Search results for: machine resistance training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9502

Search results for: machine resistance training

8482 Effect of High Intensity Ultrasonic Treatment on the Micro Structure, Corrosion and Mechanical Behavior of ac4c Aluminium Alloy

Authors: A.Farrag Farrag, A. M. El-Aziz Abdel Aziz, W. Khlifa Khlifa

Abstract:

Ultrasonic treatment is a promising process nowadays in the engineering field due to its high efficiency and it is a low-cost process. It enhances mechanical properties, corrosion resistance, and homogeneity of the microstructure. In this study, the effect of ultrasonic treatment and several casting conditions on microstructure, hardness and corrosion behavior of AC4C aluminum alloy was examined. Various ultrasonic treatments of the AC4C alloys were carried out to prepare billets for thixocasting process. Treatment temperatures varied from about 630oC and cooled down to under ultrasonic field. Treatment time was about 90s. A 600-watts ultrasonic system with 19.5 kHz and intensity of 170 W/cm2 was used. Billets were reheated to semisolid state and held for 5 minutes at 582 oC and temperatures (soaking) using high-frequency induction system, then thixocasted using a die casting machine. Microstructures of the thixocast parts were studied using optical and SEM microscopes. On the other hand, two samples were conventionally cast and poured at 634 oC and 750 oC. The microstructure showed a globular none dendritic grains for AC4C with the application of UST at 630-582 oC, Less dendritic grains when the sample was conventionally cast without the application of UST and poured at 624 oC and a fully dendritic microstructure When the sample was cast and poured at 750 oC without UST .The ultrasonic treatment during solidification proved that it has a positive influence on the microstructure as it produced the finest and globular grains thus it is expected to increase the mechanical properties of the alloy. Higher values of corrosion resistance and hardness were recorded for the ultrasound-treated sample in comparison to cast one.

Keywords: ultrasonic treatment, aluminum alloys, corrosion behaviour, mechanical behaviour, microstructure

Procedia PDF Downloads 352
8481 Factors Influencing the Resistance of the Purchase of Organic Food and Market Education Process in Indonesia

Authors: Fety Nurlia Muzayanah, Arif Imam Suroso, Mukhamad Najib

Abstract:

The market share of organic food in Indonesia just reaches 0.5-2 percents from the entire of agricultural products. The aim of this research is to analyze the relation of gender, work, age and final education toward the buying interest of organic food, to identify the factors influencing the resistance of the purchase of organic food, and to identify the market education process. The analysis result of Structural Equation Modeling (SEM) shows the factors causing the resistance of the purchase of organic food are the negative attitude toward organic food, the lack of affordable in range for organic food product and the lack of awareness toward organic food, while the subjective norms have no significant effect toward the buying interest. The market education process which can be done is the education about the use of the health of organic food, the organic certification and the economic value.

Keywords: market education, organic food, consumer behavior, structural equation modeling

Procedia PDF Downloads 611
8480 Experimental Study of Various Sandwich Composites

Authors: R. Naveen, E. Vanitha, S. Gayathri

Abstract:

The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density.

Keywords: bamboo sandwich composite, metal sandwich composite, sandwich composite, v-board sandwich composite

Procedia PDF Downloads 255
8479 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 32
8478 Using Wearable Device with Neuron Network to Classify Severity of Sleep Disorder

Authors: Ru-Yin Yang, Chi Wu, Cheng-Yu Tsai, Yin-Tzu Lin, Wen-Te Liu

Abstract:

Background: Sleep breathing disorder (SDB) is a condition demonstrated by recurrent episodes of the airway obstruction leading to intermittent hypoxia and quality fragmentation during sleep time. However, the procedures for SDB severity examination remain complicated and costly. Objective: The objective of this study is to establish a simplified examination method for SDB by the respiratory impendence pattern sensor combining the signal processing and machine learning model. Methodologies: We records heart rate variability by the electrocardiogram and respiratory pattern by impendence. After the polysomnography (PSG) been done with the diagnosis of SDB by the apnea and hypopnea index (AHI), we calculate the episodes with the absence of flow and arousal index (AI) from device record. Subjects were divided into training and testing groups. Neuron network was used to establish a prediction model to classify the severity of the SDB by the AI, episodes, and body profiles. The performance was evaluated by classification in the testing group compared with PSG. Results: In this study, we enrolled 66 subjects (Male/Female: 37/29; Age:49.9±13.2) with the diagnosis of SDB in a sleep center in Taipei city, Taiwan, from 2015 to 2016. The accuracy from the confusion matrix on the test group by NN is 71.94 %. Conclusion: Based on the models, we established a prediction model for SDB by means of the wearable sensor. With more cases incoming and training, this system may be used to rapidly and automatically screen the risk of SDB in the future.

Keywords: sleep breathing disorder, apnea and hypopnea index, body parameters, neuron network

Procedia PDF Downloads 148
8477 A Study of Adult Lifelong Learning Consulting and Service System in Taiwan

Authors: Wan Jen Chang

Abstract:

Back ground: Taiwan's current adult lifelong learning services have expanded from vocational training to universal lifelong learning. However, both the professional knowledge training of learning guidance and consulting services and the provision of adult online learning consulting service systems still need to be established. Purpose: The purposes of this study are as follows: 1. Analyze the professional training mechanism for cultivating adult lifelong learning consultation and coaching; 2. Explore the feasibility of constructing a system that uses network technology to provide adult learning consultation services. Research design: This study conducts a literature analysis of counseling and coaching policy reports on lifelong learning in European countries and the United States. There are two focus discussions were conducted with 15 lifelong learning scholars, experts and practitioners as research subjects. The following two topics were discussed and suggested: 1. The current situation, needs and professional ability training mechanism of "Adult Lifelong Learning Consulting and Services"; 2. Strategies for establishing an "Adult Lifelong Learning Consulting and Service internet System". Conclusion: 1.Based on adult lifelong learning consulting and service needs, plan a professional knowledge training and certification system.2.Adult lifelong learning consulting and service professional knowledge and skills training should include the use of network technology to provide consulting service skills.3.To establish an adult lifelong learning consultation and service system, the Ministry of Education should promulgate policies and measures at the central level and entrust local governments or private organizations to implement them.4.The adult lifelong learning consulting and service system can combine the national qualifications framework, private sector and NPO to expand learning consulting service partners.

Keywords: adult lifelong learning, profesional knowledge, consulting and service, network system

Procedia PDF Downloads 65
8476 Herbicide Resistant Weeds: Contrasting Perspectives of Actors in the Agricultural Sector

Authors: Bruce Small, Martin Espig, Alyssa Ryan

Abstract:

In the agricultural sector, the rapid expansion of herbicide resistant weeds is a major threat to the global sustainability of food and fibre production. Efforts to avoid herbicide resistance have primarily focused on new technologies and farmer education. Yet, despite decades of advice to growers from agricultural scientists and extension professionals of the need for management strategies for herbicide use, herbicide resistance continues to increase. Technological options are running out and current extension efforts to change farmer behaviour are failing to curb the problem. As part of a five-year, government funded, research programme to address herbicide resistance in New Zealand, social science theory and practice are being utilised to investigate the complexities of managing herbicide use and controlling resistance. As an initial step, we are utilising a transdisciplinary, multi-level systems approach to examine the problem definition, knowledge beliefs, attitudes and values of different important actors in the agri-business sector. In this paper, we report early project results from qualitative research examining the similarities and contrasts in the perceptions of scientists, farmer/growers, and rural professionals.

Keywords: behaviour change, herbicide resistant weeds, knowledge beliefs, systems perspective

Procedia PDF Downloads 124
8475 Soft Exoskeleton Elastomer Pre-Tension Drive Control System

Authors: Andrey Yatsun, Andrei Malchikov

Abstract:

Exoskeletons are used to support and compensate for the load on the human musculoskeletal system. Elastomers are an important component of exoskeletons, providing additional support and compensating for the load. The algorithm of the active elastomer tension system provides the required auxiliary force depending on the angle of rotation and the tilt speed of the operator's torso. Feedback for the drive is provided by a force sensor integrated into the attachment of the exoskeleton vest. The use of direct force measurement ensures the required accuracy in all settings of the man-machine system. Non-adjustable elastic elements make it difficult to move without load, tilt forward and walk. A strategy for the organization of the auxiliary forces management system is proposed based on the allocation of 4 operating modes of the human-machine system.

Keywords: soft exoskeleton, mathematical modeling, pre-tension elastomer, human-machine interaction

Procedia PDF Downloads 64
8474 Effects of Evening vs. Morning Training on Motor Skill Consolidation in Morning-Oriented Elderly

Authors: Maria Korman, Carmit Gal, Ella Gabitov, Avi Karni

Abstract:

The main question addressed in this study was whether the time-of-day wherein training is afforded is a significant factor for motor skill ('how-to', procedural knowledge) acquisition and consolidation into long term memory in the healthy elderly population. Twenty-nine older adults (60-75 years) practiced an explicitly instructed 5-element key-press sequence by repeatedly generating the sequence ‘as fast and accurately as possible’. Contribution of three parameters to acquisition, 24h post-training consolidation, and 1-week retention gains in motor sequence speed was assessed: (a) time of training (morning vs. evening group) (b) sleep quality (actigraphy) and (c) chronotype. All study participants were moderately morning type, according to the Morningness-Eveningness Questionnaire score. All participants had sleep patterns typical of age, with average sleep efficiency of ~ 82%, and approximately 6 hours of sleep. Speed of motor sequence performance in both groups improved to a similar extent during training session. Nevertheless, evening group expressed small but significant overnight consolidation phase gains, while morning group showed only maintenance of performance level attained at the end of training. By 1-week retention test, both groups showed similar performance levels with no significant gains or losses with respect to 24h test. Changes in the tapping patterns at 24h and 1-week post-training were assessed based on normalized Pearson correlation coefficients using the Fisher’s z-transformation in reference to the tapping pattern attained at the end of the training. Significant differences between the groups were found: the evening group showed larger changes in tapping patterns across the consolidation and retention windows. Our results show that morning-oriented older adults effectively acquired, consolidated, and maintained a new sequence of finger movements, following both morning and evening practice sessions. However, time-of-training affected the time-course of skill evolution in terms of performance speed, as well as the re-organization of tapping patterns during the consolidation period. These results are in line with the notion that motor training preceding a sleep interval may be beneficial for the long-term memory in the elderly. Evening training should be considered an appropriate time window for motor skill learning in older adults, even in individuals with morning chronotype.

Keywords: time-of-day, elderly, motor learning, memory consolidation, chronotype

Procedia PDF Downloads 134
8473 Team-Theatre as a Tool of Occupational Safety Awareness

Authors: Fiorenza Misale

Abstract:

The painful phenomenon of so-called white deaths and accidents at work, unfortunately, is always current. The key is to act on the culture of security through effective measures of attitudes and behaviors that go far beyond the knowledge and the know-how. It is necessary that there is an ‘introjection’ of safety culture through the conscious involvement of all workers. The legislation on work safety identifies the main tool to promote the culture of safety at work and prevention within the workplace. In law the term education is used to distinguish itself from the information with which they will simply theoretically transmit, and from the training with which they will provide the practical skills. The new decree fact fills several gaps in previous legislation and stresses the importance of training in the workplace, that is, the main activity through which it is possible to achieve the active participation of all workers in the company’s prevention system. This system is built only through the dissemination of risk information, the circulation of information, comparison and dialogue between all actors involved that are the necessary elements for a correct transmission of the culture of worker safety. Training activity should put the focus on work experience in order to bring out all the knowledge needed to identify and assess the risks in the work place, and especially the action to eliminate or control them, integrating, when necessary, the missing knowledge. In addition to traditional training and information systems can be utilized for the purpose of training that are able to affect both one emotionally and aesthetically, team-theatre is one of them. Among the methods of company theater that can be used in work safety we have: Lesson show, theater workshop, improvised theater, forum theater, theater playback. The theater can represent a complementary approach to traditional training and give information on safety measures, demonstrating that there are more engaging outreach tools. Team-theatre allows identification with the characters, a transmission of emotions and moods and it is through the staging of a story that the individual processes new information. It’ also s a means of experiential training that allows you to work with your mind, body, emotions.The aim of one work is the use of corporate theater on the personnel working in the health sector. Through a questionnaire we are able to analyze the knowledge of occupational safety and current risks; in particular in health care which is to be administered before and after the play.

Keywords: theater, training, occupational health, safety

Procedia PDF Downloads 271
8472 Importance of Flexibility Training for Older Adults: A Narrative Review

Authors: Andrej Kocjan

Abstract:

Introduction: Mobility has been shown to play an important role of health and quality of life among older adults. Falls, which are often related to decreased mobility, as well as to neuromuscular deficits, represent the most common injury among older adults. Fall risk has been shown to increase with reduced lower extremity flexibility. The aim of the paper is to assess the importance of flexibility training on joint range of motion and functional performance among elderly population. Methods: We performed literature research on PubMed and evaluated articles published until 2000. The articles found in the search strategy were also added. The population of interest included older adults (≥ 65 years of age). Results: Flexibility training programs still represent an important part of several rehabilitation programs. Static stretching and proprioceptive neuromuscular facilitation are the most frequently used techniques to improve the length of the muscle-tendon complex. Although the effectiveness of type of stretching seems to be related to age and gender, static stretching is a more appropriate technique to enhance shoulder, hip, and ankle range of motion in older adults. Stretching should be performed in multiple sets with holds of more than 60 seconds for a single muscle group. Conclusion: The literature suggests that flexibility training is an effective method to increase joint range of motion in older adults. In the light of increased functional outcome, activities such as strengthening, balance, and aerobic exercises should be incorporated into a training program for older people. Due to relatively little published literature, it is still not possible to prescribe detailed recommendations regarding flexibility training for older adults.

Keywords: elderly, exercise, flexibility, falls

Procedia PDF Downloads 185
8471 Early Diagnosis of Myocardial Ischemia Based on Support Vector Machine and Gaussian Mixture Model by Using Features of ECG Recordings

Authors: Merve Begum Terzi, Orhan Arikan, Adnan Abaci, Mustafa Candemir

Abstract:

Acute myocardial infarction is a major cause of death in the world. Therefore, its fast and reliable diagnosis is a major clinical need. ECG is the most important diagnostic methodology which is used to make decisions about the management of the cardiovascular diseases. In patients with acute myocardial ischemia, temporary chest pains together with changes in ST segment and T wave of ECG occur shortly before the start of myocardial infarction. In this study, a technique which detects changes in ST/T sections of ECG is developed for the early diagnosis of acute myocardial ischemia. For this purpose, a database of real ECG recordings that contains a set of records from 75 patients presenting symptoms of chest pain who underwent elective percutaneous coronary intervention (PCI) is constituted. 12-lead ECG’s of the patients were recorded before and during the PCI procedure. Two ECG epochs, which are the pre-inflation ECG which is acquired before any catheter insertion and the occlusion ECG which is acquired during balloon inflation, are analyzed for each patient. By using pre-inflation and occlusion recordings, ECG features that are critical in the detection of acute myocardial ischemia are identified and the most discriminative features for the detection of acute myocardial ischemia are extracted. A classification technique based on support vector machine (SVM) approach operating with linear and radial basis function (RBF) kernels to detect ischemic events by using ST-T derived joint features from non-ischemic and ischemic states of the patients is developed. The dataset is randomly divided into training and testing sets and the training set is used to optimize SVM hyperparameters by using grid-search method and 10fold cross-validation. SVMs are designed specifically for each patient by tuning the kernel parameters in order to obtain the optimal classification performance results. As a result of implementing the developed classification technique to real ECG recordings, it is shown that the proposed technique provides highly reliable detections of the anomalies in ECG signals. Furthermore, to develop a detection technique that can be used in the absence of ECG recording obtained during healthy stage, the detection of acute myocardial ischemia based on ECG recordings of the patients obtained during ischemia is also investigated. For this purpose, a Gaussian mixture model (GMM) is used to represent the joint pdf of the most discriminating ECG features of myocardial ischemia. Then, a Neyman-Pearson type of approach is developed to provide detection of outliers that would correspond to acute myocardial ischemia. Neyman – Pearson decision strategy is used by computing the average log likelihood values of ECG segments and comparing them with a range of different threshold values. For different discrimination threshold values and number of ECG segments, probability of detection and probability of false alarm values are computed, and the corresponding ROC curves are obtained. The results indicate that increasing number of ECG segments provide higher performance for GMM based classification. Moreover, the comparison between the performances of SVM and GMM based classification showed that SVM provides higher classification performance results over ECG recordings of considerable number of patients.

Keywords: ECG classification, Gaussian mixture model, Neyman–Pearson approach, support vector machine

Procedia PDF Downloads 160
8470 A Dirty Page Migration Method in Process of Memory Migration Based on Pre-copy Technology

Authors: Kang Zijian, Zhang Tingyu, Burra Venkata Durga Kumar

Abstract:

This article investigates the challenges in memory migration during the live migration of virtual machines. We found three challenges probably existing in pre-copy technology. One of the main challenges is the challenge of downtime migration. Decrease the downtime could promise the normal work for a virtual machine. Although pre-copy technology is greatly decreasing the downtime, we still need to shut down the machine in order to finish the last round of data transfer. This paper provides an optimization scheme for the problems existing in pro-copy technology, mainly the optimization of the dirty page migration mechanism. The typical pre-copy technology copy n-1th’s dirty pages in nth turn. However, our idea is to create a double iteration method to solve this problem.

Keywords: virtual machine, pre-copy technology, memory migration process, downtime, dirty pages migration method

Procedia PDF Downloads 149
8469 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches

Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand

Abstract:

Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.

Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis

Procedia PDF Downloads 70
8468 Capacity Building and Training of Health Personals for Disaster Preparedness in North East India

Authors: U. K. Tamuli

Abstract:

Introduction: North East India is graced with natural beauty and hazards. This area is prone to major earthquakes, floods, landslides, accidents, terrorist activities etc. Academy of Trauma (AOT), an NGO of Doctors, conducts training programs, mock drills, field trials amongst the doctors and paramedics in North East India. The present study is to evaluate the efficacy of such training in terms of sensitivity, awareness, and delivery systems of the products. Here the health care delivery system for disaster management is inadequate. Clear guideline of mass casualty management is unavailable. AOT has initiated steps to increase the awareness and handling of mass casualty management to improve the emergency health care delivery system. Method: AOT has conducted training programmes on emergency health management, mass casualty management and hospital preparedness amongst 800 doctors and 1200 paramedics in twenty-two districts of Assam in Northeast India. The training module consists of lectures, hands-on workshop using manikins, mock drills, distribution of manuals, emergency management exercises, periodic exchange of experience and debriefings. AOT evaluates the impact of these trainings by conducting pre and post tests of delegates, trainer’s evaluation, delegate’s satisfaction and confidence level and their suggestions. Results: The module, training, hands-on workshops, mock drills were highly appreciated. There is significant improvement in scores on the post-training tests. The confidence level of the participants has risen to deal with emergency medical situation Conclusion: These kinds of trainings increase the awareness of the medical members to handle mass casualties in different situations. One such training actually sensitises the delegates. Repetition of such training, TOT (Training-of-Trainers) programs, and individual efforts of delegates are extremely important for sustenance and success of health care delivery service during disasters in the developing countries. Further collaboration, assistance, networking, suggestions from established global agencies in this field will be highly appreciated.

Keywords: capacity building, North East India, non-governmental organization, trauma

Procedia PDF Downloads 286
8467 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 151
8466 6G: Emerging Architectures, Technologies and Challenges

Authors: Abdulrahman Yarali

Abstract:

The advancement of technology never stops because the demands for improved internet and communication connectivity are increasing. Just as 5G networks are rolling out, the world has begun to talk about the sixth-generation networks (6G). The semantics of 6G are more or less the same as 5G networks because they strive to boost speeds, machine-to-machine (M2M) communication, and latency reduction. However, some of the distinctive focuses of 6G include the optimization of networks of machines through super speeds and innovative features. This paper discusses many aspects of the technologies, architectures, challenges, and opportunities of 6G wireless communication systems.

Keywords: 6G, characteristics, infrastructures, technologies, AI, ML, IoT, applications

Procedia PDF Downloads 23
8465 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 145
8464 Prevalence of ESBL E. coli Susceptibility to Oral Antibiotics in Outpatient Urine Culture: Multicentric, Analysis of Three Years Data (2019-2021)

Authors: Mazoun Nasser Rashid Al Kharusi, Nada Al Siyabi

Abstract:

Objectives: The main aim of this study is to Find the rate of susceptibility of ESBL E. coli causing UTI to oral antibiotics. Secondary objectives: Prevalence of ESBL E. coli from community urine samples, identify the best empirical oral antibiotics with the least resistance rate for UTI and identify alternative oral antibiotics for testing and utilization. Methods: This study is a retrospective descriptive study of the last three years in five major hospitals in Oman (Khowla Hospital, AN’Nahdha Hospital, Rustaq Hospital, Nizwa Hospital, and Ibri Hospital) equipped with a microbiologist. Inclusion criteria include all eligible outpatient urine culture isolates, excluding isolates from admitted patients with hospital-acquired urinary tract infections. Data was collected through the MOH database. The MOH hospitals are using different types of testing, automated methods like Vitek2 and manual methods. Vitek2 machine uses the principle of the fluorogenic method for organism identification and a turbidimetric method for susceptibility testing. The manual method is done by double disc diffusion for identifying ESBL and the disc diffusion method is for antibiotic susceptibility. All laboratories follow the clinical laboratory science institute (CLSI) guidelines. Analysis was done by SPSS statistical package. Results: Total urine cultures were (23048). E. coli grew in (11637) 49.6% of the urine, whereas (2199) 18.8% of those were confirmed as ESBL. As expected, the resistance rate to amoxicillin and cefuroxime is 100%. Moreover, the susceptibility of those ESBL-producing E. coli to nitrofurantoin, trimethoprim+sulfamethoxazole, ciprofloxacin and amoxicillin-clavulanate is progressing over the years; however, still low. ESBL E. coli was predominating in the female gender and those aged 66-74 years old throughout all the years. Other oral antibiotic options need to be explored and tested so that we add to the pool of oral antibiotics for ESBL E. coli causing UTI in the community. Conclusion: High rate of ESBL E. coli in urine from the community. The high resistance rates to oral antibiotics highlight the need for alternative treatment options for UTIs caused by these bacteria. Further research is needed to identify new and effective treatments for UTIs caused by ESBL-E. Coli.

Keywords: UTI, ESBL, oral antibiotics, E. coli, susceptibility

Procedia PDF Downloads 92
8463 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 462
8462 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service

Authors: Lai Wenfang

Abstract:

Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.

Keywords: artificial intelligence, natural language processing, machine learning, visualization

Procedia PDF Downloads 172
8461 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen

Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon

Abstract:

Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.

Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement

Procedia PDF Downloads 386
8460 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 168
8459 Osteoporosis and Weight Gain – Two Major Concerns for Menopausal Women - a Physiotherapy Perspective

Authors: Renu Pattanshetty

Abstract:

The aim of this narrative review is to highlight the impact of menopause on osteoporosis and weight gain. The review also aims to summarize physiotherapeutic strategies to combat the same.A thorough literature search was conducted using electronic databases like MEDline, PUBmed, Highwire Press, PUBmed Central for English language studies that included search terms like menopause, osteoporosis, obesity, weight gain, exercises, physical activity, physiotherapy strategies from the year 2000 till date. Out of 157 studies that included metanalyses, critical reviews and randomized clinical trials, a total of 84 were selected that met the inclusion criteria. Prevalence of obesity is increasing world - wide and is reaching epidemic proportions even in the menopausal women. Prevalence of abdominal obesity is almost double than that general obesity with rates in the US with 65.5% in women ages 40-59 years and 73.8 in women aged 60 years or more. Physical activities and exercises play a vital role in prevention and treatment of osteoporosis and weight gain related to menopause that aim to boost the general well-being and any symptoms brought about by natural body changes. Endurance exercises lasting about 30 minutes /day for 5 days/ week has shown to decrease weight and prevent weight gain. In addition, strength training with at least 8 exercises of 8-12 repetitions working for whole body and for large muscle groups has shown to result positive outcomes. Hot flashes can be combatted through yogic breathing and relaxation exercises. Prevention of fall strategies and resistance training are key to treat diagnosed cases of osteoporosis related to menopause. One to three sets with five to eight repetitions of four to six weight bearing exercises have shown positive results. Menopause marks an important time for women to evaluate their risk of obesity and osteoporosis. It is known fact that bone benefit from exercises are lost when training is stopped, hence, practicing bone smart habits and strict adherence to recommended physical activity programs are recommended which are enjoyable, safe and effective.

Keywords: menopause, osteoporosis, obesity, weight gain, exercises, physical activity, physiotherapy strategies

Procedia PDF Downloads 301
8458 Whole Coding Genome Inter-Clade Comparisons to Predict Global Cancer-Protecting Variants

Authors: Lamis Naddaf, Yuval Tabach

Abstract:

We identified missense genetic variants with the potential to enhance resistance against cancer. Such a field has not been widely explored as researchers tend to investigate the mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and have significant implications for improved risk estimation, diagnostics, prognosis, and even personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and selected the alleles that showed a correlation with the species’ cancer resistance. Interestingly, we found several amino acids that are more generally preferred (like the Proline) or avoided (like the Cysteine) by the resistant species. Furthermore, Cancer resistance in mammals and reptiles is significantly predicted by the number of the predicted protecting variants (PVs) a species has. Moreover, PVs-enriched-genes are enriched in pathways relevant to tumor suppression. For example, they are enriched in the Hedgehog signaling and silencing pathways, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are mostly more abundant in healthy people compared to cancer patients within different human races.

Keywords: cancer resistance, protecting variant, naked mole rat, comparative genomics

Procedia PDF Downloads 109
8457 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 37
8456 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique

Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah

Abstract:

An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.

Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic

Procedia PDF Downloads 485
8455 Communication Training about Depression and Suicide Prevention for Pharmacists: A Hungarian Pilot Study

Authors: Mónika Ditta Tóth, Ádám Fritz, Balázs Hankó, György Purebl

Abstract:

Communication training about depression and suicide prevention for pharmacists – A Hungarian pilot study Mónika Ditta Tóth1, Ádám Fritz2, Balázs Hankó2, György Purebl1 1: Semmelweis University, Institute of Behavioural Sciences 2: Semmelweis University, University Pharmacy Department of Pharmacy Administration Background: Suicide rates in Hungary have been one of the highest in the European Union. Depression is one of the main risk factors for suicide and recognizing and treating depression is an effective way to prevent suicidal behaviour. In their daily practice, pharmacists meet patients with high risk of mental health problems. Therefore they have a key role in the prevention of depression and suicide. Aim: The main aim of this study is to raise pharmacists’ awareness about depression and suicide to enable better recognation of verbal and non-verbal signs of these deseases. Another important objective is to reduce their stigma about depression and increase their confidence in communication with depressed and/or suicidal patients. Methods: A 3-hour communication workshop has been delivered in this pilot study about the reasons, trigger factors, verbal and non-verbal signs of depression and suicide. The training includes communication techniques which have been developed to patients needs, as well as role-playing scenarios. Depression Stigma and Morris Confidence Scales were applied before, after and 6 weeks following the training. The results of the training group are then compared with two of the following pharmacist groups: 1. written material only (N=15), 2. no material (N=15). Results: One-way ANOVA revealed significant differences in the training group regarding the level of confidence in treating and communicating with patients with depression and/or suicide following the training, and after 6 weeks (F(2, 24)= 7,135, p=,004; baseline: 20,37, after training: 30,00, follow up: 27,66). After the 3-hour workshop the personal stigma about depression decreased (baselin: 19,75 after training: 17,00, p=0,075) in the training group (N=9), whilst the perceived stigma did not change (before: 33.54, after: 33,44, p=NS). Trainees assessed the workshop as ‘useful’ and ‘gap filling’. No significant differences was found in the group of pharmacisists who got written material only. Conclusions: Despite the high rates of depression and suicide in Hungary, pharmacists do not receive lectures or seminars about mental health during their university studies. Such half-day workshops could fill this gap and give practical help to recognize and communicate with depressed and/or suicidal patients in a more effective way. This way pharmacists, as community gate-keepers, could contribute to a more effective suicide prevention program in Hungary.

Keywords: communication training, pharmacists, depression, suicide

Procedia PDF Downloads 185
8454 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification

Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde

Abstract:

The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.

Keywords: ATM, ATM fraud, e-banking, prototyping

Procedia PDF Downloads 318
8453 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization

Authors: Wenqi Liu, Reginald Bailey

Abstract:

This study explores an advanced approach to enhancing B2B sales forecasting by integrating machine learning models with a rule-based decision framework. The methodology begins with the development of a machine learning classification model to predict conversion likelihood, aiming to improve accuracy over traditional methods like logistic regression. The classification model's effectiveness is measured using metrics such as accuracy, precision, recall, and F1 score, alongside a feature importance analysis to identify key predictors. Following this, a machine learning regression model is used to forecast sales value, with the objective of reducing mean absolute error (MAE) compared to linear regression techniques. The regression model's performance is assessed using MAE, root mean square error (RMSE), and R-squared metrics, emphasizing feature contribution to the prediction. To bridge the gap between predictive analytics and decision-making, a rule-based decision model is introduced that prioritizes customers based on predefined thresholds for conversion probability and predicted sales value. This approach significantly enhances customer prioritization and improves overall sales performance by increasing conversion rates and optimizing revenue generation. The findings suggest that this combined framework offers a practical, data-driven solution for sales teams, facilitating more strategic decision-making in B2B environments.

Keywords: sales forecasting, machine learning, rule-based decision model, customer prioritization, predictive analytics

Procedia PDF Downloads 14