Search results for: temporal progression
692 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 104691 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform
Authors: S. Hutasavi, D. Chen
Abstract:
The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping
Procedia PDF Downloads 125690 Computation and Validation of the Stress Distribution around a Circular Hole in a Slab Undergoing Plastic Deformation
Authors: Sherif D. El Wakil, John Rice
Abstract:
The aim of the current work was to employ the finite element method to model a slab, with a small hole across its width, undergoing plastic plane strain deformation. The computational model had, however, to be validated by comparing its results with those obtained experimentally. Since they were in good agreement, the finite element method can therefore be considered a reliable tool that can help gain better understanding of the mechanism of ductile failure in structural members having stress raisers. The finite element software used was ANSYS, and the PLANE183 element was utilized. It is a higher order 2-D, 8-node or 6-node element with quadratic displacement behavior. A bilinear stress-strain relationship was used to define the material properties, with constants similar to those of the material used in the experimental study. The model was run for several tensile loads in order to observe the progression of the plastic deformation region, and the stress concentration factor was determined in each case. The experimental study involved employing the visioplasticity technique, where a circular mesh (each circle was 0.5 mm in diameter, with 0.05 mm line thickness) was initially printed on the side of an aluminum slab having a small hole across its width. Tensile loading was then applied to produce a small increment of plastic deformation. Circles in the plastic region became ellipses, where the directions of the principal strains and stresses coincided with the major and minor axes of the ellipses. Next, we were able to determine the directions of the maximum and minimum shear stresses at the center of each ellipse, and the slip-line field was then constructed. We were then able to determine the stress at any point in the plastic deformation zone, and hence the stress concentration factor. The experimental results were found to be in good agreement with the analytical ones.Keywords: finite element method to model a slab, slab undergoing plastic deformation, stress distribution around a circular hole, visioplasticity
Procedia PDF Downloads 319689 Mining Riding Patterns in Bike-Sharing System Connecting with Public Transportation
Authors: Chong Zhang, Guoming Tang, Bin Ge, Jiuyang Tang
Abstract:
With the fast growing road traffic and increasingly severe traffic congestion, more and more citizens choose to use the public transportation for daily travelling. Meanwhile, the shared bike provides a convenient option for the first and last mile to the public transit. As of 2016, over one thousand cities around the world have deployed the bike-sharing system. The combination of these two transportations have stimulated the development of each other and made significant contribution to the reduction of carbon footprint. A lot of work has been done on mining the riding behaviors in various bike-sharing systems. Most of them, however, treated the bike-sharing system as an isolated system and thus their results provide little reference for the public transit construction and optimization. In this work, we treat the bike-sharing and public transit as a whole and investigate the customers’ bike-and-ride behaviors. Specifically, we develop a spatio-temporal traffic delivery model to study the riding patterns between the two transportation systems and explore the traffic characteristics (e.g., distributions of customer arrival/departure and traffic peak hours) from the time and space dimensions. During the model construction and evaluation, we make use of large open datasets from real-world bike-sharing systems (the CitiBike in New York, GoBike in San Francisco and BIXI in Montreal) along with corresponding public transit information. The developed two-dimension traffic model, as well as the mined bike-and-ride behaviors, can provide great help to the deployment of next-generation intelligent transportation systems.Keywords: riding pattern mining, bike-sharing system, public transportation, bike-and-ride behavior
Procedia PDF Downloads 780688 A Historical Analysis of The Concept of Equivalence from Different Theoretical Perspectives in Translation Studies
Authors: Amenador Kate Benedicta, Wang Zhiwei
Abstract:
Since the later parts of the 20th century, the notion of equivalence continues to be a central and critical concept in the development of translation theory. After decades of arguments over word-for-word and free translations methods, scholars attempting to develop more systematic and efficient translation theories began to focus on fundamental translation concepts such as equivalence. Although the concept of equivalence has piqued the interest of many scholars, its definition, scope, and applicability have sparked contentious arguments within the discipline. As a result, several distinct theories and explanations on the concept of equivalence have been put forward over the last half-century. Thus, this study explores and discusses the evolution of the critical concept of equivalence in translation studies through a bibliometric method of investigation of manual and digital books and articles by analyzing different scholars' key contributions and limitations on equivalence from various theoretical perspectives. While analyzing them, emphasis is placed on the innovations that each theory has brought to the comprehension of equivalence. In order to achieve the aim of the study, the article began by discussing the contributions of linguistically motivated theories to the notion of equivalence in translation, followed by functionalist-oriented contributions, before moving on to more recent advancements in translation studies on the concept. Because equivalence is such a broad notion, it is impossible to discuss each researcher in depth. As a result, the most well-known names and their equivalent theories are compared and contrasted in this research. The study emphasizes the developmental progression in our comprehension of the equivalence concept and equivalent effect. It concluded that the various theoretical perspective's contributions to the notion of equivalence rather complement and make up for the limitations of each other. The study also highlighted how troublesome the equivalent concept might become in terms of identifying the nature of translation and how central and unavoidable the concept is in every translation action, despite its limitations. The significance of the study lies in its synthesis of the different contributions and limitations of the various theories offered by scholars on the notion of equivalence, lending literature to both student and scholars in the field, and providing insight on future theoretical developmentKeywords: equivalence, functionalist translation theories, linguistic translation approaches, translation theories, Skopos
Procedia PDF Downloads 113687 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics
Procedia PDF Downloads 576686 A Study of the British Security Disembedding Mechanism from a Comparative Political Perspective: Centering on the Bosnia War and the Russian-Ukrainian War
Abstract:
Globalization has led to an increasingly interconnected international community and transmitted risks to every corner of the world through the chain of globalization. Security risks arising from international conflicts seem inescapable. Some countries have begun to build their capacity to deal with the globalization of security risks. They establish disembedding security mechanisms that transcend spatial or temporal boundaries and promote security cooperation with countries or regions that are not geographically close. This paper proposes four hypotheses of the phenomenon of "risks and security disembedding" in the post-Cold War international society and uses them to explain The United Kingdom’s behavior in the Bosnian War and the Russo-Ukrainian War. In the Bosnian War, confident in its own security and focused on maintaining European stability, The UK has therefore chosen to be cautious in its use of force in international frameworks such as the EU and to maintain a very limited intervention in Bosnia and Herzegovina's affairs. In contrast, the failure of the EU and NATO’s security mechanism in the Russo-Ukrainian war heightened Britain's anxiety, and the volatile international situation led it to show a strong tendency towards security disembedding, choosing to conclude security communities with extra-territorial states. Analysis suggests that security mechanisms are also the starting point of conflict and that countries will rely more on disembedding mechanisms to counteract the global security risks. The current mechanism of security disembedding occurs as a result of the global proliferation of security perceptions as a symbolic token and the recognition of an expert system of security mechanisms formed by states with similar security perceptions.Keywords: disembedding mechanism, bosnia war, the russian-ukrainian war, british security strategy
Procedia PDF Downloads 86685 Global Emission Inventories of Air Pollutants from Combustion Sources
Authors: Shu Tao
Abstract:
Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.Keywords: air pollutants, combustion, emission inventory, sectorial information
Procedia PDF Downloads 369684 Differentiating Morphological Patterns of the Common Benthic Anglerfishes from the Indian Waters
Authors: M. P. Rajeeshkumar, K. V. Aneesh Kumar, J. L. Otero-Ferrer, A. Lombarte, M. Hashim, N. Saravanane, V. N.Sanjeevan, V. M. Tuset
Abstract:
The anglerfishes are widely distributed from shallow to deep-water habitats and are highly diverse in morphology, behaviour, and niche occupancy patterns. To understand this interspecific variability and degree of niche overlap, we performed a functional analysis of five species inhabiting Indian waters where diversity of deep-sea anglerfishes is very high. The sensory capacities (otolith shape and eye size) were also studied to improve the understanding of coexistence of species. The analyses of fish body and otolith shape clustered species in two morphotypes related to phylogenetic lineages: i) Malthopsis lutea, Lophiodes lugubri and Halieutea coccinea were characterized by a dorso-ventrally flattened body with high swimming ability and relative small otoliths, and ii) Chaunax spp. were distinguished by their higher body depth, lower swimming efficiency, and relative big otoliths. The sensory organs did not show a pattern linked to depth distribution of species. However, the larger eye size in M. lutea suggested a nocturnal feeding activity, whereas Chaunax spp. had a large mouth and deeper body in response to different ecological niches. Therefore, the present study supports the hypothesis of spatial and temporal segregation of anglerfishes in the Indian waters, which can be explained from a functional approach and understanding from sensory capabilities.Keywords: functional traits, otoliths, niche overlap, fishes, Indian waters
Procedia PDF Downloads 133683 Neural Graph Matching for Modification Similarity Applied to Electronic Document Comparison
Authors: Po-Fang Hsu, Chiching Wei
Abstract:
In this paper, we present a novel neural graph matching approach applied to document comparison. Document comparison is a common task in the legal and financial industries. In some cases, the most important differences may be the addition or omission of words, sentences, clauses, or paragraphs. However, it is a challenging task without recording or tracing the whole edited process. Under many temporal uncertainties, we explore the potentiality of our approach to proximate the accurate comparison to make sure which element blocks have a relation of edition with others. In the beginning, we apply a document layout analysis that combines traditional and modern technics to segment layouts in blocks of various types appropriately. Then we transform this issue into a problem of layout graph matching with textual awareness. Regarding graph matching, it is a long-studied problem with a broad range of applications. However, different from previous works focusing on visual images or structural layout, we also bring textual features into our model for adapting this domain. Specifically, based on the electronic document, we introduce an encoder to deal with the visual presentation decoding from PDF. Additionally, because the modifications can cause the inconsistency of document layout analysis between modified documents and the blocks can be merged and split, Sinkhorn divergence is adopted in our neural graph approach, which tries to overcome both these issues with many-to-many block matching. We demonstrate this on two categories of layouts, as follows., legal agreement and scientific articles, collected from our real-case datasets.Keywords: document comparison, graph matching, graph neural network, modification similarity, multi-modal
Procedia PDF Downloads 179682 Clinical Efficacy of Nivolumab and Ipilimumab Combination Therapy for the Treatment of Advanced Melanoma: A Systematic Review and Meta-Analysis of Clinical Trials
Authors: Zhipeng Yan, Janice Wing-Tung Kwong, Ching-Lung Lai
Abstract:
Background: Advanced melanoma accounts for the majority of skin cancer death due to its poor prognosis. Nivolumab and ipilimumab are monoclonal antibodies targeting programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocytes antigen 4 (CTLA-4). Nivolumab and ipilimumab combination therapy has been proven to be effective for advanced melanoma. This systematic review and meta-analysis are to evaluate its clinical efficacy and adverse events. Method: A systematic search was done on databases (Pubmed, Embase, Medline, Cochrane) on 21 June 2020. Search keywords were nivolumab, ipilimumab, melanoma, and randomised controlled trials. Clinical trials fulfilling the inclusion criteria were selected to evaluate the efficacy of combination therapy in terms of prolongation of progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). The odd ratios and distributions of grade 3 or above adverse events were documented. Subgroup analysis was performed based on PD-L1 expression-status and BRAF-mutation status. Results: Compared with nivolumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR in combination therapy were 0.64 (95% CI, 0.48-0.85; p=0.002), 0.84 (95% CI, 0.74-0.95; p=0.007) and 1.76 (95% CI, 1.51-2.06; p < 0.001), respectively. Compared with ipilimumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR were 0.46 (95% CI, 0.37-0.57; p < 0.001), 0.54 (95% CI, 0.48-0.61; p < 0.001) and 6.18 (95% CI, 5.19-7.36; p < 0.001), respectively. In combination therapy, the odds ratios of grade 3 or above adverse events were 4.71 (95% CI, 3.57-6.22; p < 0.001) compared with nivolumab monotherapy, and 3.44 (95% CI, 2.49-4.74; p < 0.001) compared with ipilimumab monotherapy, respectively. High PD-L1 expression level and BRAF mutation were associated with better clinical outcomes in patients receiving combination therapy. Conclusion: Combination therapy is effective for the treatment of advanced melanoma. Adverse events were common but manageable. Better clinical outcomes were observed in patients with high PD-L1 expression levels and positive BRAF-mutation.Keywords: nivolumab, ipilimumab, advanced melanoma, systematic review, meta-analysis
Procedia PDF Downloads 136681 Rural Water Supply Services in India: Developing a Composite Summary Score
Authors: Mimi Roy, Sriroop Chaudhuri
Abstract:
Sustainable water supply is among the basic needs for human development, especially in the rural areas of the developing nations where safe water supply and basic sanitation infrastructure is direly needed. In light of the above, we propose a simple methodology to develop a composite water sustainability index (WSI) to assess the collective performance of the existing rural water supply services (RWSS) in India over time. The WSI will be computed by summarizing the details of all the different varieties of water supply schemes presently available in India comprising of 40 liters per capita per day (lpcd), 55 lpcd, and piped water supply (PWS) per household. The WSI will be computed annually, between 2010 and 2016, to elucidate changes in holistic RWSS performances. Results will be integrated within a robust geospatial framework to identify the ‘hotspots’ (states/districts) which have persistent issues over adequate RWSS coverage and warrant spatially-optimized policy reforms in future to address sustainable human development. Dataset will be obtained from the National Rural Drinking Water Program (NRDWP), operating under the aegis of the Ministry of Drinking Water and Sanitation (MoDWS), at state/district/block levels to offer the authorities a cross-sectional view of RWSS at different levels of administrative hierarchy. Due to simplistic design, complemented by spatio-temporal cartograms, similar approaches can also be adopted in other parts of the world where RWSS need a thorough appraisal.Keywords: rural water supply services, piped water supply, sustainability, composite index, spatial, drinking water
Procedia PDF Downloads 299680 Dissection of the Impact of Diabetes Type on Heart Failure across Age Groups: A Systematic Review of Publication Patterns on PubMed
Authors: Nazanin Ahmadi Daryakenari
Abstract:
Background: Diabetes significantly influences the risk of heart failure. The interplay between distinct types of diabetes, heart failure, and their distribution across various age groups remains an area of active exploration. This study endeavors to scrutinize the age group distribution in publications addressing Type 1 and Type 2 diabetes and heart failure on PubMed while also examining the evolving publication trends. Methods: We leveraged E-utilities and RegEx to search and extract publication data from PubMed using various mesh terms. Subsequently, we conducted descriptive statistics and t-tests to discern the differences between the two diabetes types and the distribution across age groups. Finally, we analyzed the temporal trends of publications concerning both types of diabetes and heart failure. Results: Our findings revealed a divergence in the age group distribution between Type 1 and Type 2 diabetes within heart failure publications. Publications discussing Type 2 diabetes and heart failure were more predominant among older age groups, whereas those addressing Type 1 diabetes and heart failure displayed a more balanced distribution across all age groups. The t-test revealed no significant difference in the means between the two diabetes types. However, the number of publications exploring the relationship between Type 2 diabetes and heart failure has seen a steady increase over time, suggesting an escalating interest in this area. Conclusion: The dissection of publication patterns on PubMed uncovers a pronounced association between Type 2 diabetes and heart failure within older age groups. This highlights the critical need to comprehend the distinct age group differences when examining diabetes and heart failure to inform and refine targeted prevention and treatment strategies.Keywords: Type 1 diabetes, Type 2 diabetes, heart failure, age groups, publication patterns, PubMed
Procedia PDF Downloads 95679 Patient-Reported Adverse Drug Reactions, Medication Adherence and Clinical Outcomes among major depression disorder Patients in Ethiopia: A Prospective Hospital Based Study.
Authors: Tadesse Melaku Abegaz
Abstract:
Background: there was paucity of data on the self-reported adverse drug reactions (ADRs), level of adherence and clinical outcomes with antidepressants among major depressive disorder (MDD) patients in Ethiopia. Hence, the present study sought to determine the level of adherence for and clinical outcome with antidepressants and the magnitude of ADRs. Methods: A prospective cross-sectional study was employed on MDD patients from September 2016 to January 2017 at Gondar university hospital psychiatry clinic. All patients who were available during the study period were included under the study population. The Naranjo adverse drug reaction probability scale was employed to assess the adverse drug reaction. The rate of medication adherence was determined using morisky medication adherence measurement scale eight. Clinical Outcome of patients was measured by using patient health questionnaire. Multivariable logistic carried out to determine factors for adherence and patient outcome. Results: two hundred seventy patients were participated in the study. More than half of the respondents were males 122(56.2%). The mean age of the participants was 30.94 ± 8.853. More than one-half of the subjects had low adherence to their medications 124(57.1%). About 186(85.7%) of patients encountered ADR. The most common ADR was weight gain 29(13.2). Around 198(92.2%) ADRs were probable and 19(8.8%) were possible. Patients with long standing MDD had high risk of non-adherence COR: 2.458[4.413-4.227], AOR: 2.424[1.185-4.961]. More than one-half 125(57.6) of respondents showed improved outcome. Optimal level of medication adherence was found to be associated with reduced risk of progression of the diseases COR: 0.37[0.110-5.379] and AOR: 0.432[0.201-0.909]. Conclusion: Patient reported adverse drug reactions were more prevalent in major depressive disorder patients. Adherence to medications was very poor in the setup. However, the clinical outcome was relatively higher. Long standing depression was associated with non-adherence. In addition, clinical outcome of patients were affected by non-adherence. Therefore, adherence enhancing interventions should be provided to improve medication adherence and patient outcome.Keywords: adverse drug reactions, clinical outcomes, Ethiopia, prospective study, medication adherence
Procedia PDF Downloads 247678 Application of Host Factors as Biomarker in Early Diagnosis of Pulmonary Tuberculosis
Authors: Ambrish Tiwari, Sudhasini Panda, Archana Singh, Kalpana Luthra, S. K. Sharma
Abstract:
Introduction: On the basis of available literature we know that various host factors play a role in outcome of Tuberculosis (TB) infection by modulating innate immunity. One such factor is Inducible Nitric Oxide Synthase enzyme (iNOS) which help in the production of Nitric Oxide (NO), an antimicrobial agent. Expression of iNOS is in control of various host factors in which Vitamin D along with its nuclear receptor Vitamin D receptor (VDR) is one of them. Vitamin D along with its receptor also produces cathelicidin (antimicrobicidal agent). With this background, we attempted to investigate the levels of Vitamin D and NO along with their associated molecules in tuberculosis patients and household contacts as compared to healthy controls and assess the implication of these findings in susceptibility to tuberculosis (TB). Study subjects and methods: 100 active TB patients, 75 household contacts, and 70 healthy controls were taken. VDR and iNOS mRNA levels were studied using real-time PCR. Serum VDR, cathelicidin, iNOS levels were measured using ELISA. Serum Vitamin D levels were measured in serum samples using chemiluminescence based immunoassay. NO was measured using colorimetry based kit. Results: VDR and iNOS mRNA levels were found to be lower in active TB group compared to household contacts and healthy controls (P=0.0001 and 0.005 respectively). The serum levels of Vitamin D were also found to be lower in active TB group as compared to healthy controls (P =0.001). Levels of cathelicidin and NO was higher in patient group as compared to other groups (p=0.01 and 0.5 respectively). However, the expression of VDR and iNOS and levels of vitamin D was significantly (P < 0.05) higher in household contacts compared to both active TB and healthy control groups. Inference: Higher levels of Vitamin D along with VDR and iNOS expression in household contacts as compared to patients suggest that vitamin D might have a protective role against TB which prevents activation of the disease. From our data, we can conclude that decreased vitamin D levels could be implicated in disease progression and we can use cathelicidin and NO as a biomarker for early diagnosis of pulmonary tuberculosis.Keywords: vitamin D, VDR, iNOS, tuberculosis
Procedia PDF Downloads 303677 Rainstorm Characteristics over the Northeastern Region of Thailand: Weather Radar Analysis
Authors: P. Intaracharoen, P. Chantraket, C. Detyothin, S. Kirtsaeng
Abstract:
Radar reflectivity data from Phimai weather radar station of DRRAA (Department of Royal Rainmaking and Agricultural Aviation) were used to analyzed the rainstorm characteristics via Thunderstorm Identification Tracking Analysis and Nowcasting (TITAN) algorithm. The Phimai weather radar station was situated at Nakhon Ratchasima province, northeastern Thailand. The data from 277 days of rainstorm events occurring from May 2016 to May 2017 were used to investigate temporal distribution characteristics of convective individual rainclouds. The important storm properties, structures, and their behaviors were analyzed by 9 variables as storm number, storm duration, storm volume, storm area, storm top, storm base, storm speed, storm orientation, and maximum storm reflectivity. The rainstorm characteristics were also examined by separating the data into two periods as wet and dry season followed by an announcement of TMD (Thai Meteorological Department), under the influence of southwest monsoon (SWM) and northeast monsoon (NEM). According to the characteristics of rainstorm results, it can be seen that rainstorms during the SWM influence were found to be the most potential rainstorms over northeastern region of Thailand. The SWM rainstorms are larger number of the storm (404, 140 no./day), storm area (34.09, 26.79 km²) and storm volume (95.43, 66.97 km³) than NEM rainstorms, respectively. For the storm duration, the average individual storm duration during the SWM and NEM was found a minor difference in both periods (47.6, 48.38 min) and almost all storm duration in both periods were less than 3 hours. The storm velocity was not exceeding 15 km/hr (13.34 km/hr for SWM and 10.67 km/hr for NEM). For the rainstorm reflectivity, it was found a little difference between wet and dry season (43.08 dBz for SWM and 43.72 dBz for NEM). It assumed that rainstorms occurred in both seasons have same raindrop size.Keywords: rainstorm characteristics, weather radar, TITAN, Northeastern Thailand
Procedia PDF Downloads 191676 Enhancing Quality Management Systems through Automated Controls and Neural Networks
Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova
Abstract:
The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.Keywords: automated control system, quality management, document structure, formal language
Procedia PDF Downloads 39675 Breast Cancer in Very Young (Less Than 25 Yeras) Women: An Institutional Analysis from Developing Country
Authors: Ajay Gogia, Svs Deo, Dn Sharma, Atul Batra, Ashutash Mishra
Abstract:
Background and Aims: Breast cancer in women aged less than 25 years (defined as very young breast cancer, VYBC) is rare and accounts for 0.25% of all breast cancer in the West. There is no data available on VYBC from developing countries. The aim of this study was to analyze the clinical, pathological, and prognostic factors and outcomes in VYBC. Methods: This retrospective analysis was performed on 80 patients aged 25 years or less (screened 8000 files of female BC) who were registered at All India Institute of Medical Sciences (AIIMS), New Delhi, India, over a 15-year period between 2011 and 2023. Results: The median age was 21.5 years (range 16-25). A positive family history (siblings and parents) was elicited in 30% of cases, and breast cancer gene (BRCA1/2) mutation was found in 33% of cases patients. Ten patients (12.5%) patients have pregnancy-associated breast cancer (BC detected during pregnancy or 1 year after postpartum period). The TNM stage distribution was Stage I was 0, stage II -30%, stage III –60% and Stage IV -10 %patients. Seventy percent of tumors were high grade, and 90% had pathological node-positive disease. Estrogen, Progesterone, and human epidermal growth factor receptor 2 (HER2)/neu positivity were 25%,25% and 35%, respectively. Triple-negative breast cancer constituted 40% of patients. With a median follow-up of 42 months, 3 years, relapse-free survival (nonmetastatic disease), progression-free survival (metastatic disease) and overall survival were 30%, 15% and 50%, respectively. Conclusions: Very young women constituted 1% of all breast cancer cases. Advanced disease at presentation and high-risk pathological features result in poor outcomes. One-third of VYBCs are associated with BRCA mutation, which requires genetic counseling and risk reduction surgery if required. Due to the aggressive behavior of BC in this age group, need early diagnosis and prompt treatmentKeywords: very young, breast cancer, outcome, developing country, India
Procedia PDF Downloads 28674 Sterilization Incident Analysis by the Association of Litigation and Risk Management Method
Authors: Souhir Chelly, Asma Ben Cheikh, Hela Ghali, Salwa Khefacha, Lamine Dhidah, Mohamed Ben Rejeb, Houyem Said Latiri
Abstract:
The hospital risk management department is firstly involved in the methodological analysis of grade zero sterilization incidents. The system is based on a subsequent analysis process in compliance with the ongoing requirements of the Haute Autorité de santé (HAS) for a reactive approach to risk, allowing to identify failures and start the appropriate preventive and corrective measures. The use of the association of litigation and risk management (ALARM) method makes easier the grade zero analysis and brings to light the team or institutional, organizational, temporal, individual factors representative of undesirable effects. Two main factors come out again from this analysis, pre-disinfection step of the emergency block unsupervised instrumentalist intern was poorly done since she did not remove the battery from micro air motor. At the sterilization unit, the worker who was not supervised by the nurse did the conditioning of the motor without having checked it if it still contained the battery. The main cause is that the management of human resources was inadequate at both levels, the instrumental trainee in the block who was not supervised by his supervisor and the worker of the sterilization unit who was not supervised by the responsible nurse. There is a lack of research help, advice, and collaboration. The difficulties encountered during this type of analysis are multiple. The first is based on its necessary acceptance by the various actors of care involved, which should not perceive it as a tool leading to individual punishment, but rather as a means to improve their practices.Keywords: ALARM (Association of Litigation and Risk Management Method), incident, risk management, sterilization
Procedia PDF Downloads 213673 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI
Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De
Abstract:
Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.Keywords: aquaculture farms, LULC, Mangrove, NDVI
Procedia PDF Downloads 181672 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 65671 Rate of Force Development, Net Impulse and Modified Reactive Strength as Predictors of Volleyball Spike Jump Height among Young Elite Players
Authors: Javad Sarvestan, Zdenek Svoboda
Abstract:
Force-time (F-T) curvature characteristics are globally referenced as the main indicators of athletic jump performance. Nevertheless, to the best of authors’ knowledge, no investigation tried to deeply study the relationship between F-T curve variables and real-game jump performance among elite volleyball players. To this end, this study was designated to investigate the association between F-T curve variables, including movement timings, force, velocity, power, rate of force development (RFD), modified reactive strength index (RSImod), and net impulse with spike jump height during real-game circumstances. Twelve young elite volleyball players performed 3 countermovement jump (CMJ) and 3 spike jump in real-game circumstances with 1-minute rest intervals to prevent fatigue. Shapiro-Wilk statistical test illustrated the normality of data distribution, and Pearson’s product correlation test portrayed a significant correlation between CMJ height and peak RFD (0.85), average RFD (r=0.81), RSImod (r=0.88) and concentric net impulse (r=0.98), and also significant correlation between spike jump height and peak RFD (0.73), average RFD (r=0.80), RSImod (r=0.62) and concentric net impulse (r=0.71). Multiple regression analysis also reported that these factors have a strong contribution in predicting of CMJ (98%) and spike jump (77%) heights. Outcomes of this study confirm that the RFD, concentric net impulse, and RSImod values could precisely monitor and track the volleyball attackers’ explosive strength, muscular stretch-shortening cycle function efficiency, and ultimate spike jump height. To this effect, volleyball coaches and trainers are advised to have an in-depth focus on their athletes’ progression or the impacts of strength trainings by observing and chasing the F-T curve variables such as RFD, net impulse, and RSImod.Keywords: net impulse, reactive strength index, rate of force development, stretch-shortening cycle
Procedia PDF Downloads 135670 Management of Autoimmune Diseases with Ayurveda
Authors: Simmi Chopra
Abstract:
In the last few years, there has been a surge of Autoimmune diseases that have become more like an epidemic all over the world. The reasons vary from stress, insufficient sleep, smoking, genetics, environmental pollution, adulterated foods, and a diet full of “the deadly white,” which is white sugar and white flour. Most of the people diagnosed with these diseases are given steroids, opioids, supplements, or elimination diets to manage their lives, but most of them continue suffering to varying degrees. On the other hand, Ayurveda can help manage autoimmune problems effectively. Ayurveda is a 5000 years old holistic medical system from India that has an individualistic approach where health problems are looked at from the lens of balancing body and mind and by targeting the root cause of the problem. A combination of diet and lifestyle according to Ayurvedic principles, Ayurvedic herbal formulations and Ayurvedic therapies can help in the management of autoimmune and other chronic diseases. Panchkarma, which is an intense six weeks detox method, helps balance our body and mind, and has been very effective in managing autoimmune problems. The paper will introduce the basic concepts of Ayurveda and describe the terminologies- doshas, agni and ama. The paper will discuss the importance of diet and lifestyle according to the individual’s imbalance in the three functional parameters - doshas, which govern every aspect of our body and mind, our cells and tissues. The significance of agni, which can be correlated to digestive strength and ama, which can be correlated to toxins that are formed in our body leading to health problems, will be outlined. The Ayurvedic pathophysiology of autoimmune diseases will be discussed with emphasis on Rheumatoid arthritis, Multiple sclerosis and Psoriasis. Ayurvedic management will be discussed for these autoimmune conditions. As Ayurveda is an individualistic system, one protocol will not work for everyone. Therefore, case studies with Ayurvedic protocols for the above autoimmune disease will be presented. Conclusion: Ayurveda can help in managing as well as arresting the progression of autoimmune problems. Ayurveda is an ancient medical system, is much more needed today than ever. It is a tried and tested holistic system which has been practiced for the past many generations in India.Keywords: ayurveda, autoimmune, diseases, nutrition
Procedia PDF Downloads 66669 The Psychosis Prodrome: Biomarkers of the Glutamatergic System and Their Potential Role in Prediction and Treatment
Authors: Peter David Reiss
Abstract:
The concept of the psychosis prodrome has allowed for the identification of adolescent and young adult patients who have a significantly elevated risk of developing schizophrenia spectrum disorders. A number of different interventions have been tested in order to prevent or delay progression of symptoms. To date, there has been no consistent meta-analytical evidence to support efficacy of antipsychotic treatment for patients in the prodromal state, and their use remains therefore inconclusive. Although antipsychotics may manage symptoms transiently, they have not been found to prevent or delay onset of psychotic disorders. Furthermore, pharmacological intervention in high-risk individuals remains controversial, because of the antipsychotic side effect profile in a population in which only about 20 to 35 percent will eventually convert to psychosis over a two-year period, with even after two years conversion rates not exceeding 30 to 40 percent. This general estimate is additionally problematic, in that it ignores the fact that there is significant variation in individual risk among clinical high-risk cases. The current lack of reliable tests for at-risk patients makes it difficult to justify individual treatment decisions. Preventive treatment should ideally be dictated by an individual’s risk while minimizing potentially harmful medication exposure. This requires more accurate predictive assessments by using valid and accessible prognostic markers. The following will compare prediction and risk modification potential of behavioral biomarkers such as disturbances of basic sense of self and emotion awareness, neurocognitive biomarkers such as attention, working and declarative memory, and neurophysiological biomarkers such as glutamatergic abnormalities and NMDA receptor dysfunction. Identification of robust biomarkers could therefore not only provide more reliable means of psychosis prediction, but also help test and develop new clinical interventions targeted at the prodromal state.Keywords: at-risk mental state, biomarkers, glutamatergic system, NMDA receptor, psychosis prodrome, schizophrenia
Procedia PDF Downloads 195668 Endoscopic Pituitary Surgery: Learning Curve and Nasal Quality of Life
Authors: Martin Dupuy, Solange Grunenwald, Pierre-Louis Colombo, Laurence Mahieu, Pomone Richard, Philippe Bartoli
Abstract:
Endonasal endoscopic trans-sphenoidal surgery for pituitary tumours has become a mainstay of treatment over the last two decades. Although it is generally accepted that there is no significant difference between endoscopic versus microscopic approach for surgical outcomes (endocrine and ophthalmologic status), nasal morbidity seems to the benefit of endoscopic procedures. Minimally invasive endoscopic surgery needs an operative learning curve to achieve surgeon’s efficiency. This learning curve is now well known for surgical outcomes and complications rate, however, few data are available for nasal morbidity. The aim of our series is to document operative experience and nasal quality of life after (NQOL) endoscopic trans-sphenoidal surgery. The prospective pituitary surgical cohort consisted of 525 consecutives patients referred to our Skull Base Diseases Department. Endoscopic procedures were performed by a single neurosurgeon using an uninostril approach. NQOL was evaluated using the Sino-Nasal Test (SNOT-22), the Anterior Base Nasal Inventory (ASBNI) and the Skull Base Inventory Score (SBIS). Data were collected before surgery during hospital stay and 3 months after the surgery. The seventy first patients were compared to the latest 70 patients. There was no significant difference between comparison score before versus after surgery for SNOT-22, ASBNI and SBIS during the single surgeon’s learning curve. Our series demonstrates that in our institution there is no statistically significant learning curve for NQOL after uninostril endoscopic pituitary surgery. A careful progression through sinonasal structures with very limited mucosal incision is associated with minimal morbidity and preserves nasal function. Conservative and minimal invasive approach could be achieved early during learning curve.Keywords: pituitary surgery, quality of life, minimal invasive surgery, learning curve, pituitary tumours, skull base surgery, endoscopic surgery
Procedia PDF Downloads 124667 Micro-Rest: Extremely Short Breaks in Post-Learning Interference Support Memory Retention over the Long Term
Authors: R. Marhenke, M. Martini
Abstract:
The distraction of attentional resources after learning hinders long-term memory consolidation compared to several minutes of post-encoding inactivity in form of wakeful resting. We tested whether an 8-minute period of wakeful resting, compared to performing an adapted version of the d2 test of attention after learning, supports memory retention. Participants encoded and immediately recalled a word list followed by either an 8 minute period of wakeful resting (eyes closed, relaxed) or by performing an adapted version of the d2 test of attention (scanning and selecting specific characters while ignoring others). At the end of the experimental session (after 12-24 min) and again after 7 days, participants were required to complete a surprise free recall test of both word lists. Our results showed no significant difference in memory retention between the experimental conditions. However, we found that participants who completed the first lines of the d2 test in less than the given time limit of 20 seconds and thus had short unfilled intervals before switching to the next test line, remembered more words over the 12-24 minute and over the 7 days retention interval than participants who did not complete the first lines. This interaction occurred only for the first test lines, with the highest temporal proximity to the encoding task and not for later test lines. Differences in retention scores between groups (completed first line vs. did not complete) seem to be widely independent of the general performance in the d2 test. Implications and limitations of these exploratory findings are discussed.Keywords: long-term memory, retroactive interference, attention, forgetting
Procedia PDF Downloads 132666 Effect of Madecassoside on the Antioxidant Status of Streptozotocin-Nicotinamide Induced Diabetes in Sprague-Dawley Rats
Authors: C. Mayuren, C. K. Paul Wang, K. Purushotham, C. Dinesh Kumar
Abstract:
Diabetes Mellitus (DM) is one of the most common non-communicable diseases globally. Although significant advances have led to better understanding of the condition and the development of effective therapies and preventive strategies, the pathway to cure remains elusive and DM prevails as a serious medical challenge in the 21st century. Oxidative stress has been suggested to contribute to the progression and pathophysiological conditions of diabetes. Madecassoside (MA) a major pentacyclic triterpenoid, has been demonstrated to possess various biological activities. However, no attempt has been made to study the antioxidant activity in diabetic rats. Therefore, the present study is aimed to evaluate the antioxidant effect of MA on streptozotocin-nicotinamide induced type-2 diabetes in Sprague-Dawley rats. The study protocol was approved by the institutional ethical committee prior to the conduct of research. Adult male Sprague-Dawley rats weighing 250-300 g were used in the study. The animals were rendered diabetic with a single intraperitoneal dose of streptozotocin (65 mg/kg) and nicotinamide (110 mg/kg). The diabetic animals after a stabilisation period of 14 days received various treatments (Madecassoside 50 mg/kg; Glimepiride 2.5 mg/kg) suspended in 0.5% carboxymethyl cellulose orally, for a period of 28 days. The animals fasted overnight after the last treatment were sacrificed and the pancreas, liver and kidneys were isolated. The weighted quantity of the samples of various treatments were homogenised in ice-cold condition and were subjected to lipid peroxidation, catalase and superoxide dismutase assay. The data’s obtained were subjected to statistical analysis. Diabetic rats showed significant increase in lipid peroxidation and decrease in enzymatic antioxidant levels. All the treated groups had significantly higher SOD, CAT and reduced LPO activity in the pancreas, liver and kidney. Results suggest madecassoside to have potential antioxidant effect against the diabetic model. However further investigations are necessary to study the mechanism at the cellular level.Keywords: antioxidant, diabetes, madecassoside, nicotinamide, streptozotocin
Procedia PDF Downloads 379665 Large Eddy Simulation with Energy-Conserving Schemes: Understanding Wind Farm Aerodynamics
Authors: Dhruv Mehta, Alexander van Zuijlen, Hester Bijl
Abstract:
Large Eddy Simulation (LES) numerically resolves the large energy-containing eddies of a turbulent flow, while modelling the small dissipative eddies. On a wind farm, these large scales carry the energy wind turbines extracts and are also responsible for transporting the turbines’ wakes, which may interact with downstream turbines and certainly with the atmospheric boundary layer (ABL). In this situation, it is important to conserve the energy that these wake’s carry and which could be altered artificially through numerical dissipation brought about by the schemes used for the spatial discretisation and temporal integration. Numerical dissipation has been reported to cause the premature recovery of turbine wakes, leading to an over prediction in the power produced by wind farms.An energy-conserving scheme is free from numerical dissipation and ensures that the energy of the wakes is increased or decreased only by the action of molecular viscosity or the action of wind turbines (body forces). The aim is to create an LES package with energy-conserving schemes to simulate wind turbine wakes correctly to gain insight into power-production, wake meandering etc. Such knowledge will be useful in designing more efficient wind farms with minimal wake interaction, which if unchecked could lead to major losses in energy production per unit area of the wind farm. For their research, the authors intend to use the Energy-Conserving Navier-Stokes code developed by the Energy Research Centre of the Netherlands.Keywords: energy-conserving schemes, modelling turbulence, Large Eddy Simulation, atmospheric boundary layer
Procedia PDF Downloads 465664 Seawater Intrusion in the Coastal Aquifer of Wadi Nador (Algeria)
Authors: Abdelkader Hachemi & Boualem Remini
Abstract:
Seawater intrusion is a significant challenge faced by coastal aquifers in the Mediterranean basin. This study aims to determine the position of the sharp interface between seawater and freshwater in the aquifer of Wadi Nador, located in the Wilaya of Tipaza, Algeria. A numerical areal sharp interface model using the finite element method is developed to investigate the spatial and temporal behavior of seawater intrusion. The aquifer is assumed to be homogeneous and isotropic. The simulation results are compared with geophysical prospection data obtained through electrical methods in 2011 to validate the model. The simulation results demonstrate a good agreement with the geophysical prospection data, confirming the accuracy of the sharp interface model. The position of the sharp interface in the aquifer is found to be approximately 1617 meters from the sea. Two scenarios are proposed to predict the interface position for the year 2024: one without pumping and the other with pumping. The results indicate a noticeable retreat of the sharp interface position in the first scenario, while a slight decline is observed in the second scenario. The findings of this study provide valuable insights into the dynamics of seawater intrusion in the Wadi Nador aquifer. The predicted changes in the sharp interface position highlight the potential impact of pumping activities on the aquifer's vulnerability to seawater intrusion. This study emphasizes the importance of implementing measures to manage and mitigate seawater intrusion in coastal aquifers. The sharp interface model developed in this research can serve as a valuable tool for assessing and monitoring the vulnerability of aquifers to seawater intrusion.Keywords: seawater, intrusion, sharp interface, Algeria
Procedia PDF Downloads 74663 A Research on the Coordinated Development of Chengdu-Chongqing Economic Circle under the Background of New Urbanization
Authors: Deng Tingting
Abstract:
The coordinated and integrated development of regions is an inevitable requirement for China to move towards high-quality, sustainable development. As one of the regions with the best economic foundation and the strongest economic strength in western China, it is a typical area with national importance and strong network connection characteristics in terms of the comprehensive effect of linking the inland hinterland and connecting the western and national urban networks. The integrated development of the Chengdu-Chongqing economic circle is of great strategic significance for the rapid and high-quality development of the western region. In the context of new urbanization, this paper takes 16 urban units within the economic circle as the research object, based on the 5-year panel data of population, regional economy, and spatial construction and development from 2016 to 2020, using the entropy method and Theil index to analyze the three target layers, and cause analysis. The research shows that there are temporal and spatial differences in the Chengdu-Chongqing economic circle, and there are significant differences between the core city and the surrounding cities. Therefore, by reforming and innovating the regional coordinated development mechanism, breaking administrative barriers, and strengthening the "polar nucleus" radiation function to release the driving force for economic development, especially in the gully areas of economic development belts, not only promote the coordinated development of internal regions but also promote the coordinated and sustainable development of the western region and take a high-quality development path.Keywords: Chengdu-Chongqing economic circle, new urbanization, coordinated regional development, Theil Index
Procedia PDF Downloads 117