship chart. This method resulted in a better interface with an average SUS score of 72,25, with the acceptable scale of 'acceptable', grade scale of 'B', and the adjective ratings of 'excellent'. From the time on task indicator of performance metrics also shows a significant better time by using the new interface design. Result in this study shows that C-VIM not yet have a good performance and user experience.

Keywords: activity relationship chart, commuter line vending machine, system usability scale, usability performance metrics, user experience evaluation

Procedia PDF Downloads 262
63 Organic Rankine Cycles (ORC) for Mobile Applications: Economic Feasibility in Different Transportation Sectors

Authors: Roberto Pili, Alessandro Romagnoli, Hartmut Spliethoff, Christoph Wieland

Abstract:

Internal combustion engines (ICE) are today the most common energy system to drive vehicles and transportation systems. Numerous studies state that 50-60% of the fuel energy content is lost to the ambient as sensible heat. ORC offers a valuable alternative to recover such waste heat from ICE, leading to fuel energy savings and reduced emissions. In contrast, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. Consequently, a lower income from delivered freight or passenger tickets can be achieved. The economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume have not been analyzed in open literature yet. This work intends to define such a benchmark for ORC applications in the transportation sector and investigates the current situation on the market. The applied methodology refers to the freight market, but it can be extended to passenger transportation as well. The economic parameter X is defined as the ratio between the variation of the freight revenues and the variation of fuel costs when an ORC is installed as a bottoming cycle for an ICE with respect to a reference case without ORC. A good economic situation is obtained when the reduction in fuel costs is higher than the reduction of revenues for the delivered freight, i.e. X<1. Through this constraint, a maximum allowable change of transport capacity for a given relative reduction in fuel consumption is determined. The specific fuel consumption is influenced by the ORC in two ways. Firstly because the transportable freight is reduced and secondly because the total weight of the vehicle is increased. Note, that the generated electricity of the ORC influences the size of the ICE and the fuel consumption as well. Taking the above dependencies into account, the limiting condition X = 1 results in a second order equation for the relative change in transported cargo. The described procedure is carried out for a typical city bus, a truck of 24-40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and handysize-like vessel (25000 t). The maximum allowable mass and volume of the ORC are calculated in dependence of its efficiency in order to satisfy X < 1. Subsequently, these values are compared with weight and volume of commercial ORC products. For ships of any size, the situation appears already highly favorable. A different result is obtained for road and rail vehicles. For trains, the mass and the volume of common ORC products have to be reduced at least by 50%. For trucks and buses, the situation looks even worse. The findings of the present study show a theoretical and practical approach for the economic application of ORC in the transportation sector. In future works, the potential for volume and mass reduction of the ORC will be addressed, together with the integration of an economic assessment for the ORC.

Keywords: ORC, transportation, volume, weight

Procedia PDF Downloads 227
62 Mood Symptom Severity in Service Members with Posttraumatic Stress Symptoms after Service Dog Training

Authors: Tiffany Riggleman, Andrea Schultheis, Kalyn Jannace, Jerika Taylor, Michelle Nordstrom, Paul F. Pasquina

Abstract:

Introduction: Posttraumatic Stress (PTS) and Posttraumatic Stress Disorder (PTSD) remain significant problems for military and veteran communities. Symptoms of PTSD often include poor sleep, intrusive thoughts, difficulty concentrating, and trouble with emotional regulation. Unfortunately, despite its high prevalence, service members diagnosed with PTSD often do not seek help, usually because of the perceived stigma surrounding behavioral health care. To help address these challenges, non-pharmacological, therapeutic approaches are being developed to help improve care and enhance compliance. The Service Dog Training Program (SDTP), which involves teaching patients how to train puppies to become mobility service dogs, has been successfully implemented into PTS/PTSD care programs with anecdotal reports of improved outcomes. This study was designed to assess the biopsychosocial effects of SDTP from military beneficiaries with PTS symptoms. Methods: Individuals between the ages of 18 and 65 with PTS symptom were recruited to participate in this prospective study. Each subject completes 4 weeks of baseline testing, followed by 6 weeks of active service dog training (twice per week for one hour sessions) with a professional service dog trainer. Outcome measures included the Posttraumatic Stress Checklist for the DSM-5 (PCL-5), Generalized Anxiety Disorder questionnaire-7 (GAD-7), Patient Health Questionnaire-9 (PHQ-9), social support/interaction, anthropometrics, blood/serum biomarkers, and qualitative interviews. Preliminary analysis of 17 participants examined mean scores on the GAD-7, PCL-5, and PHQ-9, pre- and post-SDTP, and changes were assessed using Wilcoxon Signed-Rank tests. Results: Post-SDTP, there was a statistically significant mean decrease in PCL-5 scores of 13.5 on an 80-point scale (p=0.03) and a significant mean decrease of 2.2 in PHQ-9 scores on a 27 point scale (p=0.04), suggestive of decreased PTSD and depression symptoms. While there was a decrease in mean GAD-7 scores post-SDTP, the difference was not significant (p=0.20). Recurring themes among results from the qualitative interviews include decreased pain, forgetting about stressors, improved sense of calm, increased confidence, improved communication, and establishing a connection with the service dog. Conclusion: Preliminary results of the first 17 participants in this study suggest that individuals who received SDTP had a statistically significant decrease in PTS symptom, as measured by the PCL-5 and PHQ-9. This ongoing study seeks to enroll a total of 156 military beneficiaries with PTS symptoms. Future analyses will include additional psychological outcomes, pain scores, blood/serum biomarkers, and other measures of the social aspects of PTSD, such as relationship satisfaction and sleep hygiene.

Keywords: post-concussive syndrome, posttraumatic stress, service dog, service dog training program, traumatic brain injury

Procedia PDF Downloads 113
61 Leveraging Digital Cyber Technology for Self-Care and Improved Management of DMPA-SC Clients

Authors: Oluwaseun Adeleke, Grace Amarachi Omenife, Jennifer Adebambo, Mopelola Raji, Anthony Nwala, Mogbonjubade Adesulure

Abstract:

Introduction: The incorporation of digital technology in healthcare systems is instrumental in transforming the delivery, management, and overall experience of healthcare and holds the potential to scale up access through over 200 million active mobile phones used in Nigeria. Digital tools enable increased access to care, stronger client engagement, progress in research and data-driven insights, and more effective promotion of self-care and do-it-yourself practices. The Delivering Innovation in Self-Care (DISC) project 2021 has played a pivotal role in granting women greater autonomy over their sexual and reproductive health (SRH) through a variety of approaches, including information and training to self-inject contraception (DMPA-SC). To optimize its outcomes, the project also leverages digital technology platforms like social media: Facebook, Instagram, and Meet Tina (Chatbot) via WhatsApp, Customer Relationship Management (CRM) applications Freshworks, and Viamo. Methodology: The project has been successful at optimizing in-person digital cyberspace interaction to sensitize individuals effectively about self-injection and provide linkages to SI services. This platform employs the Freshworks CRM software application, along with specially trained personnel known as Cyber IPC Agents and DHIS calling centers. Integration of Freshworks CRM software with social media allows a direct connection with clients to address emerging issues, schedule follow-ups, send reminders to improve compliance with self-injection schedules, enhance the overall user experience for self-injection (SI) clients, and generate comprehensive reports and analytics on client interactions. Interaction covers a range of topics, including – How to use SI, learning more about SI, side-effects and its management, accessing services, fertility, ovulation, other family planning methods, inquiries related to Sexual Reproductive Health as well as uses an address log to connect them with nearby facilities or online pharmaceuticals. Results: Between the months of March to September, a total of 5,403 engagements were recorded. Among these, 4,685 were satisfactorily resolved. Since the program's inception, digital advertising has created 233,633,075 impressions, reached 12,715,582 persons, and resulted in 3,394,048 clicks. Conclusion: Leveraging digital technology has proven to be an invaluable tool in client management and improving client experience. The use of Cyber technology has enabled the successful development and maintenance of client relationships, which have been effective at providing support, facilitating delivery and compliance with DMPA-SC self-injection services, and ensuring overall client satisfaction. Concurrently, providing qualitative data, including user experience feedback, has enabled the derivation of crucial insights that inform the decision-making process and guide in normalizing self-care behavior.

Keywords: selfcare, DMPA-SC self-injection, digital technology, cyber technology, freshworks CRM software

Procedia PDF Downloads 67
60 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 137
59 Improving Online Learning Engagement through a Kid-Teach-Kid Approach for High School Students during the Pandemic

Authors: Alexander Huang

Abstract:

Online learning sessions have become an indispensable complement to in-classroom-learning sessions in the past two years due to the emergence of Covid-19. Due to social distance requirements, many courses and interaction-intensive sessions, ranging from music classes to debate camps, are online. However, online learning imposes a significant challenge for engaging students effectively during the learning sessions. To resolve this problem, Project PWR, a non-profit organization formed by high school students, developed an online kid-teach-kid learning environment to boost students' learning interests and further improve students’ engagement during online learning. Fundamentally, the kid-teach-kid learning model creates an affinity space to form learning groups, where like-minded peers can learn and teach their interests. The role of the teacher can also help a kid identify the instructional task and set the rules and procedures for the activities. The approach also structures initial discussions to reveal a range of ideas, similar experiences, thinking processes, language use, and lower student-to-teacher ratio, which become enriched online learning experiences for upcoming lessons. In such a manner, a kid can practice both the teacher role and the student role to accumulate experiences on how to convey ideas and questions over the online session more efficiently and effectively. In this research work, we conducted two case studies involving a 3D-Design course and a Speech and Debate course taught by high-school kids. Through Project PWR, a kid first needs to design the course syllabus based on a provided template to become a student-teacher. Then, the Project PWR academic committee evaluates the syllabus and offers comments and suggestions for changes. Upon the approval of a syllabus, an experienced and voluntarily adult mentor is assigned to interview the student-teacher and monitor the lectures' progress. Student-teachers construct a comprehensive final evaluation for their students, which they grade at the end of the course. Moreover, each course requires conducting midterm and final evaluations through a set of surveyed replies provided by students to assess the student-teacher’s performance. The uniqueness of Project PWR lies in its established kid-teach-kids affinity space. Our research results showed that Project PWR could create a closed-loop system where a student can help a teacher improve and vice versa, thus improving the overall students’ engagement. As a result, Project PWR’s approach can train teachers and students to become better online learners and give them a solid understanding of what to prepare for and what to expect from future online classes. The kid-teach-kid learning model can significantly improve students' engagement in the online courses through the Project PWR to effectively supplement the traditional teacher-centric model that the Covid-19 pandemic has impacted substantially. Project PWR enables kids to share their interests and bond with one another, making the online learning environment effective and promoting positive and effective personal online one-on-one interactions.

Keywords: kid-teach-kid, affinity space, online learning, engagement, student-teacher

Procedia PDF Downloads 142
58 Understanding Stock-Out of Pharmaceuticals in Timor-Leste: A Case Study in Identifying Factors Impacting on Pharmaceutical Quantification in Timor-Leste

Authors: Lourenco Camnahas, Eileen Willis, Greg Fisher, Jessie Gunson, Pascale Dettwiller, Charlene Thornton

Abstract:

Stock-out of pharmaceuticals is a common issue at all level of health services in Timor-Leste, a small post-conflict country. This lead to the research questions: what are the current methods used to quantify pharmaceutical supplies; what factors contribute to the on-going pharmaceutical stock-out? The study examined factors that influence the pharmaceutical supply chain system. Methodology: Privett and Goncalvez dependency model has been adopted for the design of the qualitative interviews. The model examines pharmaceutical supply chain management at three management levels: management of individual pharmaceutical items, health facilities, and health systems. The interviews were conducted in order to collect information on inventory management, logistics management information system (LMIS) and the provision of pharmaceuticals. Andersen' behavioural model for healthcare utilization also informed the interview schedule, specifically factors linked to environment (healthcare system and external environment) and the population (enabling factors). Forty health professionals (bureaucrats, clinicians) and six senior officers from a United Nations Agency, a global multilateral agency and a local non-governmental organization were interviewed on their perceptions of factors (healthcare system/supply chain and wider environment) impacting on stock out. Additionally, policy documents for the entire healthcare system, along with population data were collected. Findings: An analysis using Pozzebon’s critical interpretation identified a range of difficulties within the system from poor coordination to failure to adhere to policy guidelines along with major difficulties with inventory management, quantification, forecasting, and budgetary constraints. Weak logistics management information system, lack of capacity in inventory management, monitoring and supervision are additional organizational factors that also contributed to the issue. There were various methods of quantification of pharmaceuticals applied in the government sector, and non-governmental organizations. Lack of reliable data is one of the major problems in the pharmaceutical provision. Global Fund has the best quantification methods fed by consumption data and malaria cases. There are other issues that worsen stock-out: political intervention, work ethic and basic infrastructure such as unreliable internet connectivity. Major issues impacting on pharmaceutical quantification have been identified. However, current data collection identified limitations within the Andersen model; specifically, a failure to take account of predictors in the healthcare system and the environment (culture/politics/social. The next step is to (a) compare models used by three non-governmental agencies with the government model; (b) to run the Andersen explanatory model for pharmaceutical expenditure for 2 to 5 drug items used by these three development partners in order to see how it correlates with the present model in terms of quantification and forecasting the needs; (c) to repeat objectives (a) and (b) using the government model; (d) to draw a conclusion about the strength.

Keywords: inventory management, pharmaceutical forecasting and quantification, pharmaceutical stock-out, pharmaceutical supply chain management

Procedia PDF Downloads 244
57 Coming Closer to Communities of Practice through Situated Learning: The Case Study of Polish-English, English-Polish Undergraduate BA Level Language for Specific Purposes of Translation Class

Authors: Marta Lisowska

Abstract:

The growing trend of market specialization imposes upon translators the need for proficiency in the working knowledge of specialist discourse. The notion of specialization differs from a broad general category to a highly specialized narrow field. The specialised discourse is used in the channel of communication based upon distinctive features typical for communities of practice whose co-existence is codified and hermetically locked against outsiders. Consequently, any translator deprived of professional discourse competence and social skills is incapable of providing competent translation product from source language into target language. In this paper, we report on research that explores the pedagogical practices aiming to bridge the dichotomy between the professionals and the specialist translators, while accounting for the reality of the world of professional communities entered by undergraduates on two levels: the text-based generic, and the social one. Drawing from the functional social constructivist approach, seen here as situated learning, this paper reports on the case of English-Polish, Polish-English undergraduate BA Level LSP of law translation class run in line with the simulated classroom-based and the reality-based (apprenticeship) approach. This blended method serves the purpose of introducing the young trainees to the professional world. The research provides new insights into how the LSP translation undergraduates become legitimized through discursive and social participation and engagement. The undergraduates, situated peripherally at the outset, experience their own transformation towards becoming members of these professional groups. With subjective evaluation, the trainees take a stance on this dual mode class and development of their skills. Comparing and contrasting their own work done in line with two models of translation teaching: authentic and near-authentic, the undergraduates answer research questions devised by a questionnaire survey The responses take us closer to how students feel about their LSP translation competence development. The major findings show how the trainees perceive the benefits and hardships of their functional translation class. In terms of skills, they related to communication as the most enhanced one; they highly valued the fact of being ‘exposed’ to a variety of texts (cf. multi literalism), team work, learning how to schedule work, IT skills boost and the ability to learn how to work individually. Another finding indicates that students struggled most with specialized language, and co-working with other students. The short-term research shows the momentum when the undergraduate LSP translation trainees entered the path of transformation i.e. gained consciousness of ‘how it is’ to be a participant-translator of real-life communities of practice, gaining pragmatic dint of the social and linguistic skills understood here as discursive competence (text > genre > discourse > professional practice). The undergraduates need to be aware of the work they have to do and challenges they are to face before arriving at the expert level of professional translation competence.

Keywords: communities of practice in LSP translation teaching, learning LSP translation as situated experience, peripheral participation, professional discourse for LSP translation teaching, professional translation competence

Procedia PDF Downloads 95
56 Improvement of Autism Diagnostic Observation Schedule Scores after Comprehensive Intensive Early Interventions in a Clinical Setting

Authors: Nils Haglund, Svenolof Dahlgren, Maria Rastam, Peik Gustafsson, Karin Kalien

Abstract:

In Sweden, like in most developed countries, there is a substantial increase of children diagnosed with autism and other conditions within the autism spectrum (ASD). The rapid increase of ASD rates stresses the importance of developing care programs to provide support and comprehensive interventions for affected families. The current observational study was conducted in order to evaluate an ongoing Comprehensive Intensive Early Intervention (CIEI) program for children with autism in southern Sweden. The change in autism symptoms among children participating in CIEI (intervention group, n=67) was compared with children who received traditional habilitation services only (comparison group, n=27). Children of parents who accepted the offered CIEI-program, constituted the intervention group, whereas children, whose parents (for some reason) were not interested in the offered CIEI-program, constituted the comparison group. The CIEI-program was individualized to each child by experienced applied behavior analysis (ABA) specialists with different backgrounds as psychologists, speech pathologists or special education teachers, in cooperation with parents and preschool staff. Due to the individualization, the intervention could vary in intensity and techniques. The intensity was calculated to 15-25 hours each week at home and the preschool altogether. Each child was assigned one 'trainer', who was often employed as a preschool teacher but could have another educational background. An agreement between supervisor- parents and preschool staff was reached to confirm the intensity and content of the CIEI- program over an approximately two-year intervention period. Symptom changes were measured as evaluation-ADOS-2-scores, total- and severity-scores, minus the corresponding baseline-scores, divided by the time between baseline and evaluation. The difference between the study-groups regarding change of ADOS-2-scores was estimated using ANCOVA. In the current study, children in the CIEI-group improved their ADOS-2-total scores between baseline and evaluation (-0.8 scores per year; 95%CI: -1.2 to -0.4), whereas no such improvement was detected in the comparison group (+0.1 scores per year; 95%CI: -0.7 to +0.9). The change difference (change in the CIEI-group vs. change in the comparison group) was statistically significant, both crude and after adjusting for possible confounders (-1.1; 95%CI -1.9 to -0.4). Children in the CIEI-group also significantly improved their ADOS-calibrated severity scores, but not significantly differently so from the comparison group. The results from the current study indicate that the CIEI program significantly improves social and communicative skills among children with autism and that children with developmental delay could benefit to a similar degree as other children. The results support earlier studies reporting on the improvement of autism symptoms after early intensive interventions. The results from observational studies are difficult to interpret, but it is nevertheless of uttermost importance to evaluate costly autism intervention programs. Such results may be of immediate importance to healthcare organizations when allocating the already strained resources to different patient groups. Albeit the obvious limitation of the current naturalistic study, the results support previous positive studies and indicate that children with autism benefit from participating in early comprehensive, intensive programs and that investments in these programs may be highly justifiable.

Keywords: autism symptoms, ADOS-scores, evaluation, intervention program

Procedia PDF Downloads 145
55 Mapping Vulnerabilities: A Social and Political Study of Disasters in Eastern Himalayas, Region of Darjeeling

Authors: Shailendra M. Pradhan, Upendra M. Pradhan

Abstract:

Disasters are perennial features of human civilization. The recurring earthquakes, floods, cyclones, among others, that result in massive loss of lives and devastation, is a grim reminder of the fact that, despite all our success stories of development, and progress in science and technology, human society is perennially at risk to disasters. The apparent threat of climate change and global warming only severe our disaster risks. Darjeeling hills, situated along Eastern Himalayan region of India, and famous for its three Ts – tea, tourism and toy-train – is also equally notorious for its disasters. The recurring landslides and earthquakes, the cyclone Aila, and the Ambootia landslides, considered as the largest landslide in Asia, are strong evidence of the vulnerability of Darjeeling hills to natural disasters. Given its geographical location along the Hindu-Kush Himalayas, the region is marked by rugged topography, geo-physically unstable structure, high-seismicity, and fragile landscape, making it prone to disasters of different kinds and magnitudes. Most of the studies on disasters in Darjeeling hills are, however, scientific and geographical in orientation that focuses on the underlying geological and physical processes to the neglect of social and political conditions. This has created a tendency among the researchers and policy-makers to endorse and promote a particular type of discourse that does not consider the social and political aspects of disasters in Darjeeling hills. Disaster, this paper argues, is a complex phenomenon, and a result of diverse factors, both physical and human. The hazards caused by the physical and geological agents, and the vulnerabilities produced and rooted in political, economic, social and cultural structures of a society, together result in disasters. In this sense, disasters are as much a result of political and economic conditions as it is of physical environment. The human aspect of disasters, therefore, compels us to address intricating social and political challenges that ultimately determine our resilience and vulnerability to disasters. Set within the above milieu, the aims of the paper are twofold: a) to provide a political and sociological account of disasters in Darjeeling hills; and, b) to identify and address the root causes of its vulnerabilities to disasters. In situating disasters in Darjeeling Hills, the paper adopts the Pressure and Release Model (PAR) that provides a theoretical insight into the study of social and political aspects of disasters, and to examine myriads of other related issues therein. The PAR model conceptualises risk as a complex combination of vulnerabilities, on the one hand, and hazards, on the other. Disasters, within the PAR framework, occur when hazards interact with vulnerabilities. The root causes of vulnerability, in turn, could be traced to social and political structures such as legal definitions of rights, gender relations, and other ideological structures and processes. In this way, the PAR model helps the present study to identify and unpack the root causes of vulnerabilities and disasters in Darjeeling hills that have largely remained neglected in dominant discourses, thereby providing a more nuanced and sociologically sensitive understanding of disasters.

Keywords: Darjeeling, disasters, PAR, vulnerabilities

Procedia PDF Downloads 273
54 Risk and Protective Factors for the Health of Primary Care-Givers of Children with Autism Spectrum Disorders or Intellectual Disability: A Narrative Review and Discussion

Authors: Jenny Fairthorne, Yuka Mori, Helen Leonard

Abstract:

Background: Primary care-givers of children with autism spectrum disorder (ASD) or intellectual disability (ID) have poorer health and quality of life (QoL) than primary care-givers (hereafter referred to as just care-givers) of typically developing children. We aimed to review original research which described factors impacting the health of care-givers of children with ASD or ID and to discuss how these factors might influence care-giver health. Methods: We searched Web of Knowledge, Medline, Scopus and Google Scholar using selections of words from each of three groups. The first comprised terms associated with ASD and ID and included autism, pervasive development disorder, intellectual disability, mental retardation, disability, disabled, Down and Asperger. The second included terms related to health such as depression, physical, mental, psychiatric, psychological and well-being. The third was terms related to care-givers such as mother, parent and care-giver. We included an original paper in our review if it was published between 1st January 1990 and 31st December, 2016, described original research in a peer-reviewed journal and was written in English. Additional criteria were that the research used a study population of 15 persons or more; described a risk or protective factor for the health of care-givers of a child with ASD, ID or a sub-type (such as ASD with ID or Down syndrome). Using previous research, we developed a simple and objective five-level tool to assess the strength of evidence provided by the reviewed papers. Results: We retained 33 papers. Factors impacting primary care-giver health included child behaviour, level of support, socio-economic status (SES) and diagnostic issues. Challenging child behaviour, the most commonly identified risk factor for poorer care-giver health and QoL was reported in ten of the studies. A higher level of support was associated with improved care-giver health and QoL. For example, substantial evidence indicated that family support reduced care-giver burden in families with a child with ASD and that family and neighbourhood support was associated with improved care-giver mental health. Higher socio-economic status (SES) was a protective factor for care-giver health and particularly maternal health. Diagnostic uncertainty and an unclear prognosis are factors which can cause the greatest concern to care-givers of children with ASD and those for whom a cause of their child’s ID has not been identified. We explain how each of these factors might impact caregiver health and how they might act differentially in care-givers of children with different types of ASD or ID (such as Down syndrome and ASD without ID). Conclusion: Care-givers of children with ASD may be more likely to experience many risk factors and less likely to experience the protective factors we identified for poorer mental health. Interventions to reduce risk factors and increase protective factors could pave the way for improved care-giver health. For example, workshops to train care-givers to better manage challenging child behaviours and earlier diagnosis of ASD (and particularly ASD without ID) would seem likely to improve care-giver well-being. Similarly, helping to expand support networks might reduce care-giver burden and stress leading to improved health.

Keywords: autism, caregivers, health, intellectual disability, mothers, review

Procedia PDF Downloads 160
53 Training in Communicational Skills in Students of Medicine: Differences in Bilingualism

Authors: Naiara Ozamiz Etcebarria, Sonia Ruiz De Azua Garcia, Agurtzane Ortiz Jauregi, Virginia Guillen Cañas

Abstract:

Introduction: The most relevant competencies of a health professional are an adequate communication capacity, which will influence the satisfaction of professionals and patients, therapeutic compliance, conflict prevention, clinical outcomes´ improvement and efficiency of health services. The ability of Active listening , empathy, assertiveness and social skills, are important abilities to develop in all professions in which there is a relationship with other people. In the field of health, it is even more important to have adequate qualities so that the treatment with the patient will be adequate and satisfactory. We conducted a research with students of third year in the Degree of Medicine with the objectives: - to know how the active listening, empathy, assertiveness and social skills of students are. - to know if there are differences according to different demographic variables, such as sex, language, age, number of siblings and interest in the subject. Material and Methods: The students of the Third year in the Degree of Medicine (N = 212) participated voluntarily. Sociodemographic data were collected. Descriptive and comparative analysis of the averages of the students with respect to active listening, empathy, assertiveness and social skills were performed. Once the questionnaires were collected, they were entered into the SPSS 21 database. Four communicational aspects were evaluated: The active listening questionnaire, the TECA empathy questionnaire, the ACDA questionnaire and the EHS questionnaire Social Skills Scale. The active listening questionnaire assesses these factors: Listening without interruption and less contradiction, Listening with 100% attention, Listening beyond words, Listening encouraging the other to go deeper. The TECA questionnaire of cognitive and affective empathy evaluates: Adoption of perspectives, Emotional Comprehension, Emphasizing stress, Empathic joy. The EHS questionnaire Social Skills Scale: Self-expression in social situations, Defending one's own rights as a consumer, Expressing anger or dissatisfaction, Refusing to do and cutting interactions off, Making requests, Initiating positive interactions with the other sex. The ACDA questionnaire Assertiveness Assessment Scale evaluates self-assertiveness and heteroaservitivity. Applicability: To train these skills is so important for clinical practice of medical students and these capabilities that can be measured in a longitudinal way time. Ethical-legal aspects: The data were anonymous. The study was approved by the Ethics Committee. Results: The students of the Third year in the Degree of Medicine (34.4% Basque speakers and 65.6% Spanish speakers) with average age 20.93, (27.8% men and 72.2% women). There are no differences in social skills between men and women. The Basque speaker students of are more heteroactive (ACDA) than Spanish students. Active listening has a high correlation with social skills, especially with self-expression in social situations. Listening without interruption has a high correlation with self-expression in social situations and initiating positive interactions with the opposite sex. Adoption of perspectives presents a high correlation with auto- assertiveness. Emotional understanding presents a high correlation with positive interactions with the opposite sex. Empathic joy correlates with self-assertiveness, self-expression in social situations, and initiating positive interactions with the opposite sex.

Keywords: active listening, assertiveness, communicational skills, empathy, students of medicine

Procedia PDF Downloads 303
52 Blended Learning Instructional Approach to Teach Pharmaceutical Calculations

Authors: Sini George

Abstract:

Active learning pedagogies are valued for their success in increasing 21st-century learners’ engagement, developing transferable skills like critical thinking or quantitative reasoning, and creating deeper and more lasting educational gains. 'Blended learning' is an active learning pedagogical approach in which direct instruction moves from the group learning space to the individual learning space, and the resulting group space is transformed into a dynamic, interactive learning environment where the educator guides students as they apply concepts and engage creatively in the subject matter. This project aimed to develop a blended learning instructional approach to teaching concepts around pharmaceutical calculations to year 1 pharmacy students. The wrong dose, strength or frequency of a medication accounts for almost a third of medication errors in the NHS therefore, progression to year 2 requires a 70% pass in this calculation test, in addition to the standard progression requirements. Many students were struggling to achieve this requirement in the past. It was also challenging to teach these concepts to students of a large class (> 130) with mixed mathematical abilities, especially within a traditional didactic lecture format. Therefore, short screencasts with voice-over of the lecturer were provided in advance of a total of four teaching sessions (two hours/session), incorporating core content of each session and talking through how they approached the calculations to model metacognition. Links to the screencasts were posted on the learning management. Viewership counts were used to determine that the students were indeed accessing and watching the screencasts on schedule. In the classroom, students had to apply the knowledge learned beforehand to a series of increasingly difficult set of questions. Students were then asked to create a question in group settings (two students/group) and to discuss the questions created by their peers in their groups to promote deep conceptual learning. Students were also given time for question-and-answer period to seek clarifications on the concepts covered. Student response to this instructional approach and their test grades were collected. After collecting and organizing the data, statistical analysis was carried out to calculate binomial statistics for the two data sets: the test grade for students who received blended learning instruction and the test grades for students who received instruction in a standard lecture format in class, to compare the effectiveness of each type of instruction. Student response and their performance data on the assessment indicate that the learning of content in the blended learning instructional approach led to higher levels of student engagement, satisfaction, and more substantial learning gains. The blended learning approach enabled each student to learn how to do calculations at their own pace freeing class time for interactive application of this knowledge. Although time-consuming for an instructor to implement, the findings of this research demonstrate that the blended learning instructional approach improves student academic outcomes and represents a valuable method to incorporate active learning methodologies while still maintaining broad content coverage. Satisfaction with this approach was high, and we are currently developing more pharmacy content for delivery in this format.

Keywords: active learning, blended learning, deep conceptual learning, instructional approach, metacognition, pharmaceutical calculations

Procedia PDF Downloads 172
51 Absenteeism in Polytechnical University Studies: Quantification and Identification of the Causes at Universitat Politècnica de Catalunya

Authors: E. Mas de les Valls, M. Castells-Sanabra, R. Capdevila, N. Pla, Rosa M. Fernandez-Canti, V. de Medina, A. Mujal, C. Barahona, E. Velo, M. Vigo, M. A. Santos, T. Soto

Abstract:

Absenteeism in universities, including polytechnical universities, is influenced by a variety of factors. Some factors overlap with those causing absenteeism in schools, while others are specific to the university and work-related environments. Indeed, these factors may stem from various sources, including students, educators, the institution itself, or even the alignment of degree curricula with professional requirements. In Spain, there has been an increase in absenteeism in polytechnical university studies, especially after the Covid crisis, posing a significant challenge for institutions to address. This study focuses on Universitat Politècnica de Catalunya• BarcelonaTech (UPC) and aims to quantify the current level of absenteeism and identify its main causes. The study is part of the teaching innovation project ASAP-UPC, which aims to minimize absenteeism through the redesign of teaching methodologies. By understanding the factors contributing to absenteeism, the study seeks to inform the subsequent phases of the ASAP-UPC project, which involve implementing methodologies to minimize absenteeism and evaluating their effectiveness. The study utilizes surveys conducted among students and polytechnical companies. Students' perspectives are gathered through both online surveys and in-person interviews. The surveys inquire about students' interest in attending classes, skill development throughout their UPC experience, and their perception of the skills required for a career in a polytechnical field. Additionally, polytechnical companies are surveyed regarding the skills they seek in prospective employees. The collected data is then analyzed to identify patterns and trends. This analysis involves organizing and categorizing the data, identifying common themes, and drawing conclusions based on the findings. This mixed-method approach has revealed that higher levels of absenteeism are observed in large student groups at both the Bachelor's and Master's degree levels. However, the main causes of absenteeism differ between these two levels. At the Bachelor's level, many students express dissatisfaction with in-person classes, perceiving them as overly theoretical and lacking a balance between theory, experimental practice, and problem-solving components. They also find a lack of relevance to professional needs. Consequently, they resort to using online available materials developed during the Covid crisis and attending private academies for exam preparation instead. On the other hand, at the Master's level, absenteeism primarily arises from schedule incompatibility between university and professional work. There is a discrepancy between the skills highly valued by companies and the skills emphasized during the studies, aligning partially with students' perceptions. These findings are of theoretical importance as they shed light on areas that can be improved to offer a more beneficial educational experience to students at UPC. The study also has potential applicability to other polytechnic universities, allowing them to adapt the surveys and apply the findings to their specific contexts. By addressing the identified causes of absenteeism, universities can enhance the educational experience and better prepare students for successful careers in polytechnical fields.

Keywords: absenteeism, polytechnical studies, professional skills, university challenges

Procedia PDF Downloads 68
50 Effects and Mechanisms of an Online Short-Term Audio-Based Mindfulness Intervention on Wellbeing in Community Settings and How Stress and Negative Affect Influence the Therapy Effects: Parallel Process Latent Growth Curve Modeling of a Randomized Control

Authors: Man Ying Kang, Joshua Kin Man Nan

Abstract:

The prolonged pandemic has posed alarming public health challenges to various parts of the world, and face-to-face mental health treatment is largely discounted for the control of virus transmission, online psychological services and self-help mental health kits have become essential. Online self-help mindfulness-based interventions have proved their effects on fostering mental health for different populations over the globe. This paper was to test the effectiveness of an online short-term audio-based mindfulness (SAM) program in enhancing wellbeing, dispositional mindfulness, and reducing stress and negative affect in community settings in China, and to explore possible mechanisms of how dispositional mindfulness, stress, and negative affect influenced the intervention effects on wellbeing. Community-dwelling adults were recruited via online social networking sites (e.g., QQ, WeChat, and Weibo). Participants (n=100) were randomized into the mindfulness group (n=50) and a waitlist control group (n=50). In the mindfulness group, participants were advised to spend 10–20 minutes listening to the audio content, including mindful-form practices (e.g., eating, sitting, walking, or breathing). Then practice daily mindfulness exercises for 3 weeks (a total of 21 sessions), whereas those in the control group received the same intervention after data collection in the mindfulness group. Participants in the mindfulness group needed to fill in the World Health Organization Five Well-Being Index (WHO), Positive and Negative Affect Schedule (PANAS), Perceived Stress Scale (PSS), and Freiburg Mindfulness Inventory (FMI) four times: at baseline (T0) and at 1 (T1), 2 (T2), and 3 (T3) weeks while those in the waitlist control group only needed to fill in the same scales at pre- and post-interventions. Repeated-measure analysis of variance, paired sample t-test, and independent sample t-test was used to analyze the variable outcomes of the two groups. The parallel process latent growth curve modeling analysis was used to explore the longitudinal moderated mediation effects. The dependent variable was WHO slope from T0 to T3, the independent variable was Group (1=SAM, 2=Control), the mediator was FMI slope from T0 to T3, and the moderator was T0NA and T0PSS separately. The different levels of moderator effects on WHO slope was explored, including low T0NA or T0PSS (Mean-SD), medium T0NA or T0PSS (Mean), and high T0NA or T0PSS (Mean+SD). The results found that SAM significantly improved and predicted higher levels of WHO slope and FMI slope, as well as significantly reduced NA and PSS. FMI slope positively predict WHO slope. FMI slope partially mediated the relationship between SAM and WHO slope. Baseline NA and PSS as the moderators were found to be significant between SAM and WHO slope and between SAM and FMI slope, respectively. The conclusion was that SAM was effective in promoting levels of mental wellbeing, positive affect, and dispositional mindfulness as well as reducing negative affect and stress in community settings in China. SAM improved wellbeing faster through the faster enhancement of dispositional mindfulness. Participants with medium-to-high negative affect and stress buffered the therapy effects of SAM on wellbeing improvement speed.

Keywords: mindfulness, negative affect, stress, wellbeing, randomized control trial

Procedia PDF Downloads 109
49 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 83
48 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm

Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam

Abstract:

The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.

Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction

Procedia PDF Downloads 139
47 Impact of Water Interventions under WASH Program in the South-west Coastal Region of Bangladesh

Authors: S. M. Ashikur Elahee, Md. Zahidur Rahman, Md. Shofiqur Rahman

Abstract:

This study evaluated the impact of different water interventions under WASH program on access of household's to safe drinking water. Following survey method, the study was carried out in two Upazila of South-west coastal region of Bangladesh namely Koyra from Khulna and Shymnagar from Satkhira district. Being an explanatory study, a total of 200 household's selected applying random sampling technique were interviewed using a structured interview schedule. The predicted probability suggests that around 62 percent household's are out of year-round access to safe drinking water whereby, only 25 percent household's have access at SPHERE standard (913 Liters/per person/per year). Besides, majority (78 percent) of the household's have not accessed at both indicators simultaneously. The distance from household residence to the water source varies from 0 to 25 kilometer with an average distance of 2.03 kilometers. The study also reveals that the increase in monthly income around BDT 1,000 leads to additional 11 liters (coefficient 0.01 at p < 0.1) consumption of safe drinking water for a person/year. As expected, lining up time has significant negative relationship with dependent variables i.e., for higher lining up time, the probability of getting access for both SPHERE standard and year round access variables becomes lower. According to ordinary least square (OLS) regression results, water consumption decreases at 93 liters for per person/year of a household if one member is added to that household. Regarding water consumption intensity, ordered logistic regression (OLR) model shows that one-minute increase of lining up time for water collection tends to reduce water consumption intensity. On the other hand, as per OLS regression results, for one-minute increase of lining up time, the water consumption decreases by around 8 liters. Considering access to Deep Tube Well (DTW) as a reference dummy, in OLR, the household under Pond Sand Filter (PSF), Shallow Tube Well (STW), Reverse Osmosis (RO) and Rainwater Harvester System (RWHS) are respectively 37 percent, 29 percent, 61 percent and 27 percent less likely to ensure year round access of water consumption. In line of health impact, different type of water born diseases like diarrhea, cholera, and typhoid are common among the coastal community caused by microbial impurities i.e., Bacteria, Protozoa. High turbidity and TDS in pond water caused by reduction of water depth, presence of suspended particle and inorganic salt stimulate the growth of bacteria, protozoa, and algae causes affecting health hazard. Meanwhile, excessive growth of Algae in pond water caused by excessive nitrate in drinking water adversely effects on child health. In lieu of ensuring access at SPHERE standard, we need to increase the number of water interventions at reasonable distance, preferably a half kilometer away from the dwelling place, ensuring community peoples involved with its installation process where collectively owned water intervention is found more effective than privately owned. In addition, a demand-responsive approach to supply of piped water should be adopted to allow consumer demand to guide investment in domestic water supply in future.

Keywords: access, impact, safe drinking water, Sphere standard, water interventions

Procedia PDF Downloads 219
46 Maritime English Communication Training for Japanese VTS Operators in the Congested Area Including the Narrow Channel of Akashi Strait

Authors: Kenji Tanaka, Kazumi Sugita, Yuto Mizushima

Abstract:

This paper introduces a noteworthy form of English communication training for the officers and operators of the Osaka-Bay Marine Traffic Information Service (Osaka MARTIS) of the Japan Coast Guard working in the congested area at the Akashi Strait in Hyogo Prefecture, Japan. The authors of this paper, Marine Technical College’s (MTC) English language instructors, have been holding about forty lectures and exercises in basic and normal Maritime English (ME) for several groups of MARTIS personnel at Osaka MARTIS annually since they started the training in 2005. Trainees are expected to be qualified Maritime Third-Class Radio Operators who are responsible for providing safety information to a daily average of seven to eight hundred vessels that pass through the Akashi Strait, one of Japan’s narrowest channels. As of 2022, the instructors are conducting 55 remote lessons at MARTIS. One lesson is 90 minutes long. All 26 trainees are given oral and written assessments. The trainees need to pass the examination to become qualified operators every year, requiring them to train and maintain their linguistic levels even during the pandemic of Corona Virus Disease-19 (COVID-19). The vessel traffic information provided by Osaka MARTIS in Maritime English language is essential to the work involving the use of very high frequency (VHF) communication between MARTIS and vessels in the area. ME is the common language mainly used on board merchant, fishing, and recreational vessels, normally at sea. ME was edited and recommended by the International Maritime Organization in the 1970s, was revised in 2002, and has undergone continual revision. The vessel’s circumstances are much more serious at the strait than those at the open sea, so these vessels need ME to receive guidance from the center when passing through the narrow strait. The imminent and challenging situations at the strait necessitate that textbooks’ contents include the basics of the phrase book for seafarers as well as specific and additional navigational information, pronunciation exercises, notes on keywords and phrases, explanations about collocations, sample sentences, and explanations about the differences between synonyms especially those focusing on terminologies necessary for passing through the strait. Additionally, short Japanese-English translation quizzes about these topics, as well as prescribed readings about the maritime sector, are include in the textbook. All of these exercises have been trained in the remote education system since the outbreak of COVID-19. According to the guidelines of ME edited in 2009, the lowest level necessary for seafarers is B1 (lower individual users) of The Common European Framework of Reference for Languages: Learning, Teaching, Assessment (CEFR). Therefore, this vocational ME language training at Osaka MARTIS aims for its trainees to communicate at levels higher than B1. A noteworthy proof of improvement from this training is that most of the trainees have become qualified marine radio communication officers.

Keywords: akashi strait, B1 of CEFR, maritime english communication training, osaka martis

Procedia PDF Downloads 123
45 Developing Thai-UK Double Degree Programmes: An Exploratory Study Identifying Challenges, Competing Interests and Risks

Authors: Joy Tweed, Jon Pike

Abstract:

In Thailand, a 4.0 policy has been initiated that is designed to prepare and train an appropriate workforce to support the move to a value-based economy. One aspect of support for this policy is a project to encourage the creation of double degree programmes, specifically between Thai and UK universities. This research into the project, conducted with its key players, explores the factors that can either enable or hinder the development of such programmes. It is an area that has received little research attention to date. Key findings focus on differences in quality assurance requirements, attitudes to benefits, risks, and committed levels of institutional support, thus providing valuable input into future policy making. The Transnational Education (TNE) Development Project was initiated in 2015 by the British Council, in conjunction with the Office for Higher Education Commission (OHEC), Thailand. The purpose of the project was to facilitate opportunities for Thai Universities to partner with UK Universities so as to develop double degree programme models. In this arrangement, the student gains both a UK and a Thai qualification, spending time studying in both countries. Twenty-two partnerships were initiated via the project. Utilizing a qualitative approach, data sources included participation in TNE project workshops, peer reviews, and over 20 semi-structured interviews conducted with key informants within the participating UK and Thai universities. Interviews were recorded, transcribed, and analysed for key themes. The research has revealed that the strength of the relationship between the two partner institutions is critical. Successful partnerships are often built on previous personal contact, have senior-level involvement and are strengthened by partnership on different levels, such as research, student exchange, and other forms of mobility. The support of the British Council was regarded as a key enabler in developing these types of projects for those universities that had not been involved in TNE previously. The involvement of industry is apparent in programmes that have high scientific content but not well developed in other subject areas. Factors that hinder the development of partnership programmes include the approval processes and quality requirements of each institution. Significant differences in fee levels between Thai and UK universities provide a challenge and attempts to bridge them require goodwill on the part of the latter that may be difficult to realise. This research indicates the key factors to which attention needs to be given when developing a TNE programme. Early attention to these factors can reduce the likelihood that the partnership will fail to develop. Representatives in both partner universities need to understand their respective processes of development and approval. The research has important practical implications for policy-makers and planners involved with TNE, not only in relation to the specific TNE project but also more widely in relation to the development of TNE programmes in other countries and other subject areas. Future research will focus on assessing the success of the double degree programmes generated by the TNE Development Project from the perspective of universities, policy makers, and industry partners.

Keywords: double-degree, internationalization, partnerships, Thai-UK

Procedia PDF Downloads 103
44 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data

Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora

Abstract:

Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.

Keywords: drilling optimization, geological formations, machine learning, rate of penetration

Procedia PDF Downloads 131
43 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance

Authors: Yi Jen Wang, Yu Ju Chen

Abstract:

Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.

Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing

Procedia PDF Downloads 175
42 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks

Authors: Andrew N. Saylor, James R. Peters

Abstract:

Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.

Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging

Procedia PDF Downloads 129
41 Approach for the Mathematical Calculation of the Damping Factor of Railway Bridges with Ballasted Track

Authors: Andreas Stollwitzer, Lara Bettinelli, Josef Fink

Abstract:

The expansion of the high-speed rail network over the past decades has resulted in new challenges for engineers, including traffic-induced resonance vibrations of railway bridges. Excessive resonance-induced speed-dependent accelerations of railway bridges during high-speed traffic can lead to negative consequences such as fatigue symptoms, distortion of the track, destabilisation of the ballast bed, and potentially even derailment. A realistic prognosis of bridge vibrations during high-speed traffic must not only rely on the right choice of an adequate calculation model for both bridge and train but first and foremost on the use of dynamic model parameters which reflect reality appropriately. However, comparisons between measured and calculated bridge vibrations are often characterised by considerable discrepancies, whereas dynamic calculations overestimate the actual responses and therefore lead to uneconomical results. This gap between measurement and calculation constitutes a complex research issue and can be traced to several causes. One major cause is found in the dynamic properties of the ballasted track, more specifically in the persisting, substantial uncertainties regarding the consideration of the ballasted track (mechanical model and input parameters) in dynamic calculations. Furthermore, the discrepancy is particularly pronounced concerning the damping values of the bridge, as conservative values have to be used in the calculations due to normative specifications and lack of knowledge. By using a large-scale test facility, the analysis of the dynamic behaviour of ballasted track has been a major research topic at the Institute of Structural Engineering/Steel Construction at TU Wien in recent years. This highly specialised test facility is designed for isolated research of the ballasted track's dynamic stiffness and damping properties – independent of the bearing structure. Several mechanical models for the ballasted track consisting of one or more continuous spring-damper elements were developed based on the knowledge gained. These mechanical models can subsequently be integrated into bridge models for dynamic calculations. Furthermore, based on measurements at the test facility, model-dependent stiffness and damping parameters were determined for these mechanical models. As a result, realistic mechanical models of the railway bridge with different levels of detail and sufficiently precise characteristic values are available for bridge engineers. Besides that, this contribution also presents another practical application of such a bridge model: Based on the bridge model, determination equations for the damping factor (as Lehr's damping factor) can be derived. This approach constitutes a first-time method that makes the damping factor of a railway bridge calculable. A comparison of this mathematical approach with measured dynamic parameters of existing railway bridges illustrates, on the one hand, the apparent deviation between normatively prescribed and in-situ measured damping factors. On the other hand, it is also shown that a new approach, which makes it possible to calculate the damping factor, provides results that are close to reality and thus raises potentials for minimising the discrepancy between measurement and calculation.

Keywords: ballasted track, bridge dynamics, damping, model design, railway bridges

Procedia PDF Downloads 164
40 Categorical Metadata Encoding Schemes for Arteriovenous Fistula Blood Flow Sound Classification: Scaling Numerical Representations Leads to Improved Performance

Authors: George Zhou, Yunchan Chen, Candace Chien

Abstract:

Kidney replacement therapy is the current standard of care for end-stage renal diseases. In-center or home hemodialysis remains an integral component of the therapeutic regimen. Arteriovenous fistulas (AVF) make up the vascular circuit through which blood is filtered and returned. Naturally, AVF patency determines whether adequate clearance and filtration can be achieved and directly influences clinical outcomes. Our aim was to build a deep learning model for automated AVF stenosis screening based on the sound of blood flow through the AVF. A total of 311 patients with AVF were enrolled in this study. Blood flow sounds were collected using a digital stethoscope. For each patient, blood flow sounds were collected at 6 different locations along the patient’s AVF. The 6 locations are artery, anastomosis, distal vein, middle vein, proximal vein, and venous arch. A total of 1866 sounds were collected. The blood flow sounds are labeled as “patent” (normal) or “stenotic” (abnormal). The labels are validated from concurrent ultrasound. Our dataset included 1527 “patent” and 339 “stenotic” sounds. We show that blood flow sounds vary significantly along the AVF. For example, the blood flow sound is loudest at the anastomosis site and softest at the cephalic arch. Contextualizing the sound with location metadata significantly improves classification performance. How to encode and incorporate categorical metadata is an active area of research1. Herein, we study ordinal (i.e., integer) encoding schemes. The numerical representation is concatenated to the flattened feature vector. We train a vision transformer (ViT) on spectrogram image representations of the sound and demonstrate that using scalar multiples of our integer encodings improves classification performance. Models are evaluated using a 10-fold cross-validation procedure. The baseline performance of our ViT without any location metadata achieves an AuROC and AuPRC of 0.68 ± 0.05 and 0.28 ± 0.09, respectively. Using the following encodings of Artery:0; Arch: 1; Proximal: 2; Middle: 3; Distal 4: Anastomosis: 5, the ViT achieves an AuROC and AuPRC of 0.69 ± 0.06 and 0.30 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 10; Proximal: 20; Middle: 30; Distal 40: Anastomosis: 50, the ViT achieves an AuROC and AuPRC of 0.74 ± 0.06 and 0.38 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 100; Proximal: 200; Middle: 300; Distal 400: Anastomosis: 500, the ViT achieves an AuROC and AuPRC of 0.78 ± 0.06 and 0.43 ± 0.11. respectively. Interestingly, we see that using increasing scalar multiples of our integer encoding scheme (i.e., encoding “venous arch” as 1,10,100) results in progressively improved performance. In theory, the integer values do not matter since we are optimizing the same loss function; the model can learn to increase or decrease the weights associated with location encodings and converge on the same solution. However, in the setting of limited data and computation resources, increasing the importance at initialization either leads to faster convergence or helps the model escape a local minimum.

Keywords: arteriovenous fistula, blood flow sounds, metadata encoding, deep learning

Procedia PDF Downloads 87
39 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 72
38 Global Health Student Selected Components in Undergraduate Medical Education: Analysis of Student Feedback and Reflective Writings

Authors: Harriet Bothwell, Lowri Evans, Kevin Jones

Abstract:

Background: The University of Bristol provides all medical students the opportunity to undertake student selected components (SSCs) at multiple stages of the undergraduate programme. SSCs enable students to explore areas of interest that are not necessarily covered by the curriculum. Students are required to produce a written report and most use SSCs as an opportunity to undertake an audit or small research project. In 2013 Swindon Academy, based at the Great Western Hospital, offered eight students the opportunity of a global health SSC which included a two week trip to rural hospital in Uganda. This SSC has since expanded and in 2017 a total of 20 students had the opportunity to undertake small research projects at two hospitals in rural Uganda. 'Tomorrows Doctors' highlights the importance of understanding healthcare from a 'global perspective' and student feedback from previous SSCs suggests that self-assessed knowledge of global health increases as a result of this SSC. Through the most recent version of this SSC students had the opportunity to undertake projects in a wide range of specialties including paediatrics, palliative care, surgery and medical education. Methods: An anonymous online questionnaire was made available to students following the SSC. There was a response rate of 80% representing 16 out of the 20 students. This questionnaire surveyed students’ satisfaction and experience of the SSC including the level of academic, project and spiritual support provided as well as perceived challenges in completing the project and barriers to healthcare delivery in the low resource setting. This survey had multiple open questions allowing the collection of qualitative data. Further qualitative data was collected from the students’ project report. The suggested format included a reflection and all students completed these. All qualitative data underwent thematic analysis. Results: All respondents rated the overall experience of the SSC as 'good' or 'excellent'. Preliminary data suggest that students’ confidence in their knowledge of global health, diagnosis of tropical diseases and management of tropical diseases improved after completing this SSC. Thematic analysis of students' reflection is ongoing but suggests that students gain far more than improved knowledge of tropical diseases. Students reflect positively on having the opportunity to research in a low resource setting and feel that by completing these projects they will be 'useful' to the hospital. Several students reflect the stark contrast to healthcare delivery in the UK and recognise the 'privilege' of having a healthcare system that is free at the point of access. Some students noted the different approaches that clinicians in Uganda had to train in 'taking ownership' of their own learning. Conclusions: Students completing this SSC report increased knowledge of global health and tropical medicine. However, their reflections reveal much broader learning outcomes and demonstrate considerable insight in multiple topics including conducting research in the low resource setting, training and healthcare inequality.

Keywords: global health, medical education, student feedback, undergraduate

Procedia PDF Downloads 127
37 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury

Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp

Abstract:

Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.

Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation

Procedia PDF Downloads 120
36 Exploring the Application of IoT Technology in Lower Limb Assistive Devices for Rehabilitation during the Golden Period of Stroke Patients with Hemiplegia

Authors: Ching-Yu Liao, Ju-Joan Wong

Abstract:

Recent years have shown a trend of younger stroke patients and an increase in ischemic strokes with the rise in stroke incidence. This has led to a growing demand for telemedicine, particularly during the COVID-19 pandemic, which has made the need for telemedicine even more urgent. This shift in healthcare is also closely related to advancements in Internet of Things (IoT) technology. Stroke-induced hemiparesis is a significant issue for patients. The medical community believes that if intervention occurs within three to six months of stroke onset, 80% of the residual effects can be restored to normal, a period known as the stroke golden period. During this time, patients undergo treatment and rehabilitation, and neural plasticity is at its best. Lower limb rehabilitation for stroke generally includes exercises such as support standing and walking posture, typically involving the healthy limb to guide the affected limb to achieve rehabilitation goals. Existing gait training aids in hospitals usually involve balance gait, sitting posture training, and precise muscle control, effectively addressing issues of poor gait, insufficient muscle activity, and inability to train independently during recovery. However, home training aids, such as braced and wheeled devices, often rely on the healthy limb to pull the affected limb, leading to lower usage of the affected limb, worsening circular walking, and compensatory movement issues. IoT technology connects devices via the internet to record, receive data, provide feedback, and adjust equipment for intelligent effects. Therefore, this study aims to explore how IoT can be integrated into existing gait training aids to monitor and sensor home rehabilitation movements, improve gait training compensatory issues through real-time feedback, and enable healthcare professionals to quickly understand patient conditions and enhance medical communication. To understand the needs of hemiparetic patients, a review of relevant literature from the past decade will be conducted. From the perspective of user experience, participant observation will be used to explore the use of home training aids by stroke patients and therapists, and interviews with physical therapists will be conducted to obtain professional opinions and practical experiences. Design specifications for home training aids for hemiparetic patients will be summarized. Applying IoT technology to lower limb training aids for stroke hemiparesis can help promote walking function recovery in hemiparetic patients, reduce muscle atrophy, and allow healthcare professionals to immediately grasp patient conditions and adjust gait training plans based on collected and analyzed information. Exploring these potential development directions provides a valuable reference for the further application of IoT technology in the field of medical rehabilitation.

Keywords: stroke, hemiplegia, rehabilitation, gait training, internet of things technology

Procedia PDF Downloads 29