Search results for: material composition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8795

Search results for: material composition

7775 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach

Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie

Abstract:

The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.

Keywords: ductile failure, cohesive model, GTN model, numerical simulation

Procedia PDF Downloads 144
7774 Comparison of Different Activators Impact on the Alkali-Activated Aluminium-Silicate Composites

Authors: Laura Dembovska, Ina Pundiene, Diana Bajare

Abstract:

Alkali-activated aluminium-silicate composites (AASC) can be used in the production of innovative materials with a wide range of properties and applications. AASC are associated with low CO₂ emissions; in the production process, it is possible to use industrial by-products and waste, thereby minimizing the use of a non-renewable natural resource. This study deals with the preparation of heat-resistant porous AASC based on chamotte for high-temperature applications up to 1200°C. Different fillers, aluminium scrap recycling waste as pores forming agent and alkali activation with 6M sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution were used. Sodium hydroxide (NaOH) is widely used for the synthesis of AASC compared to potassium hydroxide (KOH), but comparison of using different activator for geopolymer synthesis is not well established. Changes in chemical composition of AASC during heating were identified and quantitatively analyzed by using DTA, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of AASC was determined by XRD. Lightweight porous AASC activated with NaOH have been obtained with density in range from 600 to 880 kg/m³ and compressive strength from 0.8 to 2.7 MPa, but for AAM activated with KOH density was in range from 750 to 850 kg/m³ and compressive strength from 0.7 to 2.1 MPa.

Keywords: alkali activation, alkali activated materials, elevated temperature application, heat resistance

Procedia PDF Downloads 174
7773 Bulk/Hull Cavitation Induced by Underwater Explosion: Effect of Material Elasticity and Surface Curvature

Authors: Wenfeng Xie

Abstract:

Bulk/hull cavitation evolution induced by an underwater explosion (UNDEX) near a free surface (bulk) or a deformable structure (hull) is numerically investigated using a multiphase compressible fluid solver coupled with a one-fluid cavitation model. A series of two-dimensional computations is conducted with varying material elasticity and surface curvature. Results suggest that material elasticity and surface curvature influence the peak pressures generated from UNDEX shock and cavitation collapse, as well as the bulk/hull cavitation regions near the surface. Results also show that such effects can be different for bulk cavitation generated from UNDEX-free surface interaction and for hull cavitation generated from UNDEX-structure interaction. More importantly, results demonstrate that shock wave focusing caused by a concave solid surface can lead to a larger cavitation region and thus intensify the cavitation reload. The findings can be linked to the strength and the direction of reflected waves from the structural surface and reflected waves from the expanding bubble surface, which are functions of material elasticity and surface curvature. Shockwave focusing effects are also observed for axisymmetric simulations, but the strength of the pressure contours for the axisymmetric simulations is less than those for the 2D simulations due to the difference between the initial shock energy. The current method is limited to two-dimensional or axisymmetric applications. Moreover, the thermal effects are neglected and the liquid is not allowed to sustain tension in the cavitation model.

Keywords: cavitation, UNDEX, fluid-structure interaction, multiphase

Procedia PDF Downloads 181
7772 Meat Yield and Proximate Composition Relations of Seabream (Sparus aurata) and Seabass (Dicentrarchus labrax) in Different Sizes

Authors: Mehmet Celik, Celal Erbas, Mehtap Baykal, Aygül Kucukgulmez, Mahmut Ali Gokce, Bilge Kaan Tekelioglu

Abstract:

In this study, determination of differences in fresh meat yield and proximate compositions of different weight groups of sea bream and sea bass grown in cages in Izmir region of the Aegean Sea were aimed. For this purpose, the length and weight of five different weight groups of sea bass (I: 175.8±5.2, II: 227.3±10.2, III: 293.3±21.3, IV: 404±9.9, V: 508.7±46 g) and sea bream (I: 146.6±13.6, II: 239.8±21.7, III: 279.2±20.8, IV: 400.9±10.5, V: 546.8±0.8 g) were measured and the amount of edible and non-edible parts were determined. Besides this, protein, lipid, dry matter, ash, condition factor, HSI and VSI values were compared according to different weight groups for each species. According to the results of analysis, while the absolute meat yields of sea bream was between 69-294 g, it was between 71-252 g for the sea bass and the highest meat yields were found in fifth (V) weight groups of fish for both species. The relative meat yield (%) was determined in weight group II for sea bass and in the IV. group in sea bream with 51.9%. However, the amount of muscle tissue lipids in I. and V. weight groups of sea bream ranged between 3.6 to 11.9 % and ranged between 6.2 to 9.0 % for sea bass respectively. Protein, fillet and ash content increased in direct proportion to the weight. As a result, it can be speculated that when the meat yield and lipid rates were considered, IV. group in sea bream and II. group in sea bass are the most advantageous groups for the consumers. Acknowledgement: This work was supported by the Scientific Research Project Unit of the University of Cukurova, Turkey under grant no FBA-2015-3830.

Keywords: sea bream, sea bass, meat yield, proximate composition, different weight

Procedia PDF Downloads 347
7771 Study of Sustainability Indicators in a Milk Production Process

Authors: E. Lacasa, J. L. Santolaya, I. Millán

Abstract:

The progress toward sustainability implies maintaining and preferably improving both, human and ecosystem well-being, according to a triple bottom line that includes the environmental, economic and social dimensions. The life cycle assessment (LCA) is a method applicable to all production sectors that aims to quantify the environmental pressures and the benefits related to goods and services, as well as the trade-offs and the scope for improving areas of the production process. While using LCA to measure the environmental dimension of sustainability is widespread, similar approaches for the economic and the social dimensions still have limited application worldwide and there is a need for consistent and robust methods and indicators. This paper focuses on the milk production process and presents the analysis of the flows exchanged by an industrial installation through accounting all the energy and material inputs and the associated emissions and waste outputs at this stage of its life cycle. The functional unit is one litre of milk produced. Different metrics and indicators are used to assess the three dimensions of sustainability. Metrics considered useful to assess the production activities are the total water and energy consumptions and the milk production volume of each cow. The global warming, the value added and the working hours are indicators used to measure each sustainability dimension. The study is performed with two types of feeding of the cows, which includes a change in percentages of components as well. Nutritional composition of the milk obtained is almost kept. It is observed that environmental and social improvements involve high economic costs.

Keywords: milk production, sustainability, indicators, life cycle assessment

Procedia PDF Downloads 431
7770 Improving Reading Comprehension Skills of Elementary School Students through Cooperative Integrated Reading and Composition Model Using Padlet

Authors: Neneng Hayatul Milah

Abstract:

The most important reading skill for students is comprehension. Understanding the reading text will have an impact on learning outcomes. However, reading comprehension instruction in Indonesian elementary schools is lacking. A more effective learning model is needed to enhance students' reading comprehension. This study aimed to evaluate the effectiveness of the CIRC (Cooperative Integrated Reading and Composition) model with Padlet integration in improving the reading comprehension skills of grade IV students in elementary schools in Cimahi City, Indonesia. This research methodology was quantitative with a pre-experiment research type and one group pretest-posttest research design. The sample of this study consisted of 30 students. The results of statistical analysis showed that there was a significant effect of using the CIRC learning model using Padlet on improving students' reading comprehension skills of narrative text. The mean score of students' pretest was 67.41, while the mean score of the posttest increased to 84.82. The paired sample t-test resulted in a t-count score of -13.706 with a significance score of <0.001, which is smaller than α = 0.05. This research is expected to provide useful insights for educational practitioners on how the use of the CIRC model using Padlet can improve the reading comprehension skills of elementary school students.

Keywords: reading comprehension skills, CIRC, Padlet, narrative text

Procedia PDF Downloads 22
7769 Component Composition of Biologically Active Substances in Extracts of Some Species from the Family Lamiaceae Lindl.

Authors: Galina N. Parshina, Olga N. Shemshura, Ulzhan S. Mukiyanova, Gulnur M. Beisetbayeva

Abstract:

From a medical point of view some species from the family Lamiaceae Lindl. attract the attention of scientists. Many plant species from this family are used in science and medicine. Some researchers believe that the medicinal properties of these plants are caused by the action on the organism of the individual components (camphor, menthol, thymol, eugenol, phenols, flavonoids, alcohols, and their derivatives) or the entire complex of essential oils. Biologically active substances (BAS), isolated from these medicinal plants can be an effective supplement in the complex treatment of infectious diseases. The substances of the phenolic group such as flavonoids and phenolic acids; and also alkaloids included in the component composition of the plants from the family Lamiaceae Lindl. present the scientific and practical interest for future investigations of their biological activity and development of medicinal products. The research objects are the species from the family Lamiaceae Lindl., cultivated in the North-Kazakhstan region. In this abstract, we present the results of the investigation of polyphenolic complex (flavonoids and phenolic acids) and alkaloids in aqueous and ethanol extracts. Investigation of the qualitative composition of flavonoids in the aqueous extracts showed that the species Monarda Diana contains flavone, Dracocephalum moldavica contains rutin, Ocimum basilicum (purple form) contains both ruin and quercetin. Biochemical analysis revealed that the ethanol extract of Monarda Diana has phenolic acids, similar to protocatechuic and benzoic acids by their chromatographic characteristics. But the aqueous extract contains four phenolic acids, one of which is an analogue of gentisic acid; and the other three are not identified yet. The phenolic acids such as benzoic and gentisic acids identified in ethanol extracts of species Ocimum basilicum (purple form) and Satureja hortensis, correspondingly. But the same phenolic acids did not appear in aqueous extracts. The phenolic acids were not determined neither in the ethanol or aqueous extracts of species Dracocephalum moldavica. The biochemical analysis did not reveal the content of alkaloids in aqueous extracts of investigated plants. However, the alkaloids in the amount of 5-13 components were identified in the ethanolic extracts of plants by the qualitative reactions. The results of analysis with reagent of Dragendorff showed that next amounts of alkaloids were identified in extracts of Monarda Diana (6-7), Satureja hortensis (6), Ocimum basilicum (7-9) and Dracocephalum moldavica (5-6). The reactions with reagent of Van-Urca showed that next amounts of alkaloids were identified in extracts of Monarda Diana (9-12), Satureja hortensis (9-10), two alkaloids of them with Rf6=0,39 and Rf6=0,31 similar to roquefortine), Ocimum basilicum (11) and Dracocephalum moldavica (13, two of them with Rf5=0,34 and Rf5=0,33 by their chromatographic characteristics similar to epikostaklavin).

Keywords: biologically active substances, Lamiaceae, component composition, medicinal plant

Procedia PDF Downloads 498
7768 The Applications of Wire Print in Composite Material Research and Fabrication Process

Authors: Hsu Yi-Chia, Hoy June-Hao

Abstract:

FDM (Fused Deposition Modeling) is a rapid proofing method without mold, however, high material and time costs have always been a major disadvantage. Wire-printing is the next generation technology that can more flexible, and also easier to apply on a 3D printer and robotic arms printing. It can create its own construction methods. The research is mainly divided into three parts. The first is about the method of parameterizing the generated paths and the conversion of g-code to the wire-printing. The second is about material attempts and the application of effects. Third, is about the improvement of the operation of mechanical equipment and the design of robotic tool-head. The purpose of this study is to develop a new wire-print method that can efficiently generate line segments and paths in three- dimensions space. The parametric modeling software transforms the digital model into a 3D printer or robotic arms g-code, this article uses thermoplastics/ clay/composites materials for testing. The combination of materials and wire-print process makes architects and designers have the ability to research and develop works and construction in the future.

Keywords: parametric software, wire print, robotic arms fabrication, composite filament additive manufacturing

Procedia PDF Downloads 127
7767 Reliability and Validity for Measurement of Body Composition: A Field Method

Authors: Ahmad Hashim, Zarizi Ab Rahman

Abstract:

Measurement of body composition via a field method has the most popular instruments which are used to estimate the percentage of body fat. Among the instruments used are the Body Mass Index, Bio Impedance Analysis and Skinfold Test. All three of these instruments do not involve high costs, do not require high technical skills, are mobile, save time, and are suitable for use in large populations. Because all three instruments can estimate the percentage of body fat, but it is important to identify the most appropriate instruments and have high reliability. Hence, this study was conducted to determine the reliability and convergent validity of the instruments. A total of 40 students, males and females aged between 13 and 14 years participated in this study. The study found that the test retest and Pearson correlation coefficient of reliability for the three instruments is very high, r = .99. While the inter class reliability also are at high level with r = .99 for Body Mass Index and Bio Impedance Analysis, r = .96 for Skin fold test. Intra class reliability coefficient for these three instruments is too high for Body Mass Index r = .99, Bio Impedance Analysis r = .97, and Skin fold Test r = .90. However, Standard Error of Measurement value for all three instruments indicates the Body Mass Index is the most appropriate instrument with a mean value of .000672 compared with other instruments. The findings show that the Body Mass Index is an instrument which is the most accurate and reliable in estimating body fat percentage for the population studied.

Keywords: reliability, validity, body mass index, bio impedance analysis and skinfold test

Procedia PDF Downloads 326
7766 Obtaining Constants of Johnson-Cook Material Model Using a Combined Experimental, Numerical Simulation and Optimization Method

Authors: F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola

Abstract:

In this article, the Johnson-Cook material model’s constants for structural steel ST.37 have been determined by a method which integrates experimental tests, numerical simulation, and optimization. In the first step, a quasi-static test was carried out on a plain specimen. Next, the constants were calculated for it by minimizing the difference between the results acquired from the experiment and numerical simulation. Then, a quasi-static tension test was performed on three notched specimens with different notch radii. At last, in order to verify the results, they were used in numerical simulation of notched specimens and it was observed that experimental and simulation results are in good agreement. Changing the diameter size of the plain specimen in the necking area was set as the objective function in the optimization step. For final validation of the proposed method, diameter variation was considered as a parameter and its sensitivity to a change in any of the model constants was examined and the results were completely corroborating.

Keywords: constants, Johnson-Cook material model, notched specimens, quasi-static test, sensitivity

Procedia PDF Downloads 304
7765 Associated Mycoflora AF Mucuna Sloanei Seeds and Their Effects on Nutritional and Phytochemical Contents of the Seeds

Authors: U.N. Emiri, E. Moroyei

Abstract:

Mycoflora associated with the seed rot disease of Mucuna sloanei and their effects on nutrient and phytochemical composition of the seeds were investigated. The fungal pathogens implicated in the seed rot disease were Rhizopus stolonifer, Aspergillus flavus, Aspergillus niger, and Fusarium oxysporum. The fungal isolates were aseptically inoculated into healthy M. Sloanei seeds and incubated for 7 days at room temperature of 25 ± 30c. The results of the proximate and mineral analysis in mg/100g of fungal infected and non-infected (control) seeds that were carried out revealed that there was an increase in Moisture and Carbohydrate content of the fungal infected seeds relative to the non-infected seeds (control). However, there was a decrease in Ash, Fibre, Lipid, and Protein content of the fungal infected seeds relative to the non-infected (control). It was observed that moisture had increased from 10.50 ± 0.16 in the non-infected seeds to 17.60 ± 0.20 in the infected samples and Carbohydrate content had also increased from 49.6 ± 0.25 in the non-infected to 52.50 ± 0.29 in the infected seeds. The following parameters decreased in the infected than in the non-infected seeds. They include Ash 2.60 ± 0.12, Crude fibre 1.9 ± 0.08, Lipid 6.50 ± 0.16, and Protein content 18.50 ± 0.06. Similarly, Calcium 2.50 ± 0.12, Phosphorus 1.80 + 0.12 and Potassium 1.80 + 0.09 increased in the infected than in the non-infected seed, while iron 0.20 ± 0.05, Sodium 0.02 ± 0.01 and Magnesium 0.06 ± 0.02 decreased in the infected seeds. All phytochemical contents analyzed increased in the infected seeds viz Tannim 0.50 ± 0.12, Oxalate 1.60 ± 0.05, Hydrogen cyanide 1.82 ± 0.06, and Saponin 2.50+0.28. However, the nutrient compositions and Phytochemical between the infected and non-infected seeds are not significantly different (p > 0.05).

Keywords: Mycoflora, mucuna sloanei, seeds, phytochemical, nutrient composition

Procedia PDF Downloads 151
7764 Physicochemistry of Pozzolanic Stabilization of a Class A-2-7 Lateritic Soil

Authors: Ahmed O. Apampa, Yinusa A. Jimoh

Abstract:

The paper examines the mechanism of pozzolan-soil reactions, using a recent study on the chemical stabilization of a Class A-2-7 (3) lateritic soil, with corn cob ash (CCA) as case study. The objectives are to establish a nexus between cation exchange capacity of the soil, the alkaline forming compounds in CCA and percentage CCA addition to soil beyond which no more improvement in strength properties can be achieved; and to propose feasible chemical reactions to explain the chemical stabilization of the lateritic soil with CCA alone. The lateritic soil, as well as CCA of pozzolanic quality Class C were separately analysed for their metallic oxide composition using the X-Ray Fluorescence technique. The cation exchange capacity (CEC) of the soil and the CCA were computed theoretically using the percentage composition of the base cations Ca2+, Mg2+ K+ and Na2+ as 1.48 meq/100 g and 61.67 meq/100 g respectively, thus indicating a ratio of 0.024 or 2.4%. This figure, taken as the theoretical amount required to just fill up the exchangeable sites of the clay molecules, compares well with the laboratory observation of 1.5% for the optimum level of CCA addition to lateritic soil. The paper went on to present chemical reaction equations between the alkaline earth metals in the CCA and the silica in the lateritic soil to form silicates, thereby proposing an extension of the theory of mechanism of soil stabilization to cover chemical stabilization with pozzolanic ash only. The paper concluded by recommending further research on the molecular structure of soils stabilized with pozzolanic waste ash alone, with a view to confirming the chemical equations advanced in the study.

Keywords: cation exchange capacity, corn cob ash, lateritic soil, soil stabilization

Procedia PDF Downloads 243
7763 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam

Authors: Pajaree Donkhampa, Fuangfa Unob

Abstract:

Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.

Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye

Procedia PDF Downloads 165
7762 Utilization and Proximate Composition of Nile Tilapia, Common Carp and African Mudfish Polycultured in Fertilized Ponds

Authors: I. A. Yola

Abstract:

Impact of poultry dropping, cow dung and rumen content on utilization and proximate composition of Oreochromis niliticus, Clarias gariepinus and Cyprinus capio in a polyculture system were studied. The research was conducted over a period of 52 weeks. Poultry droppings (PD), cow dung (CD) and rumen content (RC) were applied at three levels 30g,60g and 120g/m2/week, 25g,50g and 100g/m2/week and 22g, 44g and 88g/m2/week treatment, respectively. The control only conventional feed with 40% CP without manure application was used. Physicochemical and biological properties measured were higher in manure pond than control. The difference was statistically significant (P < 0.05) between and within treatments with exception of temperature with a combined mean of 27.900C. The water was consistently alkaline with mean values for pH of 6.61, transparency 22.6cm, conductivity 35.00µhos/cm, dissolved oxygen 4.6 mg/l, biological oxygen demand 2.8mg/l, nitrate and phosphates 0.9mg/l and 0.35mg/l, respectively. The three fish species increase in weight with increased manure rate, with a higher value in PD treatment on C. capio record 340g, O. niloticus weighed 310g and C. gariepinus 280g over the experimental period. Fishes fed supplementary diet (control) grew bigger with highest value on C. capio (685g) O. niloticus (620g) and then C. gariepinus (526g). The differences were statistically significant (P < 0.05). The result of whole body proximate analysis indicated that various manures and rates had an irregular pattern on the protein and ash gain per 100g of fish body weight gain. The combined means for whole fish carcass protein, lipids, moisture, ash and gross energy were 11.84, 2.43, 74.63, 3.00 and 109.9 respectively. The notable exceptions were significant (p < 0.05) increases in body fat and gross energy gains in all fish species accompanied by decreases in percentages of moisture as manure rates increased. Survival percentage decreases from 80% to 70%. It is recommended to use poultry dropping as manure/feeds at the rate of 120kg/ha/week for good performances in polyculture.

Keywords: organic manure, Nile tilapia, African mud fish, common carp, proximate composition

Procedia PDF Downloads 551
7761 Benefits of Hybrid Mix in Renewable Energy and Integration with E-Efficient Compositions

Authors: Ahmed Khalil

Abstract:

Increased energy demands around the world have led to the raise in power production which has resulted with more greenhouse gas emissions through fossil sources. These fossil sources and emissions cause deterioration in echo-system. Therefore, renewable energy sources come to the scene as echo-friendly and clean energy sourcing, whereas the electrical devices and energy needs decrease in the timeline. Each of these renewable energy sources contribute to the reduction of greenhouse gases and mitigate environmental deterioration. However, there are also some general and source-specific challenges, which influence the choice of the investors. The most prominent general challenge that effects end-users’ comfort and reliability is usually determined as the intermittence which derives from the diversions of source conditions, due to nature dynamics and uncontrolled periodic changes. Research and development professionals strive to mitigate intermittence challenge through material improvement for each renewable source whereas hybrid source mix stand as a solution. This solution prevails well, when single renewable technologies are upgraded further. On the other hand, integration of energy efficient devices and systems, raise the affirmative effect of such solution in means of less energy requirement in sustainability composition or scenario. This paper provides a glimpse on the advantages of composing renewable source mix versus single usage, with contribution of sampled e-efficient systems and devices. Accordingly it demonstrates the extended benefits, through planning and predictive estimation stages of Ahmadi Town Projects in Kuwait.

Keywords: e-efficient systems, hybrid source, intermittence challenge, renewable energy

Procedia PDF Downloads 133
7760 Selecting a Material for an Aircraft Diesel Engine Block

Authors: Ksenia Siadkowska, Tytus Tulwin, Rafał Sochaczewski

Abstract:

Selecting appropriate materials is presently a complex task as material databases cover tens of thousands of different types of materials. Product designing proceeds in numerous stages and in most of them there are open questions with not only one correct solution but better and worse ones. This paper overviews the Diesel engine body construction materials mentioned in the literature and discusses a certain practical method to select materials for a cylinder head and a Diesel engine block as a prototype. The engine body, depending on its purpose, is most frequently iron or aluminum. If it is important to optimize parts to achieve low weight, aluminum alloys are usually applied, especially in the automotive and aviation industries. In the latter case, weight is even more important so new types of magnesium alloys which are even lighter than aluminum ones are developed and used. However, magnesium alloys are, for example, more flammable and not enough strong so, for safety reasons, this type of material is not used solely in engine bodies. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aluminum alloy, cylinder head, Diesel engine, materials selection

Procedia PDF Downloads 390
7759 Effect of Infill Density and Pattern on the Compressive Strength of Parts Produced by Polylactic Acid Filament Using Fused Deposition Modelling

Authors: G. K. Awari, Vishwajeet V. Ambade, S. W. Rajurkar

Abstract:

The field of additive manufacturing is growing, and discoveries are being made. 3D printing machines are also being developed to accommodate a wider range of 3D printing materials, including plastics, metals (metal AM powders), composites, filaments, and other materials. There are numerous printing materials available for industrial additive manufacturing. Such materials have their unique characteristics, advantages, and disadvantages. In order to avoid errors in additive manufacturing, key elements such as 3D printing material type, texture, cost, printing technique and procedure, and so on must be examined. It can be complex to select the best material for a particular job. Polylactic acid (PLA) is made from sugar cane or cornstarch, both of which are renewable resources. "Black plastic" is another name for it. Because it is safe to use and print, it is frequently used in primary and secondary schools. This is also how FDM screen printing is done. PLA is simple to print because of its low warping impact. It's also possible to print it on a cold surface. When opposed to ABS, it allows for sharper edges and features to be printed. This material comes in a wide range of colours. Polylactic acid (PLA) is the most common material used in fused deposition modelling (FDM). PLA can be used to print a wide range of components, including medical implants, household items, and mechanical parts. The mechanical behaviour of the printed item is affected by variations in infill patterns that are subjected to compressive tests in the current investigation to examine their behaviour under compressive stresses.

Keywords: fused deposition modelling, polylactic acid, infill density, infill pattern, compressive strength

Procedia PDF Downloads 67
7758 Usage of Biosorbent Material for the Removal of Nitrate from Wastewater

Authors: M. Abouleish, R. Umer, Z. Sara

Abstract:

Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate.

Keywords: biosorption, nitrates, plant material, water, and wastewater treatment

Procedia PDF Downloads 145
7757 The Combination of Porcine Plasma Protein and Maltodextrin as Wall Materials on Microencapsulated Turmeric Oil Powder Quality

Authors: Namfon Samsalee, Rungsinee Sothornvit

Abstract:

Turmeric is a natural plant herb and generally extracted as essential oil and widely used in food, cosmetic, pharmaceutical products including insect repellent. However, turmeric oil is a volatile essential oil which is easy to be lost during storage or exposure to light. Therefore, biopolymers such as protein and polysaccharide can be used as wall materials to encapsulate the essential oil which will solve this drawback. Approximately 60% plasma from porcine blood contains 6-7% of protein content mainly albumin and globulin which can be a good source of animal protein at the low-cost biopolymer from by-product. Microencapsulation is a useful technique to entrap volatile compounds in the biopolymer matrix and protect them to degrade. The objective of this research was to investigate the different ratios of two biopolymers (PPP and maltodextrin; MD) as wall materials at 100:0, 75:25, 50:50, 25:75 and 0:100 at a fixed ratio of wall material: core material (turmeric oil) at 3:1 (oil in water) on the qualities of microencapsulated powder using freeze drying. It was found that the combination of PPP and MD showed higher solubility of microencapsules compared to the use of PPP alone (P < 0.05). Moreover, the different ratios of wall materials also affected on color (L*, a* and b*) of microencapsulated powder. Morphology of microencapsulated powder using a scanning electron microscope showed holes on the surface reflecting on free oil content and encapsulation efficiency of microencapsules. At least 50% of MD was needed to increase encapsulation efficiency of microencapsulates rather than using only PPP as the wall material (P < 0.05). Microencapsulated turmeric oil powder can be useful as food additives to improve food texture, as a biopolymer material for edible film and coating to maintain quality of food products.

Keywords: microencapsulation, turmeric oil, porcine plasma protein, maltodextrin

Procedia PDF Downloads 180
7756 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 149
7755 Characterization of the Corn Cob to Know Its Potential as a Source of Biosilica to Be Used in Sustainable Cementitious Mixtures

Authors: Sandra C. L. Dorea, Joann K. Whalen, Yixin Shao, Oumarou Savadogo

Abstract:

The major challenge for industries that rely on fossil fuels in manufacturing processes or to provide goods and services is to lower their CO2 emissions, as the case for the manufacture of Portland cement. Feasible materials for this purpose can include agro-industrial or agricultural wastes, which are termed 'biosilica' since the silica was contained in a biological matrix (biomass). Corn cob (CC) has some characteristics that make it a good candidate as biosilica source: 1) it is an abundant grain crop produced around the world; 2) more production means more available residues is left in the field to be used. This work aims to evaluate the CC collected from different farms in Canada during the corn harvest in order to see if they can be used together as a biosilica source. The characterization of the raw CC was made in the physical, chemical, and thermal way. The moisture content, the granulometry, and the morphology were also analyzed. The ash content measured was 2,1%. The Thermogravimetric Analysis (TGA) and its Derivative (DTG) evaluated of CC as a function of weight loss with temperature variation ranging between 30°C and 800°C in an atmosphere of N2. The chemical composition and the presence of silica revealed that the different sources of the CC do not interfere in its basic chemical composition, which means that this kind of waste can be used together as a source of biosilica no matter where they come from. Then, this biosilica can partially replace the cement Portland making sustainable cementitious mixtures and contributing to reduce the CO2 emissions.

Keywords: biosilica, characterization, corn cob, sustainable cementitious materials

Procedia PDF Downloads 257
7754 Bulk-Density and Lignocellulose Composition: Influence of Changing Lignocellulosic Composition on Bulk-Density during Anaerobic Digestion and Implication of Compacted Lignocellulose Bed on Mass Transfer

Authors: Aastha Paliwal, H. N. Chanakya, S. Dasappa

Abstract:

Lignocellulose, as an alternate feedstock for biogas production, has been an active area of research. However, lignocellulose poses a lot of operational difficulties- widespread variation in the structural organization of lignocellulosic matrix, amenability to degradation, low bulk density, to name a few. Amongst these, the low bulk density of the lignocellulosic feedstock is crucial to the process operation and optimization. Low bulk densities render the feedstock floating in conventional liquid/wet digesters. Low bulk densities also restrict the maximum achievable organic loading rate in the reactor, decreasing the power density of the reactor. However, during digestion, lignocellulose undergoes very high compaction (up to 26 times feeding density). This first reduces the achievable OLR (because of low feeding density) and compaction during digestion, then renders the reactor space underutilized and also imposes significant mass transfer limitations. The objective of this paper was to understand the effects of compacting lignocellulose on mass transfer and the influence of loss of different components on the bulk density and hence structural integrity of the digesting lignocellulosic feedstock. 10 different lignocellulosic feedstocks (monocots and dicots) were digested anaerobically in a fed-batch, leach bed reactor -solid-state stratified bed reactor (SSBR). Percolation rates of the recycled bio-digester liquid (BDL) were also measured during the reactor run period to understand the implication of compaction on mass transfer. After 95 ds, in a destructive sampling, lignocellulosic feedstocks digested at different SRT were investigated to quantitate the weekly changes in bulk density and lignocellulosic composition. Further, percolation rate data was also compared to bulk density data. Results from the study indicate loss of hemicellulose (r²=0.76), hot water extractives (r²=0.68), and oxalate extractives (r²=0.64) had dominant influence on changing the structural integrity of the studied lignocellulose during anaerobic digestion. Further, feeding bulk density of the lignocellulose can be maintained between 300-400kg/m³ to achieve higher OLR, and bulk density of 440-500kg/m³ incurs significant mass transfer limitation for high compacting beds of dicots.

Keywords: anaerobic digestion, bulk density, feed compaction, lignocellulose, lignocellulosic matrix, cellulose, hemicellulose, lignin, extractives, mass transfer

Procedia PDF Downloads 162
7753 The Effect of Surface Conditions on Wear of a Railway Wheel and Rail

Authors: A. Shebani, S. Iwnicki

Abstract:

Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear.

Keywords: railway wheel/rail wear, surface conditions, twin disc test rig, replica material, Alicona profilometer

Procedia PDF Downloads 345
7752 Determination of ILSS of Composite Materials Using Micromechanical FEA Analysis

Authors: K. Rana, H.A.Saeed, S. Zahir

Abstract:

Inter Laminar Shear Stress (ILSS) is a main key parameter which quantify the properties of composite materials. These properties can ascertain the use of material for a specific purpose like aerospace, automotive etc. A modelling approach for determination of ILSS is presented in this paper. Geometric modelling of composite material is performed in TEXGEN software where reinforcement, cured matrix and their interfaces are modelled separately as per actual geometry. Mechanical properties of matrix and reinforcements are modelled separately which incorporated anisotropy in the real world composite material. ASTM D2344 is modelled in ANSYS for ILSS. In macroscopic analysis model approximates the anisotropy of the material and uses orthotropic properties by applying homogenization techniques. Shear Stress analysis in that case does not show the actual real world scenario and rather approximates it. In this paper actual geometry and properties of reinforcement and matrix are modelled to capture the actual stress state during the testing of samples as per ASTM standards. Testing of samples is also performed in order to validate the results. Fibre volume fraction of yarn is determined by image analysis of manufactured samples. Fibre volume fraction data is incorporated into the numerical model for correction of transversely isotropic properties of yarn. A comparison between experimental and simulated results is presented.

Keywords: ILSS, FEA, micromechanical, fibre volume fraction, image analysis

Procedia PDF Downloads 367
7751 Performance Analysis of BPJLT with Different Gate and Spacer Materials

Authors: Porag Jyoti Ligira, Gargi Khanna

Abstract:

The paper presents a simulation study of the electrical characteristic of Bulk Planar Junctionless Transistor (BPJLT) using spacer. The BPJLT is a transistor without any PN junctions in the vertical direction. It is a gate controlled variable resistor. The characteristics of BPJLT are analyzed by varying the oxide material under the gate. It can be shown from the simulation that an ideal subthreshold slope of ~60 mV/decade can be achieved by using highk dielectric. The effects of variation of spacer length and material on the electrical characteristic of BPJLT are also investigated in the paper. The ION / IOFF ratio improvement is of the order of 107 and the OFF current reduction of 10-4 is obtained by using gate dielectric of HfO2 instead of SiO2.

Keywords: spacer, BPJLT, high-k, double gate

Procedia PDF Downloads 425
7750 Modeling of Large Elasto-Plastic Deformations by the Coupled FE-EFGM

Authors: Azher Jameel, Ghulam Ashraf Harmain

Abstract:

In the recent years, the enriched techniques like the extended finite element method, the element free Galerkin method, and the Coupled finite element-element free Galerkin method have found wide application in modeling different types of discontinuities produced by cracks, contact surfaces, and bi-material interfaces. The extended finite element method faces severe mesh distortion issues while modeling large deformation problems. The element free Galerkin method does not have mesh distortion issues, but it is computationally more demanding than the finite element method. The coupled FE-EFGM proves to be an efficient numerical tool for modeling large deformation problems as it exploits the advantages of both FEM and EFGM. The present paper employs the coupled FE-EFGM to model large elastoplastic deformations in bi-material engineering components. The large deformation occurring in the domain has been modeled by using the total Lagrangian approach. The non-linear elastoplastic behavior of the material has been represented by the Ramberg-Osgood model. The elastic predictor-plastic corrector algorithms are used for the evaluation stresses during large deformation. Finally, several numerical problems are solved by the coupled FE-EFGM to illustrate its applicability, efficiency and accuracy in modeling large elastoplastic deformations in bi-material samples. The results obtained by the proposed technique are compared with the results obtained by XFEM and EFGM. A remarkable agreement was observed between the results obtained by the three techniques.

Keywords: XFEM, EFGM, coupled FE-EFGM, level sets, large deformation

Procedia PDF Downloads 444
7749 Combustion Chamber Sizing for Energy Recovery from Furnace Process Gas: Waste to Energy

Authors: Balram Panjwani, Bernd Wittgens, Jan Erik Olsen, Stein Tore Johansen

Abstract:

The Norwegian ferroalloy industry is a world leader in sustainable production of ferrosilicon, silicon and manganese alloys with the lowest global specific energy consumption. One of the byproducts during the metal reduction process is energy rich off-gas and usually this energy is not harnessed. A novel concept for sustainable energy recovery from ferroalloy off-gas is discussed. The concept is founded on the idea of introducing a combustion chamber in the off-gas section in which energy rich off-gas mainly consisting of CO will be combusted. This will provide an additional degree of freedom for optimizing energy recovery. A well-controlled and high off-gas temperature will assure a significant increase in energy recovery and reduction of emissions to the atmosphere. Design and operation of the combustion chamber depend on many parameters, including the total power capacity of the combustion chamber, sufficient residence time for combusting the complex Poly Aromatic Hydrocarbon (PAH), NOx, as well as converting other potential pollutants. The design criteria for the combustion chamber have been identified and discussed and sizing of the combustion chamber has been carried out considering these design criteria. Computational Fluid Dynamics (CFD) has been utilized extensively for sizing the combustion chamber. The results from our CFD simulations of the flow in the combustion chamber and exploring different off-gas fuel composition are presented. In brief, the paper covers all aspect which impacts the sizing of the combustion chamber, including insulation thickness, choice of insulating material, heat transfer through extended surfaces, multi-staging and secondary air injection.

Keywords: CFD, combustion chamber, arc furnace, energy recovery

Procedia PDF Downloads 315
7748 The Effects of Alkalization to the Mechanical Properties of Biocomposite PLA reinforced the Ijuk Fibers

Authors: Mochamad Chalid, Imam Prabowo

Abstract:

The pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes, was aimed to enhance it’s compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite.

Keywords: polylactic acid, Arenga pinnata, alkalinization, compatibility, adhesion, morphology, mechanical properties, volume fraction, distributiom

Procedia PDF Downloads 364
7747 Modelling and Optimization Analysis of Silicon/MgZnO-CBTSSe Tandem Solar Cells

Authors: Vallisree Sivathanu, Kumaraswamidhas Lakshmi Annamalai, Trupti Ranjan Lenka

Abstract:

We report a tandem solar cell model with Silicon as the bottom cell absorber material and Cu₂BaSn(S, Se)₄(CBTSSe) as absorber material for the top cell. As a first step, the top and bottom cells were modelled and validated by comparison with the experiment. Once the individual cells are validated, then the tandem structure is modelled with Indium Tin Oxide(ITO) as conducting layer between the top and bottom cells. The tandem structure yielded better open circuit voltage and fill factor; however, the efficiency obtained is 7.01%. The top cell and the bottom cells are investigated with the help of electron-hole current density, photogeneration rate, and external quantum efficiency profiles. In order to minimize the various loss mechanisms in the tandem solar cell, the material parameters are optimized within experimentally achievable limits. Initially, the top cell optimization was carried out; then, the bottom cell is optimized for maximizing the light absorption, and upon minimizing the current and photon losses in the tandem structure, the maximum achievable efficiency is predicted to be 19.52%.

Keywords: CBTSSe, silicon, tandem, solar cell, device modeling, current losses, photon losses

Procedia PDF Downloads 109
7746 Development of Superhydrophobic Cotton Fabrics and Their Functional Properties

Authors: Muhammad Zaman Khan, Vijay Baheti, Jiri Militky

Abstract:

The present study is focused on the development of multifunctional cotton fabric while having good physiological comfort properties. The functional properties developed include superhydrophobicity (Lotus effect) and UV protection. For this, TiO₂ nanoparticles along with fluorocarbon and organic-inorganic binder have been used to optimize the multifunctional properties. Deposition of TiO₂ nanoparticles with water repellent finish on cotton fabric has been carried out using the pad dry cure method at fix parameters. The morphology and elemental composition of as-deposited particles have been studied by using SEM and EDS. The chemical composition of nanoparticles was determined using energy dispersive spectroscopy. The treated samples exhibited excellent water repellency and UV protection factor. The study of the comfort properties of fabric showed that it had excellent physiological comfort properties. Optimized concentration of water repellent chemical (50g/l) was used in formulations with TiO₂ nanoparticles and organic-inorganic binder. Four formulations were prepared according to the design of the experiment. The formulations were applied to the cotton fabric by roller padding at room temperature (15–20°C). Surface morphology was investigated via SEM images. EDS analysis was also carried out to analyze the composition and atomic percentage of elements. The water contact angle (WCA) of cotton fabric increases with increase in TiO₂ nanoparticles concentration and reaches its maximum value (157°) when the concentration of TiO₂ is 20g/l. The water sliding angle (WSA) decreases and gains minimum value at the same concentration of TiO₂ at which WCA is highest. It was seen samples treated with formulations of TiO₂ nanoparticles exhibits excellent UPF, UV-A and UV-B blocking. However, there was no significant deterioration of air permeability. The water vapor permeability was also slightly decreased (4%) but is acceptable. It can be concluded that there is no significant change in both air and water vapor permeability after nanoparticles coating on the surface of the cotton fabric. The coated cotton fabric has little effect on the stiffness. The stiffness of coated samples was not increased significantly; thus comfort of cotton fabric is not decreased. This functionalized cotton fabric also exhibits good physiological comfort properties. ''The authors are also thankful to student grant competition 21312 provided at Technical University of Liberec''.

Keywords: comfort, functional, nanoparticles, UV protective

Procedia PDF Downloads 141