Search results for: oil palm tree census
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1384

Search results for: oil palm tree census

364 Morpho-Genetic Assessment of Guava (Psidium guajava L.) Genetic Resources in Pakistan

Authors: Asim Mehmood, Abdul Karim, Muhammad J. Jaskani, Faisal S. Awan, Muhammad W. Sajid

Abstract:

Guava (Psidium guajava L.) is an important commercial fruit crop of Pakistan. It is an allogamous crop having 25-40% cross pollination which on the one hand leads to clonal degradation and on the other hand can add variations to generated new cultivars. Morpho-genetic characterization of 37 guava accessions was carried out for study of the genetic diversity among guava accessions located in province Punjab, Pakistan. For morphological analysis, 17 morphological traits were studied, and strong positive correlation was found among the 7 morphological traits which included thickness of outer flesh in relation to core diameter, fruit length, fruit width, fruit juiciness, fruit size, fruit sweetness and number of seeds. For genetic characterization, 18 microsatellites were used, and the sizes of reproducible and scorable bands ranged from 150 to 320 bp. These 18 primer pairs amplified a total of 85 alleles in P. guajava, with an average total number of 4.7 alleles per locus and no more than two displayed bands (nuclear SSR loci). The phylogenetic tree based on the morphological and genetic traits showed the diversity of these 37 guava genotypes into two major groups. These results indicated that Pakistani guava is quite diverse and a more detail study is needed to define the level of genetic variability.

Keywords: Psidium guajava L, genetic diversity, SSR markers, polymorphism, dendrogram

Procedia PDF Downloads 209
363 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds

Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain

Abstract:

World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.

Keywords: buffalo, FSHR gene, bioinformatics, production

Procedia PDF Downloads 533
362 Optimised Path Recommendation for a Real Time Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.

Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model

Procedia PDF Downloads 335
361 When the ‘Buddha’s Tree Itself Becomes a Rhizome’: The Religious Itinerant, Nomad Science and the Buddhist State

Authors: James Taylor

Abstract:

This paper considers the political, geo-philosophical musings of Deleuze and Guattari on spatialisation, place and movement in relation to the religious nomad (wandering ascetics and reclusive forest monks) inhabiting the borderlands of Thailand. A nomadic science involves improvised ascetic practices between the molar lines striated by modern state apparatuses. The wandering ascetics, inhabiting a frontier political ecology, stand in contrast to the appropriating, sedentary metaphysics and sanctifying arborescence of statism and its corollary place-making, embedded in rootedness and territorialisation. It is argued that the religious nomads, residing on the endo-exteriorities of the state, came to represent a rhizomatic and politico-ontological threat to centre-nation and its apparatus of capture. The paper also theorises transitions and movement at the borderlands in the context of the state’s monastic reforms. These reforms, and its pervasive royal science, problematised the interstitial zones of the early ascetic wanderers in their radical cross-cutting networks and lines, moving within and across demarcated frontiers. Indeed, the ascetic wanderers and their allegorical war machine were seen as a source of wild, free-floating charisma and mystical power, eventually appropriated by the centre-nation in it’s becoming unitary and fixed.

Keywords: Deleuze and Guattari, religious nomad, centre-nation, borderlands, Buddhism

Procedia PDF Downloads 86
360 Agroforestry in Cameroon: Its Perceptions, Advantages and Limits

Authors: Djouhou Fowe Michelle Carole

Abstract:

In the last few decades, there have been considerable efforts by the international community to develop strategies that reduce global poverty and hunger. Despite the modest success in reducing food insecurity, there are still around 795 million people worldwide who remain undernourished, the majority of whom are in sub-Saharan Africa. In many of these impoverished communities, agriculture still remains one of the most important sectors in driving economic growth and reducing poverty. For the growing population, with higher food demand and fixed agricultural land, sustainable intensification is proposed as an important strategy to respond to the challenges of low yields, environmental degradation, and adaptation to climate change. Adoption of agroforestry technologies is increasingly being promoted as a promising solution. This study was conducted to determine the perceptions of the Cameroonian population and farmers on agroforestry. The methodology used was based on a survey to determine their knowledge level of agroforestry, their representation of its advantages and disadvantages, and the reasons that might motivate them whether or not to adopt agroforestry. Participants were randomly selected and received a questionnaire. Data were subjected to a descriptive analysis using SPSS software. The obtained results showed that less than 50% of the general population had already heard about agroforestry at least once; they have basic knowledge about this concept and its advantages. Farmers had been particularly sensitive to tree's food production function and seemed to value their environmental assets. However, various constraints could affect the possible adoption of agroforestry techniques.

Keywords: agroforestry, quality and sustainable agriculture, perceptions, advantages, limits

Procedia PDF Downloads 176
359 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 95
358 Assessing the Channel Design of the Eco-Friendly ‘Falaj’ Water System in Meeting the Optimal Water Demand: A Case Study of Falaj Al-Khatmain, Sultanate of Oman

Authors: Omer Al-Kaabi, Ahmed Nasr, Abdullah Al-Ghafri, Mohammed Abdelfattah

Abstract:

The Falaj system, derived from natural water sources, is a man-made canal system designed to supply communities of farmers with water for domestic and agricultural purposes. For thousands of years, Falaj has served communities by harnessing the force of gravity; it persists as a vital water management system in numerous regions across the Sultanate of Oman. Remarkably, predates the establishment of many fundamental hydraulic principles used today. Al-Khatmain Falaj, with its accessibility and historical significance spanning over 2000 years, was chosen as the focal point of this study. The research aimed to investigate the efficiency of Al-Khatmain Falaj in meeting specific water demands. The HEC-RAS model was utilized to visualize water flow dynamics within the Falaj channels, accompanied by graphical representations of pertinent variables. The application of HEC-RAS helped to measure different water flow scenarios within the channel, enabling a clear comparison with the demand area catchment. The cultivated land of Al-Khatmain is 723,124 m² and consists of 16,873 palm trees representing 91% of the total area and the remaining 9% is mixed types of trees counted 3,920 trees. The study revealed a total demand of 8,244 m³ is required to irrigate the cultivated land. Through rigorous analysis, the study has proven that the Falaj system in Al-Khatmain operates with high efficiency, as the average annual water supply is 9676.8 m3/day. Additionally, the channel designed at 0.6m width x 0.3m height efficiently holds the optimal water supply, with an average flow depth of 0.21m. Also, the system includes an overflow drainage channel to mitigate floods and prevent crop damage based on seasonal requirements. This research holds promise for examining diverse hydrological conditions and devising effective strategies to manage scenarios of both high and low flow rates.

Keywords: Al-Khatmain, sustainability, Falaj, HEC-RAS, water management system

Procedia PDF Downloads 47
357 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition

Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar

Abstract:

In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.

Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers

Procedia PDF Downloads 45
356 Cloning, Expression and Protein Purification of AV1 Gene of Okra Leaf Curl Virus Egyptian Isolate and Genetic Diversity between Whitefly and Different Plant Hosts

Authors: Dalia. G. Aseel

Abstract:

Begomoviruses are economically important plant viruses that infect dicotyledonous plants and exclusively transmitted by the whitefly Bemisia tabaci. Here, replicative form was isolated from Okra, Cotton, Tomato plants and whitefly infected with Begomoviruses. Using coat protein specific primers (AV1), the viral infection was verified with amplicon at 450 bp. The sequence of OLCuV-AV1 gene was recorded and received an accession number (FJ441605) from Genebank. The phylogenetic tree of OLCuV was closely related to Okra leaf curl virus previously isolated from Cameroon and USA with nucleotide sequence identity of 92%. The protein purification was carried out using His-Tag methodology by using Affinity Chromatography. The purified protein was separated on SDS-PAGE analysis and an enriched expected size of band at 30 kDa was observed. Furthermore, RAPD and SDS-PAGE were used to detect genetic variability between different hosts of okra leaf curl virus (OLCuV), cotton leaf curl virus (CLCuV), tomato yellow leaf curl virus (TYLCuV) and the whitefly vector. Finally, the present study would help to understand the relationship between the whitefly and different economical crops in Egypt.

Keywords: okra leaf curl virus, AV1 gene, sequencing, phylogenetic, cloning, purified protein, genetic diversity and viral proteins

Procedia PDF Downloads 150
355 Physico-Chemical and Antibacterial Properties of Neem Extracts

Authors: C. C. Igwe

Abstract:

Several parts of Neem tree (Azadirachta indica) are used in traditional medicine in many West African countries for the treatment of various human diseases. The leaf, stem - bark and seed were air dried for 8, 5 and 7 days, respectively. The shells were carfully separated from the seeds, each powdered sample obtained with mechanical miller and 250 mm sieve. The neem samples were individually subjected to extraction with acetone, n-hexane for 48hr and 72 hr, respectively. Physico-chemical and antibacterial evaluation were carried out using standard methods. Results of physico - chemical analyses of the extracted oil from the seed shows that it has a brownish colour, with a smell similar to garlic while the moisture content, refractive index are 0.76% and 1.47 respectively. Other vital chemical results obtained from the neem oil such as saponification value (234.62), acid value (10.84 %), free fatty acid (5.84 %) and peroxide value (10.52%) indicated the oil extracted satisfied standard oils parameters for quality soap and cosmetics production. The antibacterial screening by disc diffusion revealed the oil demonstrated high activity against Staphylococcus aureus. Both the physio-chemical and antibacterial of samples have been certified by National Agency for Food and Drugs Administration and Control. The preliminary results of this study may validate the medicinal value of the plant. Further studies are in progress to clarify the in vivo potentials of neem extracts in the management of human communicable diseases and this is a subject of investigation in our group.

Keywords: anti-bacterial, neem extract, physico-chemical analyses, staphylococcus aureus

Procedia PDF Downloads 74
354 Quality Service Standard of Food and Beverage Service Staff in Hotel

Authors: Thanasit Suksutdhi

Abstract:

This survey research aims to study the standard of service quality of food and beverage service staffs in hotel business by studying the service standard of three sample hotels, Siam Kempinski Hotel Bangkok, Four Seasons Resort Chiang Mai, and Banyan Tree Phuket. In order to find the international service standard of food and beverage service, triangular research, i.e. quantitative, qualitative, and survey were employed. In this research, questionnaires and in-depth interview were used for getting the information on the sequences and method of services. There were three parts of modified questionnaires to measure service quality and guest’s satisfaction including service facilities, attentiveness, responsibility, reliability, and circumspection. This study used sample random sampling to derive subjects with the return rate of the questionnaires was 70% or 280. Data were analyzed by SPSS to find arithmetic mean, SD, percentage, and comparison by t-test and One-way ANOVA. The results revealed that the service quality of the three hotels were in the international level which could create high satisfaction to the international customers. Recommendations for research implementations were to maintain the area of good service quality, and to improve some dimensions of service quality such as reliability. Training in service standard, product knowledge, and new technology for employees should be provided. Furthermore, in order to develop the service quality of the industry, training collaboration between hotel organization and educational institutions in food and beverage service should be considered.

Keywords: service standard, food and beverage department, sequence of service, service method

Procedia PDF Downloads 352
353 Genetic Diversity in Capsicum Germplasm Based on Inter Simple Sequence Repeat Markers

Authors: Siwapech Silapaprayoon, Januluk Khanobdee, Sompid Samipak

Abstract:

Chili peppers are the fruits of Capsicum pepper plants well known for their fiery burning sensation on the tongue after consumption. They are members of the Solanaceae or common nightshade family along with potato, tomato and eggplant. Thai cuisine has gained popularity for its distinct flavors due to usages of various spices and its heat from the addition of chili pepper. Though being used in little quantity for each dish, chili pepper holds a special place in Thai cuisine. There are many varieties of chili peppers in Thailand, and thirty accessions were collected at Rajamangala University of Technology Lanna, Lampang, Thailand. To effectively manage any germplasm it is essential to know the diversity and relationships among members. Thirty-six Inter Simple Sequence Repeat (ISSRs) DNA markers were used to analyze the germplasm. Total of 335 polymorphic bands was obtained giving the average of 9.3 alleles per marker. Unweighted pair-group mean arithmetic method (UPGMA) clustering of data using NTSYS-pc software indicated that the accessions showed varied levels of genetic similarity ranging from 0.57-1.00 similarity coefficient index indicating significant levels of variation. At SM coefficient of 0.81, the germplasm was separated into four groups. Phenotypic variation was discussed in context of phylogenetic tree clustering.

Keywords: diversity, germplasm, Chili pepper, ISSR

Procedia PDF Downloads 152
352 Preliminary Study of the Potential of Propagation by Cuttings of Juniperus thurefera in Aures (Algeria)

Authors: N. Khater, I. Djbablia, A. Telaoumaten, S. A. Menina, H. Benbouza

Abstract:

Thureferous Juniper is an endemic cupressacée constitutes a forest cover in the mountains of Aures (Algeria ). It is an heritage and important ecological richness, but continues to decline, highly endangered species in danger of extinction, these populations show significant originality due to climatic conditions of the environment, because of its strength and extraordinary vitality, made a powerful but fragile and unique ecosystem in which natural regeneration by seed is almost absent in Algeria. Because of the quality of seeds that are either dormant or affected at the tree and the ground level by a large number of pests and parasites, which will lead to the total disappearance of this species and consequently leading to the biodiversity. View the ecological and social- economic interest presented by this case, it deserves to be preserved and produced in large quantities in this respect. The present work aims to try to regenerate the Juniperus thurefera via vegetative propagation. We studied the potential of cuttings to form adventitious roots and buds. Cuttings were taken from young subjects from 5 to 20 years treated with indole butyric acid (AIB) and planted out inside perlite under atomizer whose temperature and light are controlled. The results show that the rate of rooting is important and encourages the regeneration of this species through vegetative propagation.

Keywords: juniperus thurefera, indole butyric acid, cutting, buds, rooting

Procedia PDF Downloads 307
351 Risk and Vulnerability Assessment of Agriculture on Climate Change: Bangnampriao District, Thailand

Authors: Charuvan Kasemsap

Abstract:

This research was studied in Bangnampriao District, Chachernsao Province, Thailand. The primary data relating to flooding, drought, and saline intrusion problem on agriculture were collected by surveying, focus group, and in-depth interview with agricultural officers, technical officers of irrigation department, and local government leader of Bangnampriao District. The likelihood and consequence of risk were determined the risk index by risk assessment matrix. In addition, the risk index and the total coping capacity scores were investigated the vulnerability index by vulnerability matrix. It was found that the high-risk drought and saline intrusion was dramatically along Bang Pakong River owing to the end destination of Chao Phraya Irrigation system of Central Thailand. This leads yearly the damage of rice paddy, mango tree, orchard, and fish pond. Therefore, some agriculture avoids rice growing during January to May, and also pumps fresh water from a canal into individual storage pond. However, Bangnampriao District will be strongly affected by the impacts of climate change. Monthly precipitations are expected to decrease in number; dry seasons are expected to be more in number and longer in duration. Thus, the risk and vulnerability of agriculture are also increasing. Adaptation strategies need to be put in place in order to enhance the resilience of the agriculture.

Keywords: agriculture, bangnampriao, climate change, risk assessment

Procedia PDF Downloads 432
350 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 422
349 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy

Authors: Ingrid Argote, John Archila, Marcelo Becker

Abstract:

In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.

Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.

Procedia PDF Downloads 230
348 Demographic and Socio-Economic Study of the Elderly Population in Kolkata, India

Authors: Ambika Roy Bardhan

Abstract:

Kolkata, the City of Joy, is a greying metropolis not only in respect of its concrete jungle but also because of the largest population of 60-plus residents that it shelters among all other cities in India. Declining birth and death rates and a negative growth of population indicate that the city has reached the last stage of demographic transition. Thus, the obvious consequence has been the ageing of its population. With this background, the present paper attempts to study the demographic and socio-economic status of the elderly population in Kolkata. Analysis and findings have been based on secondary data obtained from Census of India of various years, Sample Registration System Reports and reports by HelpAge India. Findings show that the elderly population is increasing continuously. With respect to gender, the male elderly outnumbers the female elderly population. The percentage of households having one elderly member is more in the city due to the emergence of the nuclear families and erosion of joint family system. With respect to socio-economic status, those elderly who are the heads of the family are lower in percentages than those in the other age groups. Also, male elderly as head of the family are greater in percentage than female elderly. Elderly in the category of currently married records the highest percentage followed by widowed, never married and lastly, separated or divorced. Male elderly outnumber the female elderly as currently married, while female elderly outnumbers the male elderly in the category of widowed. In terms of living status, the percentage of elderly who are living alone is highest in Kolkata and the reason for staying alone as no support from children also happens to be highest in this city. The literacy rate and higher level of education is higher among the male than female elderly. Higher percentages of female elderly have been found to be with disability. Disability in movement and multiple disabilities have been found to be more common among the elderly population in Kolkata. Percentages of male literate pensioners are highest than other categories. Also, in terms of levels of education male elderly who are graduate and above other than technical degree are the highest receivers of pension. Also, in terms of working status, elderly as non-workers are higher in percentages with the population of elderly females outnumbering the males. The old age dependency ratio in the city is increasing continuously and the ratio is higher among females than male. Thus, it can be stated that Kolkata is witnessing continuous and rapid ageing of its population. Increasing dependency ratio is likely to create pressure on the working population, available civic, social and health amenities. This requires intervention in the form of planning, formulation and implementation of laws, policies, programs and measures to safeguard and improve the conditions of the elderly in Kolkata.

Keywords: demographic, elderly, population, socio-economic

Procedia PDF Downloads 138
347 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 110
346 The Diversity of DRB1 Locus of Exon 2 of MHC Molecule of Sudanese Indigenous Desert Sheep

Authors: Muna A. Eissawi, Safaa Abed Elfataah, Haytham Hago, Fatima E Abukunna, Ibtisam Amin Goreish, Nahid Gornas

Abstract:

The study examined and analyzed the genetic diversity of DRB1locus of exon 2 of major histocompatibility complex of Sudanese desert sheep using PCR-RFLP and DNA sequencing. Five hundred samples belonging to five ecotypes of Desert Sudanese sheep (Abrag (Ab), Ashgar (Ash), Hamari (H), Kabashi (K) and Watish (W) were included. Amplification of exon 2 of the DRB1 gene yielded (300bp) amplified product in different ecotypes. Nine different digestion patterns corresponding to Five distinct alleles were observed with Rsa1 digestion. Genotype (ag) was the most common among all ecotypes, with a percentage comprised (40.4 %). The Hardy-Weinberg equilibrium (HWE) test showed that the studied ecotypes have significantly deviated from the theoretical proportions of Rsa1 patterns; probability values of the Chi-square test for HWE for MHC-DRB1 gene in SDS were 0.00 in all ecotypes. The constructed phylogenetic tree revealed the relation of 22 Sudanese isolates with each other and showed the shared sequences with 47 published foreign sequences randomly selected from different geographic regions. The results of this study highlight the effect of heterozygosity of MHC genes of the Desert sheep of Sudan which may clarify some of genetic back ground of their disease resistance and adaptation to environment.

Keywords: desert sheep, MHC, Ovar-DRB1, polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP)

Procedia PDF Downloads 78
345 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 139
344 Wildlife Habitat Corridor Mapping in Urban Environments: A GIS-Based Approach Using Preliminary Category Weightings

Authors: Stefan Peters, Phillip Roetman

Abstract:

The global loss of biodiversity is threatening the benefits nature provides to human populations and has become a more pressing issue than climate change and requires immediate attention. While there have been successful global agreements for environmental protection, such as the Montreal Protocol, these are rare, and we cannot rely on them solely. Thus, it is crucial to take national and local actions to support biodiversity. Australia is one of the 17 countries in the world with a high level of biodiversity, and its cities are vital habitats for endangered species, with more of them found in urban areas than in non-urban ones. However, the protection of biodiversity in metropolitan Adelaide has been inadequate, with over 130 species disappearing since European colonization in 1836. In this research project we conceptualized, developed and implemented a framework for wildlife Habitat Hotspots and Habitat Corridor modelling in an urban context using geographic data and GIS modelling and analysis. We used detailed topographic and other geographic data provided by a local council, including spatial and attributive properties of trees, parcels, water features, vegetated areas, roads, verges, traffic, and census data. Weighted factors considered in our raster-based Habitat Hotspot model include parcel size, parcel shape, population density, canopy cover, habitat quality and proximity to habitats and water features. Weighted factors considered in our raster-based Habitat Corridor model include habitat potential (resulting from the Habitat Hotspot model), verge size, road hierarchy, road widths, human density, and presence of remnant indigenous vegetation species. We developed a GIS model, using Python scripting and ArcGIS-Pro Model-Builder, to establish an automated reproducible and adjustable geoprocessing workflow, adaptable to any study area of interest. Our habitat hotspot and corridor modelling framework allow to determine and map existing habitat hotspots and wildlife habitat corridors. Our research had been applied to the study case of Burnside, a local council in Adelaide, Australia, which encompass an area of 30 km2. We applied end-user expertise-based category weightings to refine our models and optimize the use of our habitat map outputs towards informing local strategic decision-making.

Keywords: biodiversity, GIS modeling, habitat hotspot, wildlife corridor

Procedia PDF Downloads 117
343 Fruit Growing in Romania and Its Role for Rural Communities’ Development

Authors: Maria Toader, Gheorghe Valentin Roman

Abstract:

The importance of fruit trees and bushes growing for Romania is due the concordance that exists between the different ecological conditions in natural basins, and the requirements of different species and varieties. There are, in Romania, natural areas dedicated to the main trees species: plum, apple, pear, cherry, sour cherry, finding optimal conditions for harnessing the potential of fruitfulness, making fruit quality both in terms of ratio commercial, and content in active principles. The share of fruits crops in the world economy of agricultural production is due primarily to the role of fruits in nourishment for human, and in the prevention and combating of diseases, in increasing the national income of cultivator countries and to improve comfort for human life. For Romania, the perspectives of the sector are positive, and are due to European funding opportunities, which provide farmers a specialized program that meets the needs of development and modernization of fruit growing industry, cultivation technology and equipment, organization and grouping of producers, creating storage facilities, conditioning, marketing and the joint use of fresh fruit. This paper shows the evolution of fruit growing, in Romania compared to other states. The document presents the current situation of the main tree species both in terms of surface but also of the productions and the role that this activity may have for the development of rural communities.

Keywords: fruit growing, fruits trees, productivity, rural development

Procedia PDF Downloads 263
342 Low-Dose Chest Computed Tomography Can Help in Differential Diagnosis of Asthma–COPD Overlap Syndrome in Children

Authors: Frantisek Kopriva, Kamila Michalkova, Radim Dudek, Jana Volejnikova

Abstract:

Rationale: Diagnostic criteria of asthma–COPD overlap syndrome (ACOS) are controversial in pediatrics. Emphysema is characteristic of COPD and usually does not occur in typical asthma; its presence in patients with asthma suggests the concurrence with COPD. Low-dose chest computed tomography (CT) allows a non-invasive assessment of the lung tissue structure. Here we present CT findings of emphysematous changes in a child with ACOS. Patient and Methods: In a 6-year-old boy, atopy was confirmed by a skin prick test using common allergen extracts (grass and tree pollen, house dust mite, molds, cat, dog; manufacturer Stallergenes Greer, London, UK), where reactions over 3 mm were considered positive. Treatment with corticosteroids was started during the course of severe asthma. At 12 years of age, his spirometric parameters deteriorated despite treatment adjustment (VC 1.76 L=85%, FEV1 1.13 L=67%, TI%VCmax 64%, MEF25 19%, TLC 144%) and the bronchodilator test became negative. Results: Low-dose chest CT displayed irregular regions with increased radiolucency of pulmonary parenchyma (typical for hyperinflation in emphysematous changes) in both lungs. This was in accordance with the results of spirometric examination. Conclusions: ACOS is infrequent in children. However, low-dose chest CT scan can be considered to confirm this diagnosis or eliminate other diagnoses when the clinical condition is deteriorating and treatment response is poor.

Keywords: child, asthma, low-dose chest CT, ACOS

Procedia PDF Downloads 146
341 Traumatic Brachiocephalic Artery Pseudoaneurysm

Authors: Sally Shepherd, Jessica Wong, David Read

Abstract:

Traumatic brachiocephalic artery aneurysm is a rare injury that typically occurs as a result of a blunt chest injury. A 19-year-old female sustained a head-on, high speed motor vehicle crash into a tree. Upon release after 45 minutes of entrapment, she was tachycardic but normotensive, with a significant seatbelt sign across her chest and open deformed right thigh with weak pulses in bilateral lower limbs. A chest XR showed mild upper mediastinal widening. A CT trauma series plus gated CT chest revealed a grade 3a aortic arch transection with brachiocephalic pseudoaneurysm. Endovascular repair of the brachiocephalic artery was attempted post-presentation but was unsuccessful as the first stent migrated to the infrarenal abdominal aorta and the second stent across the brachiocephalic artery origin had a persistent leak at the base. She was transferred to Intensive Care for strict blood pressure control. She returned to theatre 5 hours later for a median sternotomy, aortic arch repair with an 8mm graft extraction, and excision of the innominate artery pseudoaneurysm. She had an uncomplicated post-operative recovery. This case highlights that brachiocephalic artery injury is a rare but potentially lethal injury as a result of blunt chest trauma. Safe management requires a combined Vascular and Cardiothoracic team approach, as stenting alone may be insufficient.

Keywords: blunt chest injury, Brachiocephalic aneurysm, innominate artery, trauma

Procedia PDF Downloads 230
340 Comparative Analysis of Classification Methods in Determining Non-Active Student Characteristics in Indonesia Open University

Authors: Dewi Juliah Ratnaningsih, Imas Sukaesih Sitanggang

Abstract:

Classification is one of data mining techniques that aims to discover a model from training data that distinguishes records into the appropriate category or class. Data mining classification methods can be applied in education, for example, to determine the classification of non-active students in Indonesia Open University. This paper presents a comparison of three methods of classification: Naïve Bayes, Bagging, and C.45. The criteria used to evaluate the performance of three methods of classification are stratified cross-validation, confusion matrix, the value of the area under the ROC Curve (AUC), Recall, Precision, and F-measure. The data used for this paper are from the non-active Indonesia Open University students in registration period of 2004.1 to 2012.2. Target analysis requires that non-active students were divided into 3 groups: C1, C2, and C3. Data analyzed are as many as 4173 students. Results of the study show: (1) Bagging method gave a high degree of classification accuracy than Naïve Bayes and C.45, (2) the Bagging classification accuracy rate is 82.99 %, while the Naïve Bayes and C.45 are 80.04 % and 82.74 % respectively, (3) the result of Bagging classification tree method has a large number of nodes, so it is quite difficult in decision making, (4) classification of non-active Indonesia Open University student characteristics uses algorithms C.45, (5) based on the algorithm C.45, there are 5 interesting rules which can describe the characteristics of non-active Indonesia Open University students.

Keywords: comparative analysis, data mining, clasiffication, Bagging, Naïve Bayes, C.45, non-active students, Indonesia Open University

Procedia PDF Downloads 316
339 Growth and Laying Performance of Commercial Hens Fed with Varying Levels of Trichanthera gigantea (Nees.) Leaf Meal

Authors: Carmel Khrisna Wong Moreno, Dinah M. Espina

Abstract:

The increasing price of feed ingredients has prompted farmers to seek feasible feed alternatives like the utilization of locally-grown protein-rich feedstuff which is cheaper but gives a positive result in poultry production. Trichanthera gigantea, a fodder tree which is an excellent alternative as feed ingredient in the Philippines has now gained popularity as feed supplement. This study was conducted to determine the growth and laying performance of commercial hens fed with varying levels of Trichanthera gigantea leaf meal. The incorporation of Trichanthera gigantea leaf meal at 5%, 10%, and 15% into the diet of commercial hens did not affect the growth and laying performance. Results of the study revealed that the weight gain of the birds fed with Trichanthera gigantea supplemented diets was not significantly different with the control (100% commercial layer mash). The voluntary feed intake, feed conversion ratio, weekly average egg weight and egg production of the commercial hens fed with T. gigantea leaf meal supplemented diets were not significantly different from the control. Results of the study showed that the supplementation of Trichanthera gigantea leaf meal of up to 15% into the diets of commercial hens is highly acceptable since it does not affect the growth and laying performance of the birds. In addition, it would mean a 15% savings in production cost from commercial feeds.

Keywords: egg production, growth, laying performance, trichanthera gigantea (nees)

Procedia PDF Downloads 431
338 Influence of Agroforestry Trees Leafy Biomass and Nitrogen Fertilizer on Crop Growth Rate and Relative Growth Rate of Maize

Authors: A. B. Alarape, O. D. Aba

Abstract:

The use of legume tree pruning as mulch in agroforestry system is a common practice to maintain soil organic matter and improve soil fertility in the tropics. The study was conducted to determine the influence of agroforestry trees leafy biomass and nitrogen fertilizer on crop growth rate and relative growth rate of maize. The experiments were laid out as 3 x 4 x 2 factorial in a split-split plot design with three replicates. Control, biomass species (Parkia biglobosa and Albizia lebbeck) as main plots were considered, rates of nitrogen considered include (0, 40, 80, 120 kg N ha⁻¹) as sub-plots, and maize varieties (DMR-ESR-7 and 2009 EVAT) were used as sub-sub plots. Data were analyzed using descriptive and inferential statistics (ANOVA) at α = 0.05. Incorporation of leafy biomass was significant in 2015 on Relative Growth Rate (RGR), while nitrogen application was significant on Crop Growth Rate (CGR). 2009 EVAT had higher CGR in 2015 at 4-6 and 6-8 WAP. Incorporation of Albizia leaves enhanced the growth of maize than Parkia leaves. Farmers are, therefore, encouraged to use Albizia leaves as mulch to enrich their soil for maize production and most especially, in case of availability of inorganic fertilizers. Though, production of maize with biomass and application of 120 kg N ha⁻¹ will bring better growth of maize.

Keywords: agroforestry trees, fertilizer, growth, incorporation, leafy biomass

Procedia PDF Downloads 192
337 Analyzing the Impact of Global Financial Crisis on Interconnectedness of Asian Stock Markets Using Network Science

Authors: Jitendra Aswani

Abstract:

In the first section of this study, impact of Global Financial Crisis (GFC) on the synchronization of fourteen Asian Stock Markets (ASM’s) of countries like Hong Kong, India, Thailand, Singapore, Taiwan, Pakistan, Bangladesh, South Korea, Malaysia, Indonesia, Japan, China, Philippines and Sri Lanka, has been analysed using the network science and its metrics like degree of node, clustering coefficient and network density. Then in the second section of this study by introducing the US stock market in existing network and developing a Minimum Spanning Tree (MST) spread of crisis from the US stock market to Asian Stock Markets (ASM) has been explained. Data used for this study is adjusted the closing price of these indices from 6th January, 2000 to 15th September, 2013 which further divided into three sub-periods: Pre, during and post-crisis. Using network analysis, it is found that Asian stock markets become more interdependent during the crisis than pre and post crisis, and also Hong Kong, India, South Korea and Japan are systemic important stock markets in the Asian region. Therefore, failure or shock to any of these systemic important stock markets can cause contagion to another stock market of this region. This study is useful for global investors’ in portfolio management especially during the crisis period and also for policy makers in formulating the financial regulation norms by knowing the connections between the stock markets and how the system of these stock markets changes in crisis period and after that.

Keywords: global financial crisis, Asian stock markets, network science, Kruskal algorithm

Procedia PDF Downloads 424
336 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: stacking, multi-layers, ensemble, multi-class

Procedia PDF Downloads 269
335 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 98