Search results for: standardized mortality ratio (SMR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6267

Search results for: standardized mortality ratio (SMR)

5247 Measurement of Coal Fineness, Air Fuel Ratio, and Fuel Weight Distribution in a Vertical Spindle Mill’s Pulverized Fuel Pipes at Classifier Vane 40%

Authors: Jayasiler Kunasagaram

Abstract:

In power generation, coal fineness is crucial to maintain flame stability, ensure combustion efficiency, and lower emissions to the environment. In order for the pulverized coal to react effectively in the boiler furnace, the size of coal particles needs to be at least 70% finer than 74 μm. This paper presents the experiment results of coal fineness, air fuel ratio and fuel weight distribution in pulverized fuel pipes at classifier vane 40%. The aim of this experiment is to extract the pulverized coal is kinetically and investigate the data accordingly. Dirty air velocity, coal sample extraction, and coal sieving experiments were performed to measure coal fineness. The experiment results show that required coal fineness can be achieved at 40 % classifier vane. However, this does not surpass the desired value by a great margin.

Keywords: coal power, emissions, isokinetic sampling, power generation

Procedia PDF Downloads 596
5246 Dissolution Leaching Kinetics of Ulexite in Sodium Dihydrogen Phosphate Solutions

Authors: Emine Teke, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of the present study was to investigate the dissolution kinetics of ulexite in sodium dihydrogen phosphate in a mechanical agitation system and also to declare an alternative reactant to produce the boric acid. Reaction temperature, concentration of sodium dihydrogen phosphate, stirring speed, solid-liquid ratio, and ulexite particle size were selected as parameters. The experimental results were successfully correlated by using linear regression and a statistical program. Dissolution curves were evaluated in order to test the shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase in the dissolution rate of ulexite. The activation energy was found to be 36.4 kJ/mol. The leaching of ulexite was controlled by diffusion through the ash (or product) layer.

Keywords: ulexite, sodium dihydrogen phosphate, leaching kinetics, boron

Procedia PDF Downloads 291
5245 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column

Procedia PDF Downloads 139
5244 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: electrospinning, gelatin, silk fibroin, mechanical properties, nanocomposites

Procedia PDF Downloads 135
5243 Non-Homogeneity in a Thick Walled Rotating Circular Cylinder under Varying Pressure

Authors: Jatinder Kaur, Pankaj Thakur

Abstract:

The effect of pressure and temperature in non-homogeneous circular cylinder by taking non-homogeneity of material in terms of compressibility c=c₀r⁻ᵏ has been observed. From the results, it could be seen that for K<0, high pressure is required in the initial yielding state than for the case K >0. Under thermal conditions for value K<0, lesser amount of pressure is required for initial yielding, and further, the amount keeps on decreasing with an increase in temperature. Curves are drawn between pressure and radii ratio for initial and fully plastic state with and without temperature conditions. Further graphs between stresses (hoop and radial) and radii ratio for fully plastic state with and without temperature conditions are also drawn and concluded that hoop stresses become minimum with the increase in temperature as compared to radial stresses.

Keywords: cylinder, elastic, plastic, copper, steel, stresses, pressure, load

Procedia PDF Downloads 62
5242 Effects of Waist-to-Hip Ratio and Visceral Fat Measurements Improvement on Offshore Petrochemical Company Shift Employees' Work Efficiency

Authors: Essam Amerian

Abstract:

The aim of this study was to investigate the effects of improving waist-to-hip ratio (WHR) and visceral fat components on the health of shift workers in an offshore petrochemical company. A total of 100 male shift workers participated in the study, with an average age of 40.5 years and an average BMI of 28.2 kg/m². The study employed a randomized controlled trial design, with participants assigned to either an intervention group or a control group. The intervention group received a 12-week program that included dietary counseling, physical activity recommendations, and stress management techniques. The control group received no intervention. The outcomes measured were changes in WHR, visceral fat components, blood pressure, and lipid profile. The results showed that the intervention group had a statistically significant improvement in WHR (p<0.001) and visceral fat components (p<0.001) compared to the control group. Furthermore, there were statistically significant improvements in systolic blood pressure (p=0.015) and total cholesterol (p=0.034) in the intervention group compared to the control group. These findings suggest that implementing a 12-week program that includes dietary counseling, physical activity recommendations, and stress management techniques can effectively improve WHR, visceral fat components, and cardiovascular health among shift workers in an offshore petrochemical company.

Keywords: body composition, waist-hip-ratio, visceral fat, shift worker, work efficiency

Procedia PDF Downloads 59
5241 Brown-Spot Needle Blight: An Emerging Threat Causing Loblolly Pine Needle Defoliation in Alabama, USA

Authors: Debit Datta, Jeffrey J. Coleman, Scott A. Enebak, Lori G. Eckhardt

Abstract:

Loblolly pine (Pinus taeda) is a leading productive timber species in the southeastern USA. Over the past three years, an emerging threat is expressed by successive needle defoliation followed by stunted growth and tree mortality in loblolly pine plantations. Considering economic significance, it has now become a rising concern among landowners, forest managers, and forest health state cooperators. However, the symptoms of the disease were perplexed somewhat with root disease(s) and recurrently attributed to invasive Phytophthora species due to the similarity of disease nature and devastation. Therefore, the study investigated the potential causal agent of this disease and characterized the fungi associated with loblolly pine needle defoliation in the southeastern USA. Besides, 70 trees were selected at seven long-term monitoring plots at Chatom, Alabama, to monitor and record the annual disease incidence and severity. Based on colony morphology and ITS-rDNA sequence data, a total of 28 species of fungi representing 17 families have been recovered from diseased loblolly pine needles. The native brown-spot pathogen, Lecanosticta acicola, was the species most frequently recovered from unhealthy loblolly pine needles in combination with some other common needle cast and rust pathogen(s). Identification was confirmed using morphological similarity and amplification of translation elongation factor 1-alpha gene region of interest. Tagged trees were consistently found chlorotic and defoliated from 2019 to 2020. The current emergence of the brown-spot pathogen causing loblolly pine mortality necessitates the investigation of the role of changing climatic conditions, which might be associated with increased pathogen pressure to loblolly pines in the southeastern USA.

Keywords: brown-spot needle blight, loblolly pine, needle defoliation, plantation forestry

Procedia PDF Downloads 138
5240 Modeling of Wind Loads on Heliostats Installed in South Algeria of Various Pylon Height

Authors: Hakim Merarda, Mounir Aksas, Toufik Arrif, Abd Elfateh Belaid, Amor Gama, Reski Khelifi

Abstract:

Knowledge of wind loads is important to develop a heliostat with good performance. These loads can be calculated by mathematical equations based on several parameters: the density, wind velocity, the aspect ratio of the mirror (height/width) and the coefficient of the height of the tower. Measurement data of the wind velocity and the density of the air are used in a numerical simulation of wind profile that was performed on heliostats with different pylon heights, with 1m^2 mirror areas and with aspect ratio of mirror equal to 1. These measurement data are taken from the meteorological station installed in Ghardaia, Algeria. The main aim of this work is to find a mathematical correlation between the wind loads and the height of the tower.

Keywords: heliostat, solar tower power, wind loads simulation, South Algeria

Procedia PDF Downloads 540
5239 Effect of Seasonal Variation on Two Introduced Columbiformes in Awba Dam Tourism Centre, University of Ibadan, Ibadan

Authors: Kolawole F. Farinloye, Samson O. Ojo

Abstract:

Two Columbiformes species were recently introduced to the newly established Awba Dam Tourism Centre [ADTC], hence there is need to investigate the effect of seasonal variation on these species with respect to hematological composition. Blood samples were obtained from superficial ulna vein of the 128 apparently healthy C. livia and C. guinea into tubes containing EDTA as anticoagulant. Thin blood smears (TBS) were prepared, stained and viewed under microscope. Values of Red Blood Cell (RBC) count, White Blood Cell (WBC) count, cholesterol (CH), Uric Acid (UA), Protein (PR), Mean Corpuscular Volume (MCV), Haemoglobin Content (HB), Blood Volume (BV), Plasma Glucose (PG) and Length/Width (L/W) ratio of red blood cells were assessed. The procedure was carried out on a seasonal basis (wet and dry seasons of 2013-2014). Data was analyzed using descriptive and inferential statistics. Lymphocyte count for C. livia was F3, 161 = 13.15, while for C. guinea was F3, 178 = 13.15. Heterophil, H/L ratio and Muscle score values for both species were (rs = -0.38, rs = -0.44), (rs = 0.51, rs = 0.31) (4, 3) respectively. Analyses also demonstrated a low WBC to RBC ratio (0.004: 25.3) in both species during the wet season compared to dry season, respectively. L/W varied significantly among sampling seasons i.e. wet (19.1% of BV, 12.6% of BV, 0.1% of BV) and dry (18.9% of BV, 12.7% of BV, 0.08% of BV). The level of HB in wet season (19.20±8.46108) is lower compared to dry season (19.70±8.48762). T-test also showed (wet=15.625, 0.111), (dry=12.125, 0.146) respectively, hence there is no association between species and haematological parameters. Species introduced were found to be haematologically stable. Although there were slight differences in seasonal composition, however this can be attributed to seasonal variation; suggesting little or no effect of seasons on their blood composition.

Keywords: seasonal variation, Columbiformes, Awba Dam tourism centre, University of Ibadan, Ibadan

Procedia PDF Downloads 309
5238 Bulk Electrical Resistivity of Geopolymer Mortars: The Effect of Binder Composition and Alkali Concentration

Authors: Mahdi Babaee, Arnaud Castel

Abstract:

One of the main hurdles for commercial adaptation of geopolymer concrete (GPC) as a low-embodied-carbon alternative for Portland cement concrete (PCC) is the durability aspects and its long-term performance in aggressive/corrosive environments. GPC is comparatively a new engineering material and in the absence of a track record of successful durability performance, proper experimental studies to investigate different durability-related characteristics of GPC seem inevitable. In this context, this paper aims to study the bulk electrical resistivity of geopolymer mortars fabricated of blends of low-calcium fly ash (FA) and ground granulated blast-furnace slag (GGBS). Bulk electrical resistivity is recognized as one of the most important parameters influencing the rate of corrosion of reinforcing bars during the propagation phase of corrosion. To investigate the effect of alkali concentration on the resistivity of the samples, 100x200 mm mortar cylinders were cast at different alkali concentration levels, whereas the modulus ratio (the molar ratio of SiO2/Na2O) was fixed for the mixes, and the bulk electrical resistivity was then measured. Also, the effect of the binder composition was assessed with respect to the ratio of FA to GGBS used. Results show a superior performance of samples with higher GGBS content. Lower concentration of the solution has increased the resistivity by reducing the amount of mobile alkali ions in the pore solution. Moreover, GGBS-based samples showed a much sharper increase in the electrical resistivity with decreasing the moisture content.

Keywords: bulk resistivity, corrosion, durability, geopolymer concrete

Procedia PDF Downloads 246
5237 Importance of Prostate Volume, Prostate Specific Antigen Density and Free/Total Prostate Specific Antigen Ratio for Prediction of Prostate Cancer

Authors: Aliseydi Bozkurt

Abstract:

Objectives: Benign prostatic hyperplasia (BPH) is the most common benign disease, and prostate cancer (PC) is malign disease of the prostate gland. Transrectal ultrasound-guided biopsy (TRUS-bx) is one of the most important diagnostic tools in PC diagnosis. Identifying men at increased risk for having a biopsy detectable prostate cancer should consider prostate specific antigen density (PSAD), f/t PSA Ratio, an estimate of prostate volume. Method: We retrospectively studied 269 patients who had a prostate specific antigen (PSA) score of 4 or who had suspected rectal examination at any PSA level and received TRUS-bx between January 2015 and June 2018 in our clinic. TRUS-bx was received by 12 experienced urologists with 12 quadrants. Prostate volume was calculated prior to biopsy together with TRUS. Patients were classified as malignant and benign at the end of pathology. Age, PSA value, prostate volume in transrectal ultrasonography, corpuscle biopsy, biopsy pathology result, the number of cancer core and Gleason score were evaluated in the study. The success rates of PV, PSAD, and f/tPSA were compared in all patients and those with PSA 2.5-10 ng/mL and 10.1-30 ng/mL tp foresee prostate cancer. Result: In the present study, in patients with PSA 2.5-10 ng/ml, PV cut-off value was 43,5 mL (n=42 < 43,5 mL and n=102 > 43,5 mL) while in those with PSA 10.1-30 ng/mL prostate volüme (PV) cut-off value was found 61,5 mL (n=31 < 61,5 mL and n=36 > 61,5 mL). Total PSA values in the group with PSA 2.5-10 ng/ml were found lower (6.0 ± 1.3 vs 6.7 ± 1.7) than that with PV < 43,5 mL, this value was nearly significant (p=0,043). In the group with PSA value 10.1-30 ng/mL, no significant difference was found (p=0,117) in terms of total PSA values between the group with PV < 61,5 mL and that with PV > 61,5 mL. In the group with PSA 2.5-10 ng/ml, in patients with PV < 43,5 mL, f/t PSA value was found significantly lower compared to the group with PV > 43,5 mL (0.21 ± 0.09 vs 0.26 ± 0.09 p < 0.001 ). Similarly, in the group with PSA value of 10.1-30 ng/mL, f/t PSA value was found significantly lower in patients with PV < 61,5 mL (0.16 ± 0.08 vs 0.23 ± 0.10 p=0,003). In the group with PSA 2.5-10 ng/ml, PSAD value in patients with PV < 43,5 mL was found significantly higher compared to those with PV > 43,5 mL (0.17 ± 0.06 vs 0.10 ± 0.03 p < 0.001). Similarly, in the group with PSA value 10.1-30 ng/mL PSAD value was found significantly higher in patients with PV < 61,5 mL (0.47 ± 0.23 vs 0.17 ± 0.08 p < 0.001 ). The biopsy results suggest that in the group with PSA 2.5-10 ng/ml, in 29 of the patients with PV < 43,5 mL (69%) cancer was detected while in 13 patients (31%) no cancer was detected. While in 19 patients with PV > 43,5 mL (18,6%) cancer was found, in 83 patients (81,4%) no cancer was detected (p < 0.001). In the group with PSA value 10.1-30 ng/mL, in 21 patients with PV < 61,5 mL (67.7%) cancer was observed while only in10 patients (32.3%) no cancer was seen. In 5 patients with PV > 61,5 mL (13.9%) cancer was found while in 31 patients (86.1%) no cancer was observed (p < 0.001). Conclusions: Identifying men at increased risk for having a biopsy detectable prostate cancer should consider PSA, f/t PSA Ratio, an estimate of prostate volume. Prostate volume in PC was found lower.

Keywords: prostate cancer, prostate volume, prostate specific antigen, free/total PSA ratio

Procedia PDF Downloads 134
5236 Adherence to Dietary Approaches to Stop Hypertension-Style Diet and Risk of Mortality from Cancer: A Systematic Review and Meta-Analysis of Cohort Studies

Authors: Roohallah Fallah-Moshkani, Mohammad Ali Mohsenpour, Reza Ghiasvand, Hossein Khosravi-Boroujeni, Seyed Mehdi Ahmadi, Paula Brauer, Amin Salehi-Abargouei

Abstract:

Purpose: Several investigations have proposed the protective association between dietary approaches to stop hypertension (DASH) style diet and risk of cancers; however, they have led to inconsistent results. The present study aimed to systematically review the prospective cohort studies conducted in this regard and, if possible, to quantify the overall effect of using meta-analysis. Methods: PubMed, EMBASE, Scopus, and Google Scholar were searched for cohort studies published up to December 2017. Relative risks (RRs) which were reported for fully adjusted models and their confidence intervals were extracted for meta-analysis. Random effects model was incorporated to combine the RRs. Results: Sixteen studies were eligible to be included in the systematic review from which 8 reports were conducted on the effect of DASH on the risk of mortality from all cancer types, four on the risk of colorectal cancer, and three on the risk of colon and rectal cancer. Four studies examined the association with other cancers (breast, hepatic, endometrial, and lung cancer). Meta-analysis showed that high concordance with DASH significantly decreases the risk of all cancer types (RR=0.83, 95% confidence interval (95%CI):0.80-0.85); furthermore participants who highly adhered to the DASH had lower risk of developing colorectal (RR=0.79, 95%CI: 0.75-0.83), colon (RR=0.81, 95%CI: 0.74-0.87) and rectal (RR=0.79, 95%CI: 0.63-0.98) cancer compared to those with the lowest adherence. Conclusions: DASH-style diet should be suggested as a healthy approach to protect from cancer in the community. Prospective studies exploring the effect on other cancer types and from regions other than the United States are highly recommended.

Keywords: cancer, DASH-style diet, dietary patterns, meta-analysis, systematic review

Procedia PDF Downloads 172
5235 Experimental and Numerical Investigation on the Torque in a Small Gap Taylor-Couette Flow with Smooth and Grooved Surface

Authors: L. Joseph, B. Farid, F. Ravelet

Abstract:

Fundamental studies were performed on bifurcation, instabilities and turbulence in Taylor-Couette flow and applied to many engineering applications like astrophysics models in the accretion disks, shrouded fans, and electric motors. Such rotating machinery performances need to have a better understanding of the fluid flow distribution to quantify the power losses and the heat transfer distribution. The present investigation is focused on high gap ratio of Taylor-Couette flow with high rotational speeds, for smooth and grooved surfaces. So far, few works has been done in a very narrow gap and with very high rotation rates and, to the best of our knowledge, not with this combination with grooved surface. We study numerically the turbulent flow between two coaxial cylinders where R1 and R2 are the inner and outer radii respectively, where only the inner is rotating. The gap between the rotor and the stator varies between 0.5 and 2 mm, which corresponds to a radius ratio η = R1/R2 between 0.96 and 0.99 and an aspect ratio Γ= L/d between 50 and 200, where L is the length of the rotor and d being the gap between the two cylinders. The scaling of the torque with the Reynolds number is determined at different gaps for different smooth and grooved surfaces (and also with different number of grooves). The fluid in the gap is air. Re varies between 8000 and 30000. Another dimensionless parameter that plays an important role in the distinction of the regime of the flow is the Taylor number that corresponds to the ratio between the centrifugal forces and the viscous forces (from 6.7 X 105 to 4.2 X 107). The torque will be first evaluated with RANS and U-RANS models, and compared to empirical models and experimental results. A mesh convergence study has been done for each rotor-stator combination. The results of the torque are compared to different meshes in 2D dimensions. For the smooth surfaces, the models used overestimate the torque compared to the empirical equations that exist in the bibliography. The closest models to the empirical models are those solving the equations near to the wall. The greatest torque achieved with grooved surface. The tangential velocity in the gap was always higher in between the rotor and the stator and not on the wall of rotor. Also the greater one was in the groove in the recirculation zones. In order to avoid endwall effects, long cylinders are used in our setup (100 mm), torque is measured by a co-rotating torquemeter. The rotor is driven by an air turbine of an automotive turbo-compressor for high angular velocities. The results of the experimental measurements are at rotational speed of up to 50 000 rpm. The first experimental results are in agreement with numerical ones. Currently, quantitative study is performed on grooved surface, to determine the effect of number of grooves on the torque, experimentally and numerically.

Keywords: Taylor-Couette flow, high gap ratio, grooved surface, high speed

Procedia PDF Downloads 386
5234 Future trends of MED-TVC Desalination Technology

Authors: Irfan Wazeer

Abstract:

Desalination has become one of the major water treatment process in several countries around the world where shortage of water is a serious problem. Energy consumption is a vital economic factor in selecting the type of desalination processes because current desalination processes require large amount of energy which is costly. Multi-effect desalination system with thermal vapor compression (MED-TVC) is particularly more attractive than other thermal desalination systems due to its low energy consumption. MED-TVC is characterized by high performance ratio (PR), easier operation, low maintenance requirements and simple geometry. These attractive features make MED-TVC highly competitive to other well established desalination techniques that include the reverse osmosis (RO) and multi-stage flash desalination (MSF). The primary goal of this paper is to present a preview of some aspects related with the theory of the technology, parametric study of the MED-TVC systems and its development. It will analyzed the current and future aspects of the MED-TVC technology in view of latest installed plants.

Keywords: MED-TVC, parallel feed, performance ratio, GOR

Procedia PDF Downloads 242
5233 Design of Functional Safe Motor Control Systems in Automotive Applications

Authors: Jae-Woo Kim, Kyung-Jung Lee, Hyun-Sik Ahn

Abstract:

This paper presents a design methodology for the motor driven automotive subsystems with the consideration of the functional safety. There are many such modules in vehicles which use DC/AC motors for an electronic throttle control system, a motor driven power steering, a motor driven seat belt systems and for HVAC systems. The functional safety for the automotive electrical and electronic parts are standardized as ISO 26262, but the development procedure is very complex to be followed. We focus on the functional safe motor controller design process and show the designed motor controller hardware satisfies the required safety integrity level by using metric calculations with the safety mechanism.

Keywords: AUTOSAR, MDPS, Simulink, software component

Procedia PDF Downloads 397
5232 Transmission Dynamics of Lumpy Skin Disease in Ethiopia

Authors: Wassie Molla, Klaas Frankena, Mart De Jong

Abstract:

Lumpy skin disease (LSD) is a severe viral disease of cattle, which often occurs in epidemic form. It is caused by lumpy skin disease virus of the genus capripoxvirus of family poxviridae. Mathematical models play important role in the study of infectious diseases epidemiology. They help to explain the dynamics and understand the transmission of an infectious disease within a population. Understanding the transmission dynamics of lumpy skin disease between animals is important for the implementation of effective prevention and control measures against the disease. This study was carried out in central and north-western part of Ethiopia with the objectives to understand LSD outbreak dynamics, quantify the transmission between animals and herds, and estimate the disease reproduction ratio in dominantly crop-livestock mixed and commercial herd types. Field observation and follow-up study were undertaken, and the transmission parameters were estimated based on a SIR epidemic model in which individuals are susceptible (S), infected and infectious (I), and recovered and immune or dead (R) using the final size and generalized linear model methods. The result showed that a higher morbidity was recorded in infected crop-livestock (24.1%) mixed production system herds than infected commercial production (17.5%) system herds whereas mortality was higher in intensive (4.0%) than crop-livestock (1.5%) system and the differences were statistically significant. The transmission rate among animals and between herds were 0.75 and 0.68 per week, respectively in dominantly crop-livestock production system. The transmission study undertaken in dominantly crop-livestock production system highlighted the presence of statistically significant seasonal difference in LSD transmission among animals. The reproduction numbers of LSD in dominantly crop-livestock production system were 1.06 among animals and 1.28 between herds whereas it varies from 1.03 to 1.31 among animals in commercial production system. Though the R estimated for LSD in different production systems at different localities is greater than 1, its magnitude is low implying that the disease can be easily controlled by implementing the appropriate control measures.

Keywords: commercial, crop-livestock, Ethiopia, LSD, reproduction number, transmission

Procedia PDF Downloads 282
5231 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites

Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo

Abstract:

Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13% , respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.

Keywords: mixing ratio, nanofiber, polymer, reference photocatalyst

Procedia PDF Downloads 359
5230 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications

Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand

Abstract:

Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.

Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate

Procedia PDF Downloads 80
5229 Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement

Authors: Chien-Song Chyang

Abstract:

For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air.

Keywords: fluidized bed combustion, flue gas circulation, NO emission, recycle

Procedia PDF Downloads 170
5228 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation

Authors: Yongjian Gu

Abstract:

Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.

Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ

Procedia PDF Downloads 178
5227 Determining Factors Influencing the Total Funding in Islamic Banking of Indonesia

Authors: Euphrasia Susy Suhendra, Lies Handrijaningsih

Abstract:

The banking sector as an intermediary party or intermediaries occupies a very important position in bridging the needs of working capital investment in the real sector with funds owner. This will certainly make money more effectively to improve the economic value added. As an intermediary, Islamic banks raise funds from the public and then distribute in the form of financing. In practice, the distribution of funding that is run by Islamic Banking is not as easy as, in theory, because, in fact, there are many financing problems; some are caused by lacking the assessment and supervision of banks to customers. This study aims to analyze the influence of the Third Party Funds, Return on Assets (ROA), Non Performing Financing (NPF), and Financing Deposit Ratio (FDR) to Total Financing provided to the Community by Islamic Banks in Indonesia. The data used is monthly data released by Bank of Indonesia in Islamic Banking Statistics in the time period of January 2009 - December 2013. This study uses cointegration test to see the long-term relationship, and use error correction models to examine the relationship of short-term. The results of this study indicate that the Third Party Fund has a short-term effect on total funding, Return on Assets has a long term effect on the total financing, Non Performing Financing has long-term effects of total financing, and Financing deposit ratio has the effect of short-term and long-term of the total financing provided by Islamic Banks in Indonesia.

Keywords: Islamic banking, third party fund, return on asset, non-performing financing, financing deposit ratio

Procedia PDF Downloads 444
5226 Protective Effect of Bexarotene, a Selective RXRα Agonist, against Hypotension Associated with Inflammation and Tissue Injury Linked to Decreased Circulating iNOS Levels in A Rat Model of Septic Shock

Authors: Bahar Tunctan, Sefika Pinar Kucukkavruk, Meryem Temiz-Resitoglu, Demet Sinem Guden, Ayse Nihal Sari, Seyhan Sahan-Firat

Abstract:

We hypothesized that rexinoids such as bexarotene, a selective retinoid X receptor α (RXRα) agonist, may be beneficial for preventing mortality due to inflammation associated with increased expression/activity of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). Therefore, we investigated effects of bexarotene on the changes in circulating protein levels of iNOS (an index for systemic iNOS expression), myeloperoxidase (MPO) (an index for systemic inflammation), and lactate dehydrogenase (LDH) (an index for systemic tissue injury) in LPS-induced systemic inflammation model resulting in septic shock in rats. Rats were injected with saline (4 ml/kg; i.p.), LPS (10 mg/kg; i.p.), dimethylsulphoxide (4 ml/kg, 0.1%; s.c.) at time 0. Mean arterial blood pressure and heart rate were measured using a tail-cuff device. Bexarotene (0.03, 0.1, 0.3, and 1 mg/kg; s.c.) was administered to separate groups of rats 1 h after injection of saline or LPS. The rats were sacrificed 4 h after saline or LPS injection and blood was collected for measurement of serum iNOS, MPO, and LDH protein levels. Blood pressure decreased by 31 mmHg and heart rate increased by 63 bpm in the LPS-treated rats. Bexarotene at 0.3 and 1 mg/kg doses caused 20% mortality 4 h after LPS injection. In the LPS-treated rats, serum iNOS, MPO, and LDH protein levels were increased. Bexarotene only at 0.1 mg/kg dose prevented the LPS-induced hypotension and increased in iNOS, MPO, and LDH protein levels. These data are consistent with the view that a decrease in systemic iNOS levels contributes to the beneficial effect of bexarotene to prevent the hypotension associated with inflammation and tissue injury during rat endotoxemia. [This work was financially supported by The Scientific and Technological Research Council of Turkey (SBAG-109S121)].

Keywords: bexarotene, inflammation, iNOS, lipopolisaccharide, RXRa

Procedia PDF Downloads 297
5225 Predictive Value Modified Sick Neonatal Score (MSNS) On Critically Ill Neonates Outcome Treated in Neonatal Intensive Care Unit (NICU)

Authors: Oktavian Prasetia Wardana, Martono Tri Utomo, Risa Etika, Kartika Darma Handayani, Dina Angelika, Wurry Ayuningtyas

Abstract:

Background: Critically ill neonates are newborn babies with high-risk factors that potentially cause disability and/or death. Scoring systems for determining the severity of the disease have been widely developed as well as some designs for use in neonates. The SNAPPE-II method, which has been used as a mortality predictor scoring system in several referral centers, was found to be slow in assessing the outcome of critically ill neonates in the Neonatal Intensive Care Unit (NICU). Objective: To analyze the predictive value of MSNS on the outcome of critically ill neonates at the time of arrival up to 24 hours after being admitted to the NICU. Methods: A longitudinal observational analytic study based on medical record data was conducted from January to August 2022. Each sample was recorded from medical record data, including data on gestational age, mode of delivery, APGAR score at birth, resuscitation measures at birth, duration of resuscitation, post-resuscitation ventilation, physical examination at birth (including vital signs and any congenital abnormalities), the results of routine laboratory examinations, as well as the neonatal outcomes. Results: This study involved 105 critically ill neonates who were admitted to the NICU. The outcome of critically ill neonates was 50 (47.6%) neonates died, and 55 (52.4%) neonates lived. There were more males than females (61% vs. 39%). The mean gestational age of the subjects in this study was 33.8 ± 4.28 weeks, with the mean birth weight of the subjects being 1820.31 ± 33.18 g. The mean MSNS score of neonates with a deadly outcome was lower than that of the lived outcome. ROC curve with a cut point MSNS score <10.5 obtained an AUC of 93.5% (95% CI: 88.3-98.6) with a sensitivity value of 84% (95% CI: 80.5-94.9), specificity 80 % (CI 95%: 88.3-98.6), Positive Predictive Value (PPV) 79.2%, Negative Predictive Value (NPV) 84.6%, Risk Ratio (RR) 5.14 with Hosmer & Lemeshow test results p>0.05. Conclusion: The MSNS score has a good predictive value and good calibration of the outcomes of critically ill neonates admitted to the NICU.

Keywords: critically ill neonate, outcome, MSNS, NICU, predictive value

Procedia PDF Downloads 52
5224 Effects of Carbon Black/Graphite Ratio for Electrical Conduction and Frictional Resistance of Nanocomposite Sol-Gel Coatings

Authors: Julien Acquadro, Sophie Noel, Frédéric Houze, Philippe Teste, Pascal Chretien, Clément Genet, Edouard Breniaux, Marie-Joël Menu, Florence Ansart, Marie Gressier

Abstract:

This paper presents the study results of the electrical and tribological properties of nanocomposite hybrid sol-gel coatings developed for industrial applications on electrical connector housings. The electrical properties of coatings are provided by conductive fillers. The coatings presented in this study are formulated with different types of conductive carbon fillers, in this case carbon black and graphite particles. The coatings are deposited on a high-phosphorous nickel substrate by a dip-coating process. The authors have investigated the effects of the carbon black/graphite ratio on the coating's electrical and tribological properties. Electrical characterizations with a 4-probe method and AFM measurements as well as tribological tests by micro-friction shed light on the role of the black carbon/graphite ratio on the final properties of the sol-gel nanocomposite coatings. This study shows that the amount of carbon black mainly drives the coatings' electrical conduction property, while graphite's lubrication properties bring interest to reduce the values of friction coefficients (at a contact pressure of 800 MPa). In the industrial field of electrical connectors, such coatings aim at replacing cadmium and chromium (VI) protection, as recommended by REACH (Registration, Evaluation and Authorization of Chemicals) and RoHS (Restriction of Hazardous Substances in electrical and electronic equipment) regulations (Annex XVII of REACH).

Keywords: carbon conductive fillers, electrical conduction, sol-gel coatings, tribology

Procedia PDF Downloads 67
5223 Strain Based Failure Criterion for Composite Notched Laminates

Authors: Ibrahim A. Elsayed, Mohamed H. Elalfy, Mostafa M. Abdalla

Abstract:

A strain-based failure criterion for composite notched laminates is introduced where the most critical stress concentration factor for the anisotropic notched laminates could be related to the failure of the corresponding quasi-isotropic laminate and the anisotropy ratio of the laminate. The proposed criterion will simplify the design of composites to meet notched failure requirements by eliminating the need for the detailed specifications of the stacking sequence at the preliminary design stage. The designer will be able to design based on the stiffness of the laminate, then at a later stage, select an appropriate stacking sequence to meet the stiffness requirements. The failure strains for the notched laminates are computed using the material’s Omni-strain envelope. The concept of Omni-strain envelope concerns the region of average strain where the laminate is safe regardless of ply orientation. In this work, we use Hashin’s failure criteria and the strains around the hole are computed using Savin’s analytic solution. A progressive damage analysis study has been conducted where the failure loads for the notched laminates are computed using finite element analysis. The failure strains are computed and used to estimate the concentration factor. It is found that the correlation found using Savin’s analytic solution predicts the same ratio of concentration factors between anisotropic and quasi-isotropic laminates as the more expensive progressive failure analysis.

Keywords: anisotropy ratio, failure criteria, notched laminates, Omni-strain envelope, savin’s solution

Procedia PDF Downloads 100
5222 Nanoparticle Emission Characteristics during Methane Pyrolysis in a Laminar Premixed Flame

Authors: Mohammad Javad Afroughi, Farjad Falahati, Larry W. Kostiuk, Jason S. Olfert

Abstract:

This study investigates the physical characteristics of nanoparticles generated during pyrolysis of methane in hot products of a premixed propane-air flame. An inverted burner is designed to provide a laminar premixed propane-air flame (35 SLPM) then introduce methane co-flow to be pyrolyzed within a closed cylindrical chamber (20 cm in diameter and 68 cm in length). The formed products are discharged through an exhaust with a sampling branch to measure emission characteristics. Carbon particles are sampled with a preheated nitrogen dilution system, and the size distribution of particles formed by pyrolysis is measured by a scanning mobility particle sizer (SMPS). Dilution ratio is calculated using simultaneously measured CO2 concentrations in the exhaust products and diluted samples. Results show that particle size distribution (PSD) is strongly affected by dilution ratio and preheating temperature. PSD becomes unstable at high dilution ratios (typically above 700 times) and/or low preheating temperatures (below 40° C). At a suitable dilution ratio of 55 and preheating temperature up to 70° C, the median diameter of PSD increases from 20 to 220 nm following the introduction of 0.5 SLPM of methane to the propane-air premixed flame. Furthermore, with pyrolysis of methane, total particle number concentration and estimated total mass concentration of particles in the size range of 14 to 700 nm, increase from 1.12 to 3.90 *107 cm-3 and from 0.11 to 154 µg L-1, respectively.

Keywords: laminar premixed flame, methane pyrolysis, nanoparticle physical characteristics, particle mass concentration, particle number concentration, particle size distribution (PSD)

Procedia PDF Downloads 217
5221 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness

Authors: Keda Li, Hong Hu

Abstract:

Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.

Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb

Procedia PDF Downloads 75
5220 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach

Authors: Geraldine G. Granados Vazquez

Abstract:

Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.

Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability

Procedia PDF Downloads 208
5219 Direct Cost of Anesthesia in Traumatic Patients with Massive Bleeding: A Prospective Micro-Costing Study

Authors: Asamaporn Puetpaiboon, Sunisa Chatmongkolchart, Nalinee Kovitwanawong, Osaree Akaraborworn

Abstract:

Traumatic patients with massive bleeding require intensive resuscitation. The actual cost of anesthesia per case has never been clarified, so our study aimed to quantify the direct cost, and cost-to-charge ratio of anesthetic care in traumatic patients with intraoperative massive bleeding. This study was a prospective, observational, cost analysis study, conducted in Prince of Songkla University hospital, Thailand, with traumatic patients, of any mechanisms being recruited. Massive bleeding was defined as estimated blood loss of at least one blood volume in 24 hours, or a half of blood volume in 3 hours. The cost components were identified by the micro-costing method, and valued by the bottom-up approach. The direct cost was divided into 4 categories: the labor cost, the capital cost, the material cost and the cost of drugs. From September 2017 to August 2018, 10 patients with multiple injuries were included. Seven patients had motorcycle accidents, two patients fell from a height and another one was in a minibus accident. Two patients died on the operating table, and another two died within 48 hours. The median Sequential Organ Failure Assessment (SOFA) score was 8. The median intraoperative blood loss was 3,500 ml. The median direct cost, per case, was 250 United States Dollars (2017 exchange rate), and the cost-to-charge ratio was 0.53. In summary, the direct cost was nearly half of the hospital charge, for these traumatic patients with massive bleeding. However, our study did not analyze the indirect cost.

Keywords: cost, cost-to-charge ratio, micro-costing, trauma

Procedia PDF Downloads 131
5218 Influence of Yield Stress and Compressive Strength on Direct Shear Behaviour of Steel Fibre-Reinforced Concrete

Authors: Bensaid Boulekbache, Mostefa Hamrat, Mohamed Chemrouk, Sofiane Amziane

Abstract:

This study aims in examining the influence of the paste yield stress and compressive strength on the behaviour of fibre-reinforced concrete (FRC) versus direct shear. The parameters studied are the steel fibre contents, the aspect ratio of fibres and the concrete strength. Prismatic specimens of dimensions 10x10x35cm made of concrete of various yield stress reinforced with steel fibres hooked at the ends with three fibre volume fractions (i.e. 0, 0.5, and 1%) and two aspects ratio (65 and 80) were tested to direct shear. Three types of concretes with various compressive strength and yield stress were tested, an ordinary concrete (OC), a self-compacting concrete (SCC) and a high strength concrete (HSC). The concrete strengths investigated include 30 MPa for OC, 60 MPa for SCC and 80 MPa for HSC. The results show that the shear strength and ductility are affected and have been improved very significantly by the fibre contents, fibre aspect ratio and concrete strength. As the compressive strength and the volume fraction of fibres increase, the shear strength increases. However, yield stress of concrete has an important influence on the orientation and distribution of the fibres in the matrix. The ductility was much higher for ordinary and self-compacting concretes (concrete with good workability). The ductility in direct shear depends on the fibre orientation and is significantly improved when the fibres are perpendicular to the shear plane. On the contrary, for concrete with poor workability, an inadequate distribution and orientation of fibres occurred, leading to a weak contribution of the fibres to the direct shear behaviour.

Keywords: concrete, fibre, direct shear, yield stress, orientation, strength

Procedia PDF Downloads 526