Search results for: phenolic compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2524

Search results for: phenolic compounds

1504 Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels

Authors: Michael Huber, Maximilian J. Poller, Jens Tochtermann, Wolfgang Korth, Andreas Jess, Jakob Albert

Abstract:

Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations.

Keywords: oxidative reaction pathway, denitrogenation of fuels, molecular catalysis, polyoxometalate

Procedia PDF Downloads 180
1503 Mordenite as Catalyst Support for Complete Volatile Organic Compounds Oxidation

Authors: Yuri A. Kalvachev, Totka D. Todorova

Abstract:

Zeolite mordenite has been investigated as a transition metal support for the preparation of efficient catalysts in the oxidation of volatile organic compounds (VOCs). The highly crystalline mordenite samples were treated with hydrofluoric acid and ammonium fluoride to get hierarchical material with secondary porosity. The obtained supports by this method have a high active surface area, good diffusion properties and prevent the extraction of metal components during catalytic reactions. The active metal phases platinum and copper were loaded by impregnation on both mordenite materials (parent and acid treated counterparts). Monometalic Pt and Cu, and bimetallic Pt/Cu catalysts were obtained. The metal phases were fine dispersed as nanoparticles on the functional porous materials. The catalysts synthesized in this way were investigated in the reaction of complete oxidation of propane and benzene. Platinum, copper and platinum/copper were loaded and there catalytic activity was investigated and compared. All samples are characterized by X-ray diffraction analysis, nitrogen adsorption, scanning electron microscopy (SEM), X-ray photoelectron measurements (XPS) and temperature programed reduction (TPR). The catalytic activity of the samples obtained is investigated in the reaction of complete oxidation of propane and benzene by using of Gas Chromatography (GC). The oxidation of three organic molecules was investigated—methane, propane and benzene. The activity of metal loaded mordenite catalysts for methane oxidation is almost the same for parent and treated mordenite as a support. For bigger molecules as propane and benzene, the activity of catalysts based on treated mordenite is higher than those based on parent zeolite.

Keywords: metal loaded catalysts, mordenite, VOCs oxidation, zeolites

Procedia PDF Downloads 131
1502 Structural Evolution of Electrodeposited Ni Coating on Ti-6Al-4V Alloy during Heat Treatment

Authors: M. Abdoos, A. Amadeh, M. Adabi

Abstract:

In recent decades, the use of titanium and its alloys due to their high mechanical properties, light weight and their corrosion resistance has increased in military and industry applications. However, the poor surface properties can limit their widely usage. Many researches were carried out to improve their surface properties. The most effective technique is based on solid-state diffusion of elements that can form intermetallic compounds with the substrate. In the present work, inter-diffusion of nickel and titanium and formation of Ni-Ti intermetallic compounds in nickel-coated Ti-6Al-4V alloy have been studied. Initially, nickel was electrodeposited on the alloy using Watts bath at a current density of 20 mA/cm2 for 1 hour. The coated specimens were then heat treated in a tubular furnace under argon atmosphere at different temperatures near Ti β-transus to maximize the diffusion rate for various durations in order to improve the surface properties of the Ti-6Al-4V alloy. The effect of temperature and time on the thickness of diffusion layer and characteristics of intermetallic phases was studied by means of scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS) and microhardness test. The results showed that a multilayer structure was formed after heat treatment: an outer layer of remaining nickel, an area of intermetallic layers with different compositions and solid solution of Ni-Ti. Three intermetallic layers was detected by EDS analysis, namely an outer layer with about 75 at.% Ni (Ni3Ti), an intermediate layer with 50 at.% Ni (NiTi) and finally an inner layer with 36 at.% Ni (NiTi2). It was also observed that the increase in time or temperature led to the formation of thicker intermetallic layers. Meanwhile, the microhardness of heat treated samples increased with formation of Ni-Ti intermetallics; however, its value depended on heat treatment parameters.

Keywords: heat treatment, microhardness, Ni coating, Ti-6Al-4V

Procedia PDF Downloads 434
1501 Phenotypic and Symbiotic Characterization of Rhizobia Isolated from Faba Bean (Vicia faba L.) in Moroccan Soils

Authors: Y. Hajjam, I. T. Alami, S. M. Udupa, S. Cherkaoui

Abstract:

Faba bean (Vicia faba L.) is an important food legume crop in Morocco. It is mainly used as human food and feed for animals. Faba bean also plays an important role in cereal-based cropping systems, when rotated with cereals it improves soil fertility by fixing N2 in root nodules mediated by Rhizobium. Both faba bean and its biological nitrogen fixation symbiotic bacterium Rhizobium are affected by different stresses such as: salinity, drought, pH, heavy metal, and the uptake of inorganic phosphate compounds. Therefore, the aim of the present study was to evaluate the phenotypic diversity among the faba bean rhizobial isolates and to select the tolerant strains that can fix N2 under environmental constraints for inoculation particularly for affected soils, in order to enhance the productivity of faba bean and to improve soil fertility. Result have shown that 62% of isolates were fast growing with the ability of producing acids compounds , while 38% of isolates are slow growing with production of alkalins. Moreover, 42.5% of these isolates were able to solubilize inorganic phosphate Ca3(PO4)2 and the index of solubilization was ranged from 2.1 to 3.0. The resistance to extreme pH, temperature, water stress heavy metals and antibiotics lead us to classify rhizobial isolates into different clusters. Finally, the authentication test under greenhouse conditions showed that 55% of the rhizobial isolates could induce nodule formation on faba bean (Vicia faba L.) under greenhouse experiment. This phenotypic characterization may contribute to improve legumes and non legumes crops especially in affected soils and also to increase agronomic yield in the dry areas.

Keywords: rhizobia, vicia faba, phenotypic characterization, nodule formation, environmental constraints

Procedia PDF Downloads 251
1500 Simultaneous Determination of Bisphenol a, Phtalates and Its Metabolites in Human Urine, by Tandem SPE Coupled to GC-MS

Authors: L. Correia-Sá, S. Norberto, Conceição Calhau, C. Delerue-Matos, V. F. Domingues

Abstract:

Endocrine disruptor chemicals (EDCs) are synthetic compounds that even though being initially designed for a specific function are now being linked with a wide range of side effects. The list of possible EDCs is growing and includes phthalates and bisphenol A (BPA). Phthalates are one of the most widely used plasticizers to improve the extensibility, elasticity and workability of polyvinyl chloride (PVC), polyvinyl acetates, etc. Considered non-toxic and harmless additives for polymers, they were used unrestrainedly all over the world for several decades. However, recent studies have indicated that some phthalates and their metabolic products are reproductive and developmental toxicants in animals and suspected endocrine disruptors in humans. BPA (2,2-bis(4-hydroxyphenyl)propane) is a high production volume chemical mainly used in the production of polycarbonate plastics and epoxy resins. Although BPA was initially considered to be a weak environmental estrogen, nowadays it is known that this compound can stimulate several cellular responses at very low levels of concentrations. The aim of this study was to develop a method based on tandem SPE to evaluate the presence of phthalates, metabolites and BPA in human urine samples. The analyzed compounds included: dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP), BPA, mono-isobutyl phthalate (MiBP), monobutyl phthalate (MBP) and. mono-(2-ethyl-5-oxohexyl) (MEOHP). Two SPE cartridges were applied both from Phenomenex, the strata X polymeric reversed phase and the strata X A (Strong anion). Chromatographic analyses were carried out in a Thermo GC ULTRA GC-MS/MS. Good recoveries and linear calibration curves were obtained. After validation, the methodology was applied to human urine samples for phthalates, metabolites and BPA evaluation.

Keywords: Bisphenol A (BPA), gas chromatography, metabolites, phtalates, SPE, tandem mode

Procedia PDF Downloads 289
1499 Study of Lanthanoide Organic Frameworks Properties and Synthesis: Multicomponent Ligands

Authors: Ayla Roberta Galaco, Juliana Fonseca De Lima, Osvaldo Antonio Serra

Abstract:

Coordination polymers, also known as metal-organic frameworks (MOFs) or lanthanoide organic frameworks (LOFs) have been reported due of their promising applications in gas storage, separation, catalysis, luminescence, magnetism, drug delivery, and so on. As a type of organic–inorganic hybrid materials, the properties of coordination polymers could be chosen by deliberately selecting the organic and inorganic components. LOFs have received considerable attention because of their properties such as porosity, luminescence, and magnetism. Methods such as solvothermal synthesis are important as a strategy to control the structural and morphological properties as well as the composition of the target compounds. In this work the first solvothermal synthesis was employed to obtain the compound [Y0.4,Yb0.4,Er0.2(dmf)(for)(H2O)(tft)], by using terephthalic acid (tft) and oxalic acid, decomposed in formate (for), as ligands; Yttrium, Ytterbium and, Erbium as metal centers, in DMF and water for 4 days under 160 °C. The semi-rigid terephthalic acid (dicarboxylic) coordinates with Ln3+ ions and also is possible to form a polyfunctional bridge. On the other hand, oxalate anion has no high-energy vibrational groups, which benefits the excitation of Yb3+ in upconversion process. It was observed that the compounds with water molecules in the coordination sphere of the lanthanoide ions cause lower crystalline properties and change the structure of the LOF (1D, 2D, 3D). In the FTIR, the bands at 1589 and 1500 cm-1 correspond to the asymmetric stretching vibration of –COO. The band at 1383 cm-1 is assigned to the symmetric stretching vibration of –COO. Single crystal X-ray diffraction study reveals an infinite 3D coordination framework that crystalizes in space group P21/c. The other three products, [TR(chel)(ofd)0,5(H2O)2], where TR= Eu3+, Y3, and Yb3+/Er3+ were obtained by using 1, 2-phenylenedioxydiacetic acid (ofd) and chelidonic acid (chel) as organic ligands. Thermal analysis shows that the lanthanoide organic frameworks do not collapse at temperatures below 250 °C. By the polycrystalline X-ray diffraction patterns (PXRD) it was observed that the compounds with Eu3+, Y3+, and Yb3+/Er3+ ions are isostructural. From PXRD patterns, high crystallinity can be noticed for the complexes. The final products were characterized by single X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) is an effective method to investigate crystalline properties of synthesized materials. The solid crystal obtained in the synthesis show peaks at 2θ < 10°, indicating the MOF formation. The chemical composition of LOFs was also confirmed by EDS.

Keywords: isostructural, lanthanoids, lanthanoids organic frameworks (LOFs), metal organic frameworks (MOFs), thermogravimetry, X-Ray diffraction

Procedia PDF Downloads 260
1498 Optimization the Freeze Drying Conditions of Olive Seeds

Authors: Alev Yüksel Aydar, Tuncay Yılmaz, Melisa Özçeli̇k, Tuba Aydın, Elif Karabaş

Abstract:

In this study, response surface methodology (RSM) was used to obtain the optimum conditions for the freeze-drying of Gemlik variety olive seeds of to achieve the desired quality characteristics. The Box Behnken Design (BBD) was applied with three-variable and three replications in the center point. The effects of the different drying parameters including initial temperature of olive seed, pressure and time for freezing on the DPPH activity, total phenolic contents, and oleuropein absorbance value of the samples were investigated. Temperature (50 – 82 °C), pressure (0.2-0.5 mbar), time (6-10 hours) were chosen as independent variables. The analysis revealed that, while the temperature of the product prior to lyophilization and the drying time had no statistically significant effect on DPPH activity (p>0.05), the pressure was more important than the other two variables , and the quadratic effect of pressure had a significant effect on DPPH activity (p<0.05). The R2 and Adj-R2 values of the DPPH activity model were calculated to be 0.8962 and 0.7045, respectively.

Keywords: olive seed, gemlik variety, DPPH, phenolics, optimization

Procedia PDF Downloads 87
1497 Utilization of Rice and Corn Bran with Dairy By-Product in Tarhana Production

Authors: Kübra Aktaş, Nihat Akin

Abstract:

Tarhana is a traditional Turkish fermented food. It is widely consumed as soup and includes many different ingredients such as wheat flour, various vegetables, and spices, yoghurt, bakery yeast. It can also be enriched by adding other ingredients. Thus, its nutritional properties can be enhanced. In this study, tarhana was supplemented with two different types of brans (rice bran and corn bran) and WPC (whey protein concentrate powder) to improve its nutritional and functional properties. Some chemical properties of tarhana containing two different brans and their levels (0, 5, 10 and 15%) and WPC (0, 5, 10%) were investigated. The results indicated that addition of WPC increased ash content in tarhanas which were fortified with rice and corn bran. The highest antioxidant and phenolic content values were obtained with addition of rice bran in tarhana formulation. Compared to tarhana with corn bran, rice bran addition gave higher oil content values. The cellulose content of tarhana samples was determined between 0.75% and 2.74% and corn bran showed an improving effect on cellulose contents of samples. In terms of protein content, addition of WPC into the tarhana raised protein content for the samples.

Keywords: corn, rice, tarhana, whey

Procedia PDF Downloads 334
1496 The Unique Electrical and Magnetic Properties of Thorium Di-Iodide Indicate the Arrival of Its Superconducting State

Authors: Dong Zhao

Abstract:

Even though the recent claim of room temperature superconductivity by LK-99 was confirmed an unsuccessful attempt, this work reawakened people’s century striving to get applicable superconductors with Tc of room temperature or higher and under ambient pressure. One of the efforts was focusing on exploring the thorium salts. This is because certain thorium compounds revealed an unusual property of having both high electrical conductivity and diamagnetism or the so-called “coexistence of high electrical conductivity and diamagnetism.” It is well known that this property of the coexistence of high electrical conductivity and diamagnetism is held by superconductors because of the electron pairings. Consequently, the likelihood for these thorium compounds to have superconducting properties becomes great. However, as a surprise, these thorium salts possess this property at room temperature and atmosphere pressure. This gives rise to solid evidence for these thorium compounds to be room-temperature superconductors without a need for external pressure. Among these thorium compound superconductors claimed in that work, thorium di-iodide (ThI₂) is a unique one and has received comprehensive discussion. ThI₂ was synthesized and structurally analyzed by the single crystal diffraction method in the 1960s. Its special property of coexistence of high electrical conductivity and diamagnetism was revealed. Because of this unique property, a special molecular configuration was sketched. Except for an ordinary oxidation of +2 for the thorium cation, the thorium’s oxidation state in ThI₂ is +4. According to the experimental results, ThI₂‘s actual molecular configuration was determined as an unusual one of [Th4+(e-)2](I-)2. This means that the ThI₂ salt’s cation is composed of a [Th4+(e-)2]2+ cation core. In other words, the cation of ThI₂ is constructed by combining an oxidation state +4 of the thorium atom and a pair of electrons or an electron lone pair located on the thorium atom. This combination of the thorium atom and the electron lone pair leads to an oxidation state +2 for the [Th4+(e-)2]2+ cation core. This special construction of the thorium cation is very distinctive, which is believed to be the factor that grants ThI₂ the room temperature superconductivity. Actually, the key for ThI₂ to become a room-temperature superconductor is this characteristic electron lone pair residing on the thorium atom along with the formation of a network constructed by the thorium atoms. This network specializes in a way that allows the electron lone pairs to hop over it and, thus, to generate the supercurrent. This work will discuss, in detail, the special electrical and magnetic properties of ThI₂ as well as its structural features at ambient conditions. The exploration of how the electron pairing in combination with the structurally specialized network works together to bring ThI₂ into a superconducting state. From the experimental results, strong evidence has definitely pointed out that the ThI₂ should be a superconductor, at least at room temperature and under atmosphere pressure.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron lone pair, room temperature superconductor, special molecular configuration of thorium di-iodide ThI₂

Procedia PDF Downloads 57
1495 Value Adding of Waste Biomass of Capsicum and Chilli Crops for Medical and Health Supplement Industries

Authors: Mursleen Yasin, Sunil Panchal, Michelle Mak, Zhonghua Chen

Abstract:

“The use of agricultural and horticultural waste to obtain beneficial products. Thus reduce its environmental impact and help the general population.” Every year 20 billion dollars of food is wasted in the world. All the energy, resources, nutrients and metabolites are lost to the landfills as well. On farm production losses are a main issue in agriculture. Almost 25% vegetables never leave the farm because they are not considered perfect for supermarkets and treated as waste material along with the rest of the plant parts. For capsicums, this waste is 56% of the total crop. Capsicum genus is enriched with a group of compounds called capsaicinoids which are a source of spiciness of these fruits. Capsaicin and dihydrocapsaicin are the major members comprising almost 90% of this group. The major production and accumulation site is the non-edible part of fruit i.e., placenta. Other parts of the plant, like stem, leaves, pericarp and seeds, also contain these pungent compounds. Capsaicinoids are enriched with properties like analgesic, antioxidants, anti-inflammatory, antibacterial, anti-virulence anti-carcinogenic, chemo preventive, chemotherapeutic, antidiabetic etc. They are also effective in treating problems related to gastrointestinal tract, lowering cholesterol and triglycerides in obesity. The aim of the study is to develop a standardised technique for capsaicinoids extraction and to identify better nutrient treatment for fruit and capsaicinoids yield. For research 3 capsicum and 2 chilli varieties were grown in a high-tech glass house facility in Sydney, Australia. Plants were treated with three levels of nutrient treatments i.e., EC 1.8, EC 2.8 and EC 3.8 in order to check its effect on fruit yield and capsaicinoids concentration. Solvent extraction procedure is used with 75% ethanol to extract these secondary metabolites. Physiological, post-harvest and waste biomass measurement and metabolomic analysis are also performed. The results showed that EC 2.8 gave the better fruit yield of capsicums, and those fruits have the higher capsaicinoids concentration. For chillies, higher EC levels had better results than lower treatment. The UHPLC analysis is done to quantify the compounds, and a decrease in capsaicin concentration is observed with the crop maturation. The outcome of this project is a sustainable technique for extraction of capsaicinoids which can easily be adopted by farmers. In this way, farmers can help in value adding of waste by extracting and selling capsaicinoids to nutraceutical and pharmaceutical industries and also earn some secondary income from the 56% waste of capsicum crop.

Keywords: capsaicinoids, plant waste, capsicum, solvent extraction, waste biomass

Procedia PDF Downloads 79
1494 Development and Characterization of Kefir Drinks from Pumpkin (Cucurbita moschata) and Winter Melon (Benincasa hispida)

Authors: Uthumporn Utra, Y. N. Shariffa, M. Maizura, A. S. Ruri

Abstract:

This research is to study the utilization of pumpkin and winter melon as the main substrate for kefir fermentation in the production of pumpkin and winter melon-based fermented drinks. Optimized temperature and time were chosen for fermentation of pumpkin and winter melon. Physicochemical and microbiological evaluations were conducted to the end products: P (fermented pumpkin juice) and K (fermented winter melon juice). Ethanol content was detected at low concentration of 0.9% (v/wt) in P, and 1.0% (v/wt) in K. Level of glucose and fructose increased significantly (p < 0.05) in both fermented drinks when compared to unfermented pumpkin (CP) and winter melon (CK) juices. Total phenolic content in P & K was higher than CP and CK, while %DPPH inhibition of both decreased significantly. Total Lactobacilli counts in P & K were 8.9 and 7.88 log cfu/ml respectively, while acetic acid bacteria counts were 8.62 and 7.57 log cfu/ml respectively, yeast counts were 4.71 and 5 log cfu/ml, and no E.coli was detected in all samples. Sensory evaluation yield comparable properties in P & K. This concluded that pumpkin and winter melon fermented drinks inoculated by water kefir grains could be promising source of nutrients with probiotic potency.

Keywords: fermented drinks, functional beverage, kefir, pumpkin, winter melon

Procedia PDF Downloads 149
1493 Glass-Ceramics for Emission in the IR Region

Authors: V. Nikolov, I. Koseva, R. Sole, F. Diaz

Abstract:

Cr4+ doped oxide compounds are particularly preferred active media for solid-state lasers with a wide emission region from 1.1 to 1.6 µm. However, obtaining of single crystals of these compounds is often problematic. An alternative solution of this problem is replacing the single crystals with a transparent glassceramics containing the desired crystalline phase. Germanate compounds, especially Li2MgGeO4, Li2ZnGeO4 and Li2CaGeO4, are suitable for Cr4+ doped glass-ceramics because of their relatively low melting temperature and tetrahedral coordination of all ions. The latter ensures the presence of chromium in the 4+ valence. Cr doped Li2CaGeO4 g lass-ceramic was synthesized by thermal treating using glasses from the Li2O-CaO-GeO2-B2O3 system. Special investigations were carried out for optimizing the initial glasscomposition, as well as the thermal treated conditions. The synthesis of the glass ceramics was accompanied by appropriate characterization methods such as: XRD, TEM, EPR, UVVIS-NIR, emission spectra and time decay as main characteristic for the laser emission. From the systematic studies carried out in the four-component system Li2O-CaO-GeO2-B2O3 for establishing the Li2CaGeO4 crystallization area and suitable thermal treatment conditions, several main conclusions can be drawn: 1. The crystallization region of Li2CaGeO4 is relatively narrow, localized around the stoichiometric composition of the Li2CaGeO4 compound. 2. The presence of the glass former B2O3 strongly supports the obtaining of homogeneous glasses at relatively low temperatures, but it is also the reason for the crystallization of borate phases. 3. The crystallization of glasses during thermal treatment is related to the production of more than one phase and it is correct to speak for crystallization of a main phase and accompanying crystallization of other phases. The crystallization of a given phase is related to changing the composition of the residual glass and creating conditions for the crystallization of other phases. 4. The separate studies show that glass-ceramics with different crystallized phases in different quantitative ratios can be obtained from the same composition of glass playing by the thermal treatment conditions. In other words, the choice of temperature and time of thermal treatment of the glass is an extremely important condition, along with the optimization of the starting glass composition. As a result of the conducted research, an optimal composition of the starting glass and an optimal mode of thermal treatment were selected. Glass-ceramic with a main phase Li2CaGeO4 doped by Cr4+ was obtained. The obtained glass-ceramic possess very good properties containing up to 60 mass% of Li2CaGeO4, with an average size of nanoparticles of 20 nm and with transparency about 70 % relative to the transparency of the parent glass. The emission of the obtained glass-ceramics is in a wide range between 1050 and 1500 nm. The obtained results are the basis for further optimization of the glass-ceramic characteristics to obtain an effective laser-active medium with radiation in the 1.1-1.6 nm range.

Keywords: glass, glass-ceramics, multicomponent systems, NIR emission

Procedia PDF Downloads 19
1492 Eudesmane-Type Sesquiterpenes from Laggera alata Inhibiting Angiogenesis

Authors: Liang Ning, Chung Hau Yin

Abstract:

Angiogenesis is the process of new blood vessel development. It has been recognized as a therapeutic target for blocking cancer growth four decades ago. Vascular sprouting is initiated by pro-angiogenic factors. Vascular endothelial cell growth factor (VEGF) plays a central role in angiogenic initiation, many patients with cancer or ocular neovascularization have been benefited from anti-VEGF therapy. Emerging approaches impacting in the later stages of vessel remodeling and maturation are expected to improve clinical efficacy. TIE receptor as well as the corresponding angiopoietin ligands, were identified as another endothelial cell specific receptor tyrosine kinase signaling system. Much efforts were made to reduce the activity of angiopoietin-TIE receptor axis. Two eudesmane-type sesquiterpenes from laggera alata, namely, 15-dihydrocostic acid and ilicic acid were found with strong anti-angiogenic properties in zebrafish model. Meanwhile, the mRNA expression levels of VEGFR2 and TIE2 pathway related genes were down-regulated in the sesquiterpenes treated zebrafish embryos. Besides, in human umbilical vein endothelial cells (HUVECs), the sesquiterpenes have the ability to inhibit VEGF-induced HUVECs proliferation and migration at non-toxic concentration. Moreover, angiopoietin-2 induced TIE2 phosphorylation was inhibited by the sesquiterpenes, the inhibitory effect was detected in angiopoietin-1 induced HUVECs proliferation as well. Thus, we hypothesized the anti-angiogenic activity of the compounds may via the inhibition of VEGF and TIE2 related pathways. How the compounds come into play as the pathways inhibitors need to be evaluated in the future.

Keywords: Laggera alata, eudesmane-type sesquiterpene, anti-angiogenesis, VEGF, angiopoietin, TIE2

Procedia PDF Downloads 210
1491 The Effects of Grape Waste Bioactive Compounds on the Immune Response and Oxidative Stress in Pig Kidney

Authors: Mihai Palade, Gina Cecilia Pistol, Mariana Stancu, Veronica Chedea, Ionelia Taranu

Abstract:

Nutrition is an important determinant of general health status, with especially focus on prevention and/or attenuation of the inflammatory-associated pathologies. People with chronic kidney disease can experience chronic inflammation that can lead to cardiovascular disease and even an increased rate of death. There are important links between chronic kidney diseases, inflammation and nutritional strategies that may prevent or protect against undesirable inflammation and oxidative stress. The grape by-products either seeds or pomace are rich in polyphenols which may be beneficial in prevention of inflammatory, antioxidant and antimicrobial processes. As a model for studying the impact of grape seeds on renal inflammation and oxidative stress, we used in this study weaned piglets. After a feeding trial of 30 days with a control diet and an experimental diet containing 5% grape seed (GS), kidney samples were collected. In renal tissues were determined the expression and activity of important markers of immune respose and oxidative stress: pro-inflammatory cytokines (TNF-alpha, IL-1 beta, IL-6, IL-8, IFN-gamma), anti-inflammatory cytokines (IL-4, IL-10), anti-oxidant enzymes (catalase CAT, superoxide dismutase SOD, glutathione peroxidise GPx) and important mediators belonging to nuclear receptors (NF-kB1, Nrf-2 and PPAR-gamma). Gene expression was evaluated by qPCR, whereas protein concentration was determined using proteomic techniques (ELISA). The activity of anti-oxidant enzymes was determined using specific kits. Our results showed that GS enriched in polyphenols does not have effect on TNF-alpha, IL-6 and IL-1 beta gene expression and protein concentration in kidney. By contrast, the gene expression and protein level of IL-8 and IFN-gamma were decreased in GS kidney. Anti-inflammatory cytokines IL-4 and IL-10 gene levels were increased in kidneys collected from GS piglets in comparison with controls, with no modification of protein levels between the two groups. The activities of anti-oxidant enzymes CAT and GPx were increased in kidney by GS, whereas SOD activity was unmodified in comparison with control samples. Also, the GS diet was associated with no modulation of mRNAs for nuclear receptors NF-kB1, Nrf-2 and PPAR-gamma gene expressions in kidneys. In conclusion, our results demonstrated that GS enriched in bioactive compounds such polyphenols could modulate inflammation and oxidative stress markers in kidney tissues. Further studies are necessary to elucidate the mechanism of action of GS compounds in case kidney inflammation associated with oxidative stress, and signalling molecules involved in these mechanisms.

Keywords: animal model, kidney inflammation, oxidative stress, grape seed

Procedia PDF Downloads 298
1490 Towards Designing of a Potential New HIV-1 Protease Inhibitor Using Quantitative Structure-Activity Relationship Study in Combination with Molecular Docking and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Hatim Soufi, Sanchaita RajkhowaI, Ashwani Sharma, Subrata Sinha, Said Belaaouad

Abstract:

Human Immunodeficiency Virus type 1 protease (HIV-1 PR) is one of the most challenging targets of antiretroviral therapy used in the treatment of AIDS-infected people. The performance of protease inhibitors (PIs) is limited by the development of protease mutations that can promote resistance to the treatment. The current study was carried out using statistics and bioinformatics tools. A series of thirty-three compounds with known enzymatic inhibitory activities against HIV-1 protease was used in this paper to build a mathematical model relating the structure to the biological activity. These compounds were designed by software; their descriptors were computed using various tools, such as Gaussian, Chem3D, ChemSketch and MarvinSketch. Computational methods generated the best model based on its statistical parameters. The model’s applicability domain (AD) was elaborated. Furthermore, one compound has been proposed as efficient against HIV-1 protease with comparable biological activity to the existing ones; this drug candidate was evaluated using ADMET properties and Lipinski’s rule. Molecular Docking performed on Wild Type and Mutant Type HIV-1 proteases allowed the investigation of the interaction types displayed between the proteases and the ligands, Darunavir (DRV) and the new drug (ND). Molecular dynamics simulation was also used in order to investigate the complexes’ stability, allowing a comparative study of the performance of both ligands (DRV & ND). Our study suggested that the new molecule showed comparable results to that of Darunavir and may be used for further experimental studies. Our study may also be used as a pipeline to search and design new potential inhibitors of HIV-1 proteases.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation.

Procedia PDF Downloads 39
1489 Combining Transcriptomics, Bioinformatics, Biosynthesis Networks and Chromatographic Analyses for Cotton Gossypium hirsutum L. Defense Volatiles Study

Authors: Ronald Villamar-Torres, Michael Staudt, Christopher Viot

Abstract:

Cotton Gossypium hirsutum L. is one of the most important industrial crops, producing the world leading natural textile fiber, but is very prone to arthropod attacks that reduce crop yield and quality. Cotton cultivation, therefore, makes an outstanding use of chemical pesticides. In reaction to herbivorous arthropods, cotton plants nevertheless show natural defense reactions, in particular through volatile organic compounds (VOCs) emissions. These natural defense mechanisms are nowadays underutilized but have a very high potential for cotton cultivation, and elucidating their genetic bases will help to improve their use. Simulating herbivory attacks by mechanical wounding of cotton plants in greenhouse, we studied by qPCR the changes in gene expression for genes of the terpenoids biosynthesis pathway. Differentially expressed genes corresponded to higher levels of the terpenoids biosynthesis pathway and not to enzymes synthesizing particular terpenoids. The genes were mapped on the G. hirsutum L. reference genome; their global relationships inside the general metabolic pathways and the biosynthesis of secondary metabolites were visualized with iPath2. The chromatographic profiles of VOCs emissions indicated first monoterpenes and sesquiterpenes emissions, dominantly four molecules known to be involved in plant reactions to arthropod attacks. As a result, the study permitted to identify potential key genes for the emission of volatile terpenoids by cotton plants in reaction to an arthropod attack, opening possibilities for molecular-assisted cotton breeding in benefit of smallholder cotton growers.

Keywords: biosynthesis pathways, cotton, mechanisms of plant defense, terpenoids, volatile organic compounds

Procedia PDF Downloads 374
1488 Designing of Nano-materials for Waste Heat Conversion into Electrical Energy Thermoelectric generator

Authors: Wiqar Hussain Shah

Abstract:

The electrical and thermal properties of the doped Tellurium Telluride (Tl10Te6) chalcogenide nano-particles are mainly characterized by a competition between metallic (hole doped concentration) and semi-conducting state. We have studied the effects of Sn doping on the electrical and thermoelectric properties of Tl10-xSnxTe6 (1.00 ≤x≤ 2.00), nano-particles, prepared by solid state reactions in sealed silica tubes and ball milling method. Structurally, all these compounds were found to be phase pure as confirmed by the x-rays diffractometery (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis. Additionally crystal structure data were used to model the data and support the findings. The particles size was calculated from the XRD data by Scherrer’s formula. The EDS was used for an elemental analysis of the sample and declares the percentage of elements present in the system. The thermo-power or Seebeck co-efficient (S) was measured for all these compounds which show that S increases with increasing temperature from 295 to 550 K. The Seebeck coefficient is positive for the whole temperature range, showing p-type semiconductor characteristics. The electrical conductivity was investigated by four probe resistivity techniques revealed that the electrical conductivity decreases with increasing temperature, and also simultaneously with increasing Sn concentration. While for Seebeck coefficient the trend is opposite which is increases with increasing temperature. These increasing behavior of Seebeck coefficient leads to high power factor which are increases with increasing temperature and Sn concentration except For Tl8Sn2Te6 because of lowest electrical conductivity but its power factor increases well with increasing temperature.

Keywords: Sn doping in Tellurium Telluride nano-materials, electron holes competition, Seebeck co-efficient, effects of Sn doping on Electrical conductivity, effects on Power factor

Procedia PDF Downloads 44
1487 Exploring the Biochemical and Therapeutic Properties of Aged Garlic

Authors: Farhan Saeed

Abstract:

The core objective of this work is to explicate the biochemical and therapeutic properties of aged garlic. For this purpose, two varieties of garlic were obtained from Ayub Agricultural Research Institute (AARI) Faisalabad-Pakistan. Additionally, fresh garlic was converted into aged garlic via fermentation method in the incubator at 70 to 80 % humidity level and 60C0 temperature for one month. Similarly, biochemical and antioxidant properties of fresh and aged garlic were also elucidated. Mean values showed that moisture content was decreased, whereas crude fat, crude protein, crude fiber, crude ash and total carbohydrates were enhanced after fermentation. Additionally, crude protein of fresh and aged garlic was 7.57±0.16 and 5.52±0.12%, respectively, whilst 9.68±0.41 and 8.78±0.29%, respectively, after the fermentation process. In addition, NFE contents were also enhanced up to 39% after the fermentation method. Moreover, Zn, S, Al, K, Fe, Na, Mg, and Cu contents were also increased. Furthermore, Total phenolic contents (TPC) of fresh and aged garlic were 2498.70 & 2188.50mg GAE/kg whilst 3008.59, & 2591.81mg GAE/kg for aged garlic. In conclusion, aged garlic explicated the better biochemical properties, mineral profile and antioxidant properties as compared to fresh garlic.

Keywords: aged garlic, nutritional values, bioactive properties, fermentation

Procedia PDF Downloads 174
1486 Occurrence and Fate of EDCs in Wastewater and Aquatic Environments in the West Bank of Palestine

Authors: Wa`d Odeh, Alon Tal, Alfred Abed Rabbo, Nader Al Khatib, Shai Arnon

Abstract:

The presence of endocrine disrupting compounds (EDCs) in raw sewage and effluents from wastewater treatment plants (WWTPs) has been increasingly studied in the last few decades. Higher risks are said to characterize situations where raw sewage streams are found to be flowing, or where partial and inadequate wastewater treatment exists. Such conditions are prevalent in the West Bank area of Palestine. To our knowledge, no previous data concerning the occurrence and fate of EDCs in the aquatic environment has ever been systematically evaluated in the region. Hence, the main objective of this study was to identify the occurrence and concentrations of major EDCs in raw sewage, wastewater effluents produced by treatment plants and in the receiving environments, including streams and groundwater in the West Bank, Palestine. Water samples were collected and analyzed for four times during the years of 2013 and 2014. Two large-scale conventional activated sludge WWTPs, two wastewater watercourses, one naturally perennial stream, and five groundwater locations close to wastewater sources were sampled and analyzed by GC/MS following EPA methods (525.2). Five EDCs (estriol, estrone, testosterone, bisphenol A, and octylphenol) were detected in trace concentrations (ng/l) in wastewater streams and at inputs to WWTPs. WWTPs were not able to achieve complete removal of all EDCs, and EDCs were still found in the effluents. In this regard, the most significant environmental estrogenic impact was due to estrone concentrations. Nevertheless, no EDCs were detected in groundwater. Yet, in order for effluents to be reused, significant improvement in treatment infrastructure should be a top priority for environmental managers in the region.

Keywords: endocrine disrupting compounds, raw sewage streams, conventional activated sludge WWTPs, WWTPs effluents

Procedia PDF Downloads 402
1485 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR

Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman

Abstract:

Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.

Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography

Procedia PDF Downloads 496
1484 Design, Synthesis and Pharmacological Investigation of Novel 2-Phenazinamine Derivatives as a Mutant BCR-ABL (T315I) Inhibitor

Authors: Gajanan M. Sonwane

Abstract:

Nowadays, the entire pharmaceutical industry is facing the challenge of increasing efficiency and innovation. The major hurdles are the growing cost of research and development and a concurrent stagnating number of new chemical entities (NCEs). Hence, the challenge is to select the most druggable targets and to search the equivalent drug-like compounds, which also possess specific pharmacokinetic and toxicological properties that allow them to be developed as drugs. The present research work includes the studies of developing new anticancer heterocycles by using molecular modeling techniques. The heterocycles synthesized through such methodology are much effective as various physicochemical parameters have been already studied and the structure has been optimized for its best fit in the receptor. Hence, on the basis of the literature survey and considering the need to develop newer anticancer agents, new phenazinamine derivatives were designed by subjecting the nucleus to molecular modeling, viz., GQSAR analysis and docking studies. Simultaneously, these designed derivatives were subjected to in silico prediction of biological activity through PASS studies and then in silico toxicity risk assessment studies. In PASS studies, it was found that all the derivatives exhibited a good spectrum of biological activities confirming its anticancer potential. The toxicity risk assessment studies revealed that all the derivatives obey Lipinski’s rule. Amongst these series, compounds 4c, 5b and 6c were found to possess logP and drug-likeness values comparable with the standard Imatinib (used for anticancer activity studies) and also with the standard drug methotrexate (used for antimitotic activity studies). One of the most notable mutations is the threonine to isoleucine mutation at codon 315 (T315I), which is known to be resistant to all currently available TKI. Enzyme assay planned for confirmation of target selective activity.

Keywords: drug design, tyrosine kinases, anticancer, Phenazinamine

Procedia PDF Downloads 116
1483 Synthesis and Anticancer Evaluation of Substituted 2-(3,4-Dimethoxyphenyl) Benzazoles

Authors: Cigdem Karaaslan, Yalcin Duydu, Aylin Ustundag, Can Ozgur Yalcın, Hakan Goker

Abstract:

Benzazole nucleus is found in the structure of many compounds as anticancer agents. Bendamustine (Alkylating agent), Nocodazole (Mitotic inhibitor), Veliparib (PARP inhibitor), Glasdegib (SMO inhibitor) are clinically used as anticancer therapeutics which bearing benzimidazole moiety. Based on the principle of bioisosterism in the present work, 23 compounds belonging to 2-(3,4-dimethoxy-phenyl) benzazoles and imidazopyridine series were synthesized and evaluated for their anticancer activities. N-(5-Chloro-2-hydroxyphenyl)-3,4-dimethoxybenzamide, was obtained by the amidation of 2-hydroxy-5-chloroaniline with 3,4-dimethoxybenzoic acid by using 1,1'-carbonyldiimidazole. Cyclization of benzamide derivative to benzoxazole, was achieved by p-toluenesulfonic acid. Other 1H-benz (or pyrido) azoles were prepared by the reaction between 2-aminothiophenol, o-phenylenediamine, o-pyridinediamine with sodium metabisulfite adduct of 3,4-dimethoxybenzaldehyde. The NMR assignments of the dimethoxy groups were established by the Nuclear Overhauser Effect Spectroscopy. A compound named, 5(4),7(6)-Dichloro-2-(3,4-dimethoxy) phenyl-1H-benzimidazole, bearing two chlorine atoms at the 5(4) and 7(6) positions of the benzene moiety of benzimidazole was found the most potent analogue, against A549 cells with the GI50 value of 1.5 µg/mL. In addition, 2-(3,4-Dimethoxyphenyl)-5,6-dimethyl-1H-benzimi-dazole showed remarkable cell growth inhibition against MCF-7 and HeLa cells with the GI₅₀ values of 7 and 5.5 µg/mL, respectively. It could be concluded that introduction of di-chloro atoms at the phenyl ring of 2-(3,4-dimethoxyphenyl)-1H-benzimidazoles increase significant cytotoxicity to selected human tumor cell lines in comparison to other all benzazoles synthesized in this study. Unsubstituted 2-(3,4-dimethoxyphenyl) imidazopyridines also gave the good inhibitory profile against A549 and HeLa cells.

Keywords: 3, 4-Dimethoxyphenyl, 1H-benzimidazole, benzazole, imidazopyridine

Procedia PDF Downloads 122
1482 Organic Matter Distribution in Bazhenov Source Rock: Insights from Sequential Extraction and Molecular Geochemistry

Authors: Margarita S. Tikhonova, Alireza Baniasad, Anton G. Kalmykov, Georgy A. Kalmykov, Ralf Littke

Abstract:

There is a high complexity in the pore structure of organic-rich rocks caused by the combination of inter-particle porosity from inorganic mineral matter and ultrafine intra-particle porosity from both organic matter and clay minerals. Fluids are retained in that pore space, but there are major uncertainties in how and where the fluids are stored and to what extent they are accessible or trapped in 'closed' pores. A large degree of tortuosity may lead to fractionation of organic matter so that the lighter and flexible compounds would diffuse to the reservoir whereas more complicated compounds may be locked in place. Additionally, parts of hydrocarbons could be bound to solid organic matter –kerogen– and mineral matrix during expulsion and migration. Larger compounds can occupy thin channels so that clogging or oil and gas entrapment will occur. Sequential extraction of applying different solvents is a powerful tool to provide more information about the characteristics of trapped organic matter distribution. The Upper Jurassic – Lower Cretaceous Bazhenov shale is one of the most petroliferous source rock extended in West Siberia, Russia. Concerning the variable mineral composition, pore space distribution and thermal maturation, there are high uncertainties in distribution and composition of organic matter in this formation. In order to address this issue geological and geochemical properties of 30 samples including mineral composition (XRD and XRF), structure and texture (thin-section microscopy), organic matter contents, type and thermal maturity (Rock-Eval) as well as molecular composition (GC-FID and GC-MS) of different extracted materials during sequential extraction were considered. Sequential extraction was performed by a Soxhlet apparatus using different solvents, i.e., n-hexane, chloroform and ethanol-benzene (1:1 v:v) first on core plugs and later on pulverized materials. The results indicate that the studied samples are mainly composed of type II kerogen with TOC contents varied from 5 to 25%. The thermal maturity ranged from immature to late oil window. Whereas clay contents decreased with increasing maturity, the amount of silica increased in the studied samples. According to molecular geochemistry, stored hydrocarbons in open and closed pore space reveal different geochemical fingerprints. The results improve our understanding of hydrocarbon expulsion and migration in the organic-rich Bazhenov shale and therefore better estimation of hydrocarbon potential for this formation.

Keywords: Bazhenov formation, bitumen, molecular geochemistry, sequential extraction

Procedia PDF Downloads 170
1481 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.

Keywords: goat milk, nutritional quality, bioactive compounds, sustainable production, animal welfare

Procedia PDF Downloads 149
1480 Toxicity Identification and Evaluation for the Effluent from Seawater Desalination Facility in Korea Using D. magna and V. fischeri

Authors: Sung Jong Lee, Hong Joo Ha, Chun Sang Hong

Abstract:

In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a Seawater desalination facility in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (24,215 ~ 29,562 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach, and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Acknowledgement: This research was supported by a grant (16IFIP-B089911-03) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: TIE, D. magna, V. fischeri, seawater desalination facility

Procedia PDF Downloads 259
1479 Harvesting Value-added Products Through Anodic Electrocatalytic Upgrading Intermediate Compounds Utilizing Biomass to Accelerating Hydrogen Evolution

Authors: Mehran Nozari-Asbemarz, Italo Pisano, Simin Arshi, Edmond Magner, James J. Leahy

Abstract:

Integrating electrolytic synthesis with renewable energy makes it feasible to address urgent environmental and energy challenges. Conventional water electrolyzers concurrently produce H₂ and O₂, demanding additional procedures in gas separation to prevent contamination of H₂ with O₂. Moreover, the oxygen evolution reaction (OER), which is sluggish and has a low overall energy conversion efficiency, does not deliver a significant value product on the electrode surface. Compared to conventional water electrolysis, integrating electrolytic hydrogen generation from water with thermodynamically more advantageous aqueous organic oxidation processes can increase energy conversion efficiency and create value-added compounds instead of oxygen at the anode. One strategy is to use renewable and sustainable carbon sources from biomass, which has a large annual production capacity and presents a significant opportunity to supplement carbon sourced from fossil fuels. Numerous catalytic techniques have been researched in order to utilize biomass economically. Because of its safe operating conditions, excellent energy efficiency, and reasonable control over production rate and selectivity using electrochemical parameters, electrocatalytic upgrading stands out as an appealing choice among the numerous biomass refinery technologies. Therefore, we propose a broad framework for coupling H2 generation from water splitting with oxidative biomass upgrading processes. Four representative biomass targets were considered for oxidative upgrading that used a hierarchically porous CoFe-MOF/LDH @ Graphite Paper bifunctional electrocatalyst, including glucose, ethanol, benzyl, furfural, and 5-hydroxymethylfurfural (HMF). The potential required to support 50 mA cm-2 is considerably lower than (~ 380 mV) the potential for OER. All four compounds can be oxidized to yield liquid byproducts with economic benefit. The electrocatalytic oxidation of glucose to the value-added products, gluconic acid, glucuronic acid, and glucaric acid, was examined in detail. The cell potential for combined H₂ production and glucose oxidation was substantially lower than for water splitting (1.44 V(RHE) vs. 1.82 V(RHE) for 50 mA cm-2). In contrast, the oxidation byproduct at the anode was significantly more valuable than O₂, taking advantage of the more favorable glucose oxidation in comparison to the OER. Overall, such a combination of HER and oxidative biomass valorization using electrocatalysts prevents the production of potentially explosive H₂/O₂mixtures and produces high-value products at both electrodes with lower voltage input, thereby increasing the efficiency and activity of electrocatalytic conversion.

Keywords: biomass, electrocatalytic, glucose oxidation, hydrogen evolution

Procedia PDF Downloads 96
1478 Utilization of Mustard Leaves (Brassica juncea) Powder for the Development of Cereal Based Extruded Snacks

Authors: Maya S. Rathod, Bahadur Singh Hathan

Abstract:

Mustard leaves are rich in folates, vitamin A, K and B-complex. Mustard greens are low in calories and fats and rich in dietary fiber. They are rich in potassium, manganese, iron, copper, calcium, magnesium and low in sodium. It is very rich in antioxidants and Phytonutrients. For the optimization of process variables (moisture content and mustard leave powder), the experiments were conducted according to central composite Face Centered Composite design of RSM. The mustard leaves powder was replaced with composite flour (a combination of rice, chickpea and corn in the ratio of 70:15:15). The extrudate was extruded in a twin screw extruder at a barrel temperature of 120°C. The independent variables were mustard leaves powder (2-10 %) and moisture content (12-20 %). Responses analyzed were bulk density, water solubility index, water absorption index, lateral expansion, hardness, antioxidant activity, total phenolic content and overall acceptability. The optimum conditions obtained were 7.19 g mustard leaves powder in 100 g premix having 16.8 % moisture content (w.b).

Keywords: extrusion, mustard leaves powder, optimization, response surface methodology

Procedia PDF Downloads 545
1477 Fenton Sludge's Catalytic Ability with Synergistic Effects During Reuse for Landfill Leachate Treatment

Authors: Mohd Salim Mahtab, Izharul Haq Farooqi, Anwar Khursheed

Abstract:

Advanced oxidation processes (AOPs) based on Fenton are versatile options for treating complex wastewaters containing refractory compounds. However, the classical Fenton process (CFP) has limitations, such as high sludge production and reagent dosage, which limit its broad use and result in secondary contamination. As a result, long-term solutions are required for process intensification and the removal of these impediments. This study shows that Fenton sludge could serve as a catalyst in the Fe³⁺/Fe²⁺ reductive pathway, allowing non-regenerated sludge to be reused for complex wastewater treatment, such as landfill leachate treatment, even in the absence of Fenton's reagents. Experiments with and without pH adjustments in stages I and II demonstrated that an acidic pH is desirable. Humic compounds in leachate could improve the cycle of Fe³⁺/Fe²⁺ under optimal conditions, and the chemical oxygen demand (COD) removal efficiency was 22±2% and 62±2%% in stages I and II, respectively. Furthermore, excellent total suspended solids (TSS) removal (> 95%) and color removal (> 80%) were obtained in stage II. The processes underlying synergistic (oxidation/coagulation/adsorption) effects were addressed. The design of the experiment (DOE) is growing increasingly popular and has thus been implemented in the chemical, water, and environmental domains. The relevance of the statistical model for the desired response was validated using the explicitly stated optimal conditions. The operational factors, characteristics of reused sludge, toxicity analysis, cost calculation, and future research objectives were also discussed. Reusing non-regenerated Fenton sludge, according to the study's findings, can minimize hazardous solid toxic emissions and total treatment costs.

Keywords: advanced oxidation processes, catalysis, Fe³⁺/Fe²⁺ cycle, fenton sludge

Procedia PDF Downloads 89
1476 Characterization of Fe Doped ZnO Synthesised by Sol-Gel and Combustion Routes

Authors: M. Ravindiran, P. Shankar

Abstract:

This paper deals with the comparison of two synthesis methods, namely, sol-gel, and combustion to prepare Fe doped ZnO nano material. Characterization results for structural, optical and magnetic properties were analyzed for the sol gel and combustion synthesis derived materials. Magnetic studies of the prepared compounds reveal that the combustion synthesis derived material has good magnetization of 50 emu/gm with a better hysteresis loop curve.

Keywords: DMS, combustion, ferromagnetic, synthesis methods

Procedia PDF Downloads 426
1475 The Cytoprotective Role of Antioxidants in Mammalian Cells Exposed to Variable Temperature, Pressure Overload and Radiation in the Stratosphere

Authors: Dawid Przystupski, Agata Gorska, Paulina Rozborska, Weronika Bartosik, Olga Michel, Joanna Rossowska, Anna Szewczyk, Malgorzata Drag-Zalesinska, Jedrzej Gorski, Julita Kulbacka

Abstract:

Researchers are still looking for an answer to the question which has been fascinating the mankind for generations, specifically – is there life beyond Earth? As long as routine flights to other planets remain beyond our reach, there is a need to find alternative ways to conduct the astrobiological research. It is worth noticing that the part of the Earth’s atmosphere, stratosphere, has been found to show subcosmic environmental conditions, namely temperatures around -50°C, very rarefied air, increased cosmic radiation and the Sun’s ultraviolet radiation. This phenomenon gives rise to the opportunity for the use of stratospheric environment as a research model for the space conditions. Therefore the idea of conducting astrobiological experiments during the stratospheric flights arose. Up to now, the preliminary work in this field included launching balloons containing solely microbiological samples into the stratosphere to figure out if they would be able to survive under the stratospheric conditions. In our study, we take this concept further, sending the human healthy and cancerous cells treated with various compounds to investigate whether these medicines are capable to protect the cells against stratospheric stress. Due to oxidative stress caused by ionizing radiation and temperature shock, we used natural compounds which display antioxidant properties. In this way, we were able to reduce the reactive oxygen species production affecting cells, which results in their death. After-flight laboratory tests of biological samples from the stratosphere have been performed and indicated the most active antioxidants as potential agents which can minimize the harmful impacts of stratospheric conditions, especially radiation and temperature.

Keywords: antioxidants, stratosphere, balloon flight, oxidative stress, cell death, radiation

Procedia PDF Downloads 138