Search results for: social networks security issues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17188

Search results for: social networks security issues

16168 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-world, resilience to damage

Procedia PDF Downloads 547
16167 Anti-Phase Synchronization of Complex Delayed Networks with Output Coupling via Pinning Control

Authors: Chanyuan Gu, Shouming Zhong

Abstract:

Synchronization is a fundamental phenomenon that enables coherent behavior in networks as a result of interactions. The purpose of this research had been to investigate the problem of anti-phase synchronization for complex delayed dynamical networks with output coupling. The coupling configuration is general, with the coupling matrix not assumed to be symmetric or irreducible. The amount of the coupling variables between two connected nodes is flexible, the nodes in the drive and response systems need not to be identical and there is not any extra constraint on the coupling matrix. Some pinning controllers are designed to make the drive-response system achieve the anti-phase synchronization. For the convenience of description, we applied the matrix Kronecker product. Some new criteria are proposed based on the Lyapunov stability theory, linear matrix inequalities (LMI) and Schur complement. Lastly, some simulation examples are provided to illustrate the effectiveness of our proposed conditions.

Keywords: anti-phase synchronization, complex networks, output coupling, pinning control

Procedia PDF Downloads 394
16166 Groundwater Based Irrigation for Paddy Farming in Gangetic Plains of India: Consequences and Mitigations

Authors: Dhananjoy Dutta

Abstract:

Field studies in lower Gangetic plains of India reveal that over-abstraction of groundwater for irrigation to paddy leads to a substantial depletion of groundwater over the decades, resulting in negative effects on lowering of the water table, drying up of surface water sources and aquifer pollution with leached-out arsenic. The aggravating arsenic toxicity in drinking water is manifested in health problems and ‘arsenicosis’ of people. A social conflict arises between farmers, who intend to grow paddy for livelihoods, and the groundwater authority, which enacts the ‘Regulation Laws’ by putting a check on the excessive installation of private tube-wells for irrigation. Hence, considering the challenges of resource sustainability, health issues, and food security, the study calls for a paradigm shift in policy from further groundwater development to sustainable water resources management and evaluates some strategies integrating supply and demand side management for mitigating the problems.

Keywords: groundwater, irrigation, paddy farming, water table depletion, arsenic pollution, gangetic plains

Procedia PDF Downloads 30
16165 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.

Abstract:

In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means

Procedia PDF Downloads 558
16164 Multidisciplinary Training of Social Work and Applied Drama: From the Perspective of the Third Space

Authors: Yen Yi Huang

Abstract:

This paper aims to explore the application of strategies in applied drama to the social work education arena in order to enhance students' creativity, curiosity, and aesthetic sensitivity. Also, applied drama is used as a means to facilitate students' reflection-in-action and improve their understanding of issues on creative aging, gender equality, human rights, bullying, and prejudice. This paper mainly uses the perspective of Homi K. Bhabha's third space to explore the impact of applied drama and social work training on students. First, it focuses on how students create new understandings and insights in the third space of multidisciplinary training studies. Second, it analyzes how the hybridity and negotiation of ideas between applied drama and social work were created. Finally, it discusses the follow-up effects of the training and the factors that promote or hinder the hybridity and generation of the third space. This paper uses students' reflection papers for analysis. It is not focused on a discussion of the effectiveness of the teaching but attempts to bring new insights into the applications of applied drama to the social work education arena. The hybridity and generation of the third space require handling power strategically and looking after the emotional space of the students. Taking part in the training allows students in the third space of multidisciplinary training to reexamine the traditional framework of social work knowledge to create new ideas and possibilities.

Keywords: multidisciplinary, applied drama, social work education, third space

Procedia PDF Downloads 164
16163 The Attitude towards Sustainable Development Issues among Malaysian Engineering Undergraduates

Authors: Balamuralithara Balakrishnan

Abstract:

This paper reports the findings of the perception and attitude towards Sustainable Development among Malaysian undergraduates. The study was carried out involving 86 engineering undergraduates from three universities in Malaysia. This research was conducted based on a survey whereby the respondents were given a questionnaire to gauge their attitude towards sustainable development. The output of the analyses showed that the respondents have an appropriate attitude towards the sustainability issues expect for economic and social equality aspects. These findings suggest that the engineering educators involved in sustainable development education need to educate undergraduate students on this important issue. This investigation serves as a cornerstone to which the current paradigm of sustainable development education can be examined for further improvement by related stakeholders.

Keywords: sustainable development, engineering education, Malaysia, attitude

Procedia PDF Downloads 156
16162 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 218
16161 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis

Authors: Avi Shrivastava

Abstract:

In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.

Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine

Procedia PDF Downloads 72
16160 Innovative Technology to Sustain Food Security in Qatar

Authors: Sana Abusin

Abstract:

Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). Achieving food security requires three actions: 1) transforming surplus food to those who are insecure; 2) reducing food loss and waste by recycling food into valuable resources such as compost (“green fertilizer”) that can be used in growing food; and, finally, 3) establishing strong enforcement agencies to protect consumers from outdated food and promote healthy food. Currently, these objectives are approached separately and not in a sustainable fashion. Food security in Qatar is a research priority of Qatar University (2021-2025) and all national strategies, including the Qatar National Vision 2030 and food security strategy (2018-2023). The study aims to develop an innovative mobile application that supports a sustainable solution to food insecurity and food waste in Qatar. The application will provide a common solution for many different users. For producers, it will facilitate easy disposal of excess food. For charities, it will notify them about surplus food ready for redistribution. The application will also benefit the second layer of end-users in the form of food recycling companies, who will receive information about available food waste that is unable to be consumed. We will use self-exoplanetary diagrams and digital pictures to show all the steps to the final stage. The aim is to motivate the young generation toward innovation and creation, and to encourage public-private collaboration in this sector.

Keywords: food security, innovative technology, sustainability, food waste, Qatar

Procedia PDF Downloads 122
16159 The Shadow of Terrorism in the World Tourism Industry: Impacts, Prevention and Recovery Strategies

Authors: Maria Brás

Abstract:

The main purpose of the presentation is to identify the impacts and appropriate measures to prevent potential attacks, or minimize the risk of an attack in tourist destination. Terrorism has been growing in the shadow of unpredictability, however, is possible to minimize the danger of a terrorist attack by doing the: (1) recognition; (2); evaluation; (3) avoidance; (4) threat reduction. The vulnerability of tourism industry to terrorism is an undeniable fact, and terrorists know it. They use this advantage attacking tourists for very specific reasons, such as the: (1) international coverage by the media, “if it bleeds it leads” ; (2) chances of getting different nationalities at the same place and time; (3) possibility of destroyed the economy of a destination, or destinations (“terrorism contamination effect”), through the reduction of tourist demand; (4) psychological, and social disruption based on fear of negative consequences. Security incidents, such as terrorism, include different preventive measures that can be conducted in partnership with: tourism industry (hotels, airports, tourist attractions, among others); central government; public and/or private sector; local community; and media. The recovery strategies must be based on the dissemination of positive information to the media; in creating new marketing strategies that emphasize the social and cultural values of the destination; encourage domestic tourism; get government, or state, financial support.

Keywords: terrorism, tourism, safety, security, impacts, prevention, recovery

Procedia PDF Downloads 343
16158 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory, synthetic data generation, traffic management

Procedia PDF Downloads 26
16157 Political Economy of Electronic News Media in Pakistan

Authors: Asad Ullah Khalid

Abstract:

This paper encompasses the application of the concept of political economy of mass media in Pakistan. The media has developed at a massive pace and now is considered as one of the vital parts in having better administration furthermore helps in conveying the issues identified with the government to the public. Albeit Pakistani media has gained much independence after 2003 but there are many social, political and economy factors which influence the content of the media. The study employs triangulation of quantitative and qualitative methods. In terms of methods, content analysis and interview method both are used. The content of Pakistani media is analyzed quantitatively and qualitatively. Moreover, interviews with various journalists are conducted, and their findings are disclosed in this paper. Pakistan's communication landscape is neither well documented nor well understood, leaving its public off guard with regards to reviewing the role and impact of news inflow, correspondence and media in political, economic and social life. It has been found out that on particular issues some media channels have strong affiliations with certain political parties, moreover reporting and coverage have also been affected by the factors like terrorism, state policies(written and verbal), advertising/economic and demographic factors like the composition of the population.

Keywords: political economy, news media, Pakistan, electronic news media, journalism, mass media

Procedia PDF Downloads 331
16156 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity

Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon

Abstract:

Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.

Keywords: heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry

Procedia PDF Downloads 331
16155 Multi-Scale Control Model for Network Group Behavior

Authors: Fuyuan Ma, Ying Wang, Xin Wang

Abstract:

Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.

Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior

Procedia PDF Downloads 21
16154 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 261
16153 Governance Commitment and Time Differences in Aspects of Sustainability Reporting in Nigerian Banks

Authors: Nwobu Obiamaka, Owolabi Akintola

Abstract:

This study examined the extent of statistical significant difference between the economic, environmental, governance and social aspects of sustainability reporting as a result of board committee on sustainability and time (year) of reporting for business organizations in the Nigerian banking sector. The years of reporting under consideration were 2010, 2011, 2012 and 2013. Content analysis methodology was employed through a reporting index used to score the amount of economic, environmental, governance and social indicators of sustainability reporting. The results of this study indicated that business organizations with board committee on sustainability had more indicators of sustainability reporting than those without board committees on sustainability issues. Also, sustainability reporting in 2013 was higher than that of prior years (2012, 2011 and 2010) for the economic, environmental and social indicators. The governance indicators of 2012 was highest compared to the other years (2013, 2011 and 2010) under consideration in this study. The implication of this finding is that business organizations that have board committees on sustainability are monitored by such boards to report more to their stakeholders. On the other hand, business organizations are appreciating the need to engage in sustainability reporting with each passing year. This could be due to the Central Bank of Nigeria (CBN) Sustainability Reporting framework that business organizations in the banking sector have to adhere to. When sustainability issues are monitored from the board of directors, business organizations are likely to increase and improve on their sustainability reporting.

Keywords: governance, organizations, reporting, sustainability

Procedia PDF Downloads 319
16152 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 153
16151 Integrated Model for Enhancing Data Security Performance in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud Ccomputing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 477
16150 Natural Emergence of a Core Structure in Networks via Clique Percolation

Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun

Abstract:

Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.

Keywords: cliques, core structure, percolation, phase transition

Procedia PDF Downloads 171
16149 Social Appearance Concerns among College Students

Authors: Koninika Mukherjee, Dilwar Hussain

Abstract:

Introduction: One of the most prevalent psychopathologies among the youth is social anxiety. The presence of comorbid disorders further complicates diagnosis and treatment. One of the most commonly co-occurring disorders, along with social anxiety, is related to eating behavior. Objective: Identifying the risk and protective factors and the mechanism through which the effect of these disorders might help in treatment and prevention. So, the stated objective of the present study is to investigate the role of fear of negative evaluation and social appearance anxiety in the relationship of parental bonding with social anxiety and comorbid disordered eating. Method: A cross-sectional study was conducted with 411 Indian undergraduates. Data collection was done with the help of self-report measures like the social interaction anxiety scale, parental bonding instrument, brief fear of negative evaluation, social appearance anxiety scale, and the eating attitudes test. SPSS Amos 22.0 version was used for path analyses. Results: Out of the different dimensions of parental bonding, only maternal care and the father’s granting of behavioural freedom proved significant in the development and maintenance of social anxiety and disordered eating behaviour and symptoms. Fear of negative evaluation and social appearance anxiety mediated the impact of the mother’s care on social anxiety and comorbid disordered eating. However, only fear of negative evaluation seemed to mediate the effect of paternal granting of behavioral freedom on social anxiety and comorbid issues. Implications: One of the vital contributions of this study is looking at perceived maternal and paternal bonding separately in the path model. Identifying parenting dimensions significantly related to social anxiety and comorbid disorders can aid in establishing consensus around operational definitions and in the formulation of comprehensive assessments. Future Directions: Future research can include both participant and parental perceptions of parental bonding.

Keywords: social anxiety, disordered eating, fear of negative evaluation, social appearance anxiety

Procedia PDF Downloads 67
16148 World on the Edge: Migration and Cross Border Crimes in West Africa

Authors: Adeyemi Kamil Hamzah

Abstract:

The contiguity of nations in international system suggests that world is a composite of socio-economic unit with people exploring and exploiting the potentials in the world via migrations. Thus, cross border migration has made positive contributions to social and economic development of individuals and nations by increasing the household incomes of the host countries. However, the cross border migrations in West Africa are becoming part of a dynamic and unstable world migration system. This is due to the nature and consequences of trans-border crimes in West Africa, with both short and long term effects on the socio-economic viability of developing countries like West African States. The paper identified that migration influenced cross-border crimes as well as the high spate of insurgencies in the sub-region. Furthermore, the consequential effect of a global village has imbalanced population flows, making some countries host and parasites to others. Also, stern and deft cross-border rules and regulations, as well as territorial security and protections, ameliorate cross border crimes and migration in West African sub-regions. Therefore, the study concluded that cross border migration is the linchpin of all kinds of criminal activities which affect the security of states in the sub-region.

Keywords: cross-border migration, border crimes, security, West Africa, development, globalisation

Procedia PDF Downloads 226
16147 Evaluation of Social Media Customer Engagement: A Content Analysis of Automobile Brand Pages

Authors: Adithya Jaikumar, Sudarsan Jayasingh

Abstract:

The dramatic technology led changes that continue to take place at the market place has led to the emergence and implication of online brand pages on social media networks. The Facebook brand page has become extremely popular among different brands. The primary aim of this study was to identify the impact of post formats and content type on customer engagement in Facebook brand pages. Methodology used for this study was to analyze and categorize 9037 content messages posted by 20 automobile brands in India during April 2014 to March 2015 and the customer activity it generated in return. The data was obtained from Fanpage karma- an online tool used for social media analytics. The statistical technique used to analyze the count data was negative binomial regression. The study indicates that there is a statistically significant relationship between the type of post and the customer engagement. The study shows that photos are the most posted format and highest engagement is found to be related to videos. The finding also reveals that social events and entertainment related content increases engagement with the message.

Keywords: content analysis, customer engagement, digital engagement, facebook brand pages, social media

Procedia PDF Downloads 322
16146 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 116
16145 Gender Effects in EEG-Based Functional Brain Networks

Authors: Mahdi Jalili

Abstract:

Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.

Keywords: EEG, brain, functional networks, network science, graph theory

Procedia PDF Downloads 443
16144 Social Protection Reforms in Indonesia: Towards a Life Cycle Based Social Protection System

Authors: Dyah Larasati, Karishma Alize Huda, Sri Kusumastuti Rahayu, Martin Daniel Siyaranamual

Abstract:

Indonesia continues to reform its social protection system to provide the needed protection for its citizen. Indonesia Social Protection consisted of social assistance programs (non-contributory/tax-financed) specifically targeted for the poor and at-risk and social security/insurance program (contributory system). The social assistance programs have mostly been implemented since 1998. The national health insurance has been implemented since 2014 and the employment social insurance since 2015. One major reform implemented has been improving the targeting performance of its major social assistance portfolios including (1) Food Assistance for the poor families (Rastra and BPNT/noncash foods assistance); (2) Education Assistance for poor children; (3) Conditional Cash Transfer for poor families (PKH); and (4) Subsidized beneficiaries of National Health Insurance (JKN-PBI) for the poor and at-risk individuals. For the Social Insurance (through BPJS Employment program), several initiatives have been implemented to expand the program contributing members, although it mostly benefits the formal sector workers. However, major gaps still exist especially for the emerging middle-income groups who typically work at the informal sectors. They have yet to get the protection needed to sustain their social and economic growth. Since 2017, TNP2K (the National Team for Poverty Reduction) under the Vice President office has led the social protection discourse as the government understands the need to address vulnerabilities across the lifecycle and prioritize support to the most at-risk population particularly the elderly, young children and people with disabilities. Discussion and advocacy to recommend for more investment is continuing in order for the government to establish a comprehensive social protection system in the near future (2020-2024) that protects children through an inclusive child benefit program; build a system to benefit more working-age adults (including individuals with disabilities) and a three-tier elderly protection as they reach 65 years.

Keywords: poverty reduction, social assistance, social insurance, social protection

Procedia PDF Downloads 179
16143 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 163
16142 The Effect of Experimentally Induced Stress on Facial Recognition Ability of Security Personnel’s

Authors: Zunjarrao Kadam, Vikas Minchekar

Abstract:

The facial recognition is an important task in criminal investigation procedure. The security guards-constantly watching the persons-can help to identify the suspected accused. The forensic psychologists are tackled such cases in the criminal justice system. The security personnel may loss their ability to correctly identify the persons due to constant stress while performing the duty. The present study aimed at to identify the effect of experimentally induced stress on facial recognition ability of security personnel’s. For this study 50, security guards from Sangli, Miraj & Jaysingpur city of the Maharashtra States of India were recruited in the experimental study. The randomized two group design was employed to carry out the research. In the initial condition twenty identity card size photographs were shown to both groups. Afterward, artificial stress was induced in the experimental group through the difficultpuzzle-solvingtask in a limited period. In the second condition, both groups were presented earlier photographs with another additional thirty new photographs. The subjects were asked to recognize the photographs which are shown earliest. The analyzed data revealed that control group has ahighest mean score of facial recognition than experimental group. The results were discussed in the present research.

Keywords: experimentally induced stress, facial recognition, cognition, security personnel

Procedia PDF Downloads 261
16141 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development

Authors: R. Byler

Abstract:

Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.

Keywords: community-based innovation, integrated knowledge networks, nanotechnology, technology innovation

Procedia PDF Downloads 413
16140 Competences for Learning beyond the Academic Context

Authors: Cristina Galván-Fernández

Abstract:

Students differentiate the different contexts of their lives as well as employment, hobbies or studies. In higher education is needed to transfer the experiential knowledge to theory and viceversa. However, is difficult to achieve than students use their personal experiences and social readings for get the learning evidences. In an experience with 178 education students from Chile and Spain we have used an e-portfolio system and a methodology for 4 years with the aims of help them to: 1) self-regulate their learning process and 2) use social networks and professional experiences for make the learning evidences. These two objectives have been controlled by interviews to the same students in different moments and two questionnaires. The results of this study show that students recognize the ownership of their learning and progress in planning and reflection of their own learning.

Keywords: competences, e-portfolio, higher education, self-regulation

Procedia PDF Downloads 299
16139 An Improved Image Steganography Technique Based on Least Significant Bit Insertion

Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo

Abstract:

In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.

Keywords: steganography, image steganography, least significant bits, bit map image

Procedia PDF Downloads 266