Search results for: low impact building system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28788

Search results for: low impact building system

27768 Conduction Transfer Functions for the Calculation of Heat Demands in Heavyweight Facade Systems

Authors: Mergim Gasia, Bojan Milovanovica, Sanjin Gumbarevic

Abstract:

Better energy performance of the building envelope is one of the most important aspects of energy savings if the goals set by the European Union are to be achieved in the future. Dynamic heat transfer simulations are being used for the calculation of building energy consumption because they give more realistic energy demands compared to the stationary calculations that do not take the building’s thermal mass into account. Software used for these dynamic simulation use methods that are based on the analytical models since numerical models are insufficient for longer periods. The analytical models used in this research fall in the category of the conduction transfer functions (CTFs). Two methods for calculating the CTFs covered by this research are the Laplace method and the State-Space method. The literature review showed that the main disadvantage of these methods is that they are inadequate for heavyweight façade elements and shorter time periods used for the calculation. The algorithms for both the Laplace and State-Space methods are implemented in Mathematica, and the results are compared to the results from EnergyPlus and TRNSYS since these software use similar algorithms for the calculation of the building’s energy demand. This research aims to check the efficiency of the Laplace and the State-Space method for calculating the building’s energy demand for heavyweight building elements and shorter sampling time, and it also gives the means for the improvement of the algorithms used by these methods. As the reference point for the boundary heat flux density, the finite difference method (FDM) is used. Even though the dynamic heat transfer simulations are superior to the calculation based on the stationary boundary conditions, they have their limitations and will give unsatisfactory results if not properly used.

Keywords: Laplace method, state-space method, conduction transfer functions, finite difference method

Procedia PDF Downloads 128
27767 Proposing Sky Exposure Plane Concept for Urban Open Public Spaces in Gulseren Street

Authors: Pooya Lotfabadi

Abstract:

In today's world, sustainability is a critical concern, particularly in the building industry, which is a significant contributor to energy consumption. Buildings must be considered in relation to their urban surroundings, highlighting the importance of collaboration between architecture and urban design. Natural light plays a vital role in enhancing a building's thermal and visual comfort and promoting the well-being of outdoor residents. Therefore, architects and urban designers are responsible for maximizing sunlight exposure in urban settings. Key factors such as building height and orientation are essential for optimizing natural light. Without proper attention, standalone projects can negatively affect their urban environment. Regulations like the Sky Exposure Plane- a virtual sloping plane that determines minimum building heights and spacing- serve as effective tools for guiding urban development. This study aims to define the Sky Exposure Plane in public open spaces, proposing an optimal angle for buildings on Gulseren Street in Famagusta, North Cyprus. Utilizing computer simulations, the research examines the role of sunlight in public streets and offers guidelines to improve natural lighting in urban planning.

Keywords: public open space, sky exposure plane, street natural lighting, sustainable urban design

Procedia PDF Downloads 11
27766 Literature Review and Approach for the Use of Digital Factory Models in an Augmented Reality Application for Decision Making in Restructuring Processes

Authors: Rene Hellmuth, Jorg Frohnmayer

Abstract:

The requirements of the factory planning and the building concerned have changed in the last years. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring gains more importance in order to maintain the competitiveness of a factory. Even today, the methods and process models used in factory planning are predominantly based on the classical planning principles of Schmigalla, Aggteleky and Kettner, which, however, are not specifically designed for reorganization. In addition, they are designed for a largely static environmental situation and a manageable planning complexity as well as for medium to long-term planning cycles with a low variability of the factory. Existing approaches already regard factory planning as a continuous process that makes it possible to react quickly to adaptation requirements. However, digital factory models are not yet used as a source of information for building data. Approaches which consider building information modeling (BIM) or digital factory models in general either do not refer to factory conversions or do not yet go beyond a concept. This deficit can be further substantiated. A method for factory conversion planning using a current digital building model is lacking. A corresponding approach must take into account both the existing approaches to factory planning and the use of digital factory models in practice. A literature review will be conducted first. In it, approaches to classic factory planning and approaches to conversion planning are examined. In addition, it will be investigated which approaches already contain digital factory models. In the second step, an approach is presented how digital factory models based on building information modeling can be used as a basis for augmented reality tablet applications. This application is suitable for construction sites and provides information on the costs and time required for conversion variants. Thus a fast decision making is supported. In summary, the paper provides an overview of existing factory planning approaches and critically examines the use of digital tools. Based on this preliminary work, an approach is presented, which suggests the sensible use of digital factory models for decision support in the case of conversion variants of the factory building. The augmented reality application is designed to summarize the most important information for decision-makers during a reconstruction process.

Keywords: augmented reality, digital factory model, factory planning, restructuring

Procedia PDF Downloads 134
27765 Paradigms of Sustainability: Roles and Impact of Communication in the Fashion System

Authors: Elena Pucci, Margherita Tufarelli, Leonardo Giliberti

Abstract:

As central for human and social development of the future, sustainability is becoming a recurring theme also in the fashion industry, where the need to explore new possible directions aimed at achieving sustainability goals and their communication is rising. Scholars have been devoted to the overall environmental impact of the textile and fashion industry, which, emerging as one of the world’s most polluting, today concretely assumes the need to take the path of sustainability in both products and production processes. Every day we witness the impact of our consumption, showing that the sustainability concept is as vast as complex: with a sometimes ambiguous definition, sustainability can concern projects, products, companies, sales, packagings, supply chains in relation to the actors proximity as well as traceability, raw materials procurement, and disposal. However, in its primary meaning, sustainability is the ability to maintain specific values and resources for future generations. The contribution aims to address sustainability in the fashion system as a layered problem that requires substantial changes at different levels: in the fashion product (materials, production processes, timing, distribution, and disposal), in the functioning of the system (life cycle, impact, needs, communication) and last but not least in the practice of fashion design which should conceive durable, low obsolescence and possibly demountable products. Moreover, consumers play a central role for the growing awareness, together with an increasingly strong sensitivity towards the environment and sustainable clothing. Since it is also a market demand, undertaking significant efforts to achieve total transparency and sustainability in all production and distribution processes is becoming fundamental for the fashion system. Sustainability is not to be understood as purely environmental but as the pursuit of collective well-being in relation to conscious production, human rights, and social dignity with the aim to achieve intelligent, resource, and environmentally friendly production and consumption patterns. Assuming sustainability as a layered problem makes the role of communication crucial to convey scientific or production specific content so that people can obtain and interpret information to make related decisions. Hence, if it is true that “what designers make becomes the future we inhabit'', design is facing great and challenging responsibility. The fashion industry needs a system of rules able to assess the sustainability of products, which is transparent and easily interpreted by consumers, identifying and enhancing virtuous practices. There are still complex and fragmented value chains that make it extremely difficult for brands and manufacturers to know the history of their products, to identify exactly where the risks lie, and to respond to the growing demand from consumers and civil society for responsible and sustainable production practices in the fashion industry.

Keywords: fashion design, fashion system, sustainability, communication, complexity

Procedia PDF Downloads 120
27764 Value Generation of Construction and Demolition Waste Originated in the Building Rehabilitation to Improve Energy Efficiency; From Waste to Resources

Authors: Mercedes Del Rio Merino, Jaime Santacruz Astorqui, Paola Villoria Saez, Carmen Viñas Arrebola

Abstract:

The lack of treatment of the waste from construction and demolition waste (CDW) is a problem that must be solved immediately. It is estimated that in the world not to use CDW generates an increase in the use of new materials close to 20% of the total value of the materials used. The problem is even greater in case these wastes are considered hazardous because the final deposition of them may also generate significant contamination. Therefore, the possibility of including CDW in the manufacturing of building materials, represents an interesting alternative to ensure their use and to reduce their possible risk. In this context and in the last years, many researches are being carried out in order to analyze the viability of using CDW as a substitute for the traditional raw material of high environmental impact. Even though it is true, much remains to be done, because these works generally characterize materials but not specific applications that allow the agents of the construction to have the guarantees required by the projects. Therefore, it is necessary the involvement of all the actors included in the life cycle of these new construction materials, and also to promote its use for, for example, definition of standards, tax advantages or market intervention is necessary. This paper presents the main findings reached in "Waste to resources (W2R)" project since it began in October 2014. The main goal of the project is to develop new materials, elements and construction systems, manufactured from CDW, to be used in improving the energy efficiency of buildings. Other objectives of the project are: to quantify the CDW generated in the energy rehabilitation works, specifically wastes from the building envelope; and to study the traceability of CDW generated and promote CDW reuse and recycle in order to get close to the life cycle of buildings, generating zero waste and reducing the ecological footprint of the construction sector. This paper determines the most important aspects to consider during the design of new constructive solutions, which improve the energy efficiency of buildings and what materials made with CDW would be the most suitable for that. Also, a survey to select best practices for reducing "close to zero waste" in refurbishment was done. Finally, several pilot rehabilitation works conform the parameters analyzed in the project were selected, in order to apply the results and thus compare the theoretical with reality. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under "Waste 2 Resources" Project (BIA2013-43061-R).

Keywords: building waste, construction and demolition waste, recycling, resources

Procedia PDF Downloads 246
27763 Causes of Cost Overrun in Building Construction Projects: Case Study from Al Madinah, Saudi Arabia

Authors: Z. Hamed, K. Sa'deya, E. Abdelrasheed, I. Mahamid

Abstract:

The construction industry is one of the main sectors that play basic role in the urban and rural development of a society. It provides important ingredients for the development of an economy. However, many construction projects experience extensive cost overrun. This study was conducted to identify the causes of cost overrun in building construction contracts in Al Madinah, Saudi Arabia and test the importance of these causes from contractors' perspective. To achieve the study objectives, a questionnaire survey was conducted to identify and rank cost overrun causes from the perspective of contractors. The findings found that the top five cost overrun causes are: lack of experience in the line of work, lack of labor productivity, delay in payments, rework and material waste. It is hoped that the findings will guide efforts to improve the performance of construction industry in Saudi Arabia and other developing countries.

Keywords: building, contractor, cost increase, cost overrun

Procedia PDF Downloads 151
27762 Eco-Design of Construction Industrial Park in China with Selection of Candidate Tenants

Authors: Yang Zhou, Kaijian Li, Guiwen Liu

Abstract:

Offsite construction is an innovative alternative to conventional site-based construction, with wide-ranging benefits. It requires building components, elements or modules were prefabricated and pre-assembly before installed into their final locations. To improve efficiency and achieve synergies, in recent years, construction companies were clustered into construction industrial parks (CIPs) in China. A CIP is a community of construction manufacturing and service businesses located together on a common property. Companies involved in industrial clusters can obtain environment and economic benefits by sharing resources and information in a given region. Therefore, the concept of industrial symbiosis (IS) can be applied to the traditional CIP to achieve sustainable industrial development or redevelopment through the implementation of eco-industrial parks (EIP). However, before designing a symbiosis network between companies in a CIP, candidate support tenants need to be selected to complement the existing construction companies. In this study, an access indicator system and a linear programming model are established to select candidate tenants in a CIP while satisfying the degree of connectivity among the enterprises in the CIP, minimizing the environmental impact, and maximizing the annualized profit of the CIP. The access indicator system comprises three primary indicators and fifteen secondary indicators, is proposed from the perspective of park-based level. The fifteen indicators are classified as three primary indicators including industrial symbiosis, environment performance and economic benefit, according to the three dimensions of sustainability (environment, economic and social dimensions) and the three R's of the environment (reduce, reuse and recycle). The linear programming model is a method to assess the satisfactoriness of all the indicators and to make an optimal multi-objective selection among candidate tenants. This method provides a practical tool for planners of a CIP in evaluating which among the candidate tenants would best complement existing anchor construction tenants. The reasonability and validity of the indicator system and the method is worth further study in the future.

Keywords: construction industrial park, China, industrial symbiosis, offsite construction, selection of support tenants

Procedia PDF Downloads 267
27761 Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies & Dialux Daylighting Simulation Model

Authors: Yaseri Dahlia Apritasari

Abstract:

Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants.

Keywords: aluminium material, Facade, second skin, visual comfort

Procedia PDF Downloads 349
27760 A Resource Survey of Lateritic Soils and Impact Evaluation toward Community Members Living Nearby the Excavation Pits

Authors: Ratchasak Suvannatsiri

Abstract:

The objectives of the research are to find the basic engineering properties of lateritic soil and to predict the impact on community members who live nearby the excavation pits in the area of Amphur Pak Thor, Ratchaburi Province in the western area of Thailand. The research was conducted by collecting soil samples from four excavation pits for basic engineering properties, testing and collecting questionnaire data from 120 community members who live nearby the excavation pits, and applying statistical analysis. The results found that the basic engineering properties of lateritic soil can be classified into silt soil type which is cohesionless as the loess or collapsible soil which is not suitable to be used for a pavement structure for commuting highway because it could lead to structural and functional failure in the long run. In terms of opinion from community members toward the impact, the highest impact was on the dust from excavation activities. The prediction from the logistic regression in terms of impact on community members was at 84.32 which can be adapted and applied onto other areas with the same context as a guideline for risk prevention and risk communication since it could impact the infrastructures and also impact the health of community members.

Keywords: lateritic soil, excavation pits, engineering properties, impact on community members

Procedia PDF Downloads 448
27759 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage

Authors: Awni H. Alkhazaleh, Baljinder K. Kandola

Abstract:

In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.

Keywords: building materials, flammability, phase change materials, thermal energy storage

Procedia PDF Downloads 329
27758 Named Entity Recognition System for Tigrinya Language

Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager

Abstract:

The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.

Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF

Procedia PDF Downloads 124
27757 A Construction Scheduling Model by Applying Pedestrian and Vehicle Simulation

Authors: Akhmad F. K. Khitam, Yi Tai, Hsin-Yun Lee

Abstract:

In the modern research of construction management, the goals of scheduling are not only to finish the project within the limited duration, but also to improve the impact of people and environment. Especially for the impact to the pedestrian and vehicles, the considerable social cost should be estimated in the total performance of a construction project. However, the site environment has many differences between projects. These interactions affect the requirement and goal of scheduling. It is difficult for schedule planners to quantify these interactions. Therefore, this study use 3D dynamic simulation technology to plan the schedule of the construction engineering projects that affect the current space users (i.e., the pedestrians and vehicles). The proposed model can help the project manager find out the optimal schedule to minimize the inconvenience brought to the space users. Besides, a roadwork project and a building renovation project were analyzed for the practical situation of engineering and operations. Then this study integrates the proper optimization algorithms and computer technology to establish a decision support model. The proposed model can generate a near-optimal schedule solution for project planners.

Keywords: scheduling, simulation, optimization, pedestrian and vehicle behavior

Procedia PDF Downloads 137
27756 The Impact of Trading Switch on Price and Liquidity

Authors: Bel Abed Ines Mariem

Abstract:

Different stock markets keep changing their exchange structure for the only purpose of improving the functioning of their markets. This paper investigates the effects of the transfer from one trading category to another in the Tunisian Stock Exchange on market price and liquidity. The sample consists of 40 securities transferred from call auction to continuous auction and conversely during the period between 2004 and 2013. The methodology used is the event study. Empirical results show an interesting phenomenon observed; stocks transferred to the call system have experienced an improvement on their price and liquidity especially for less liquid ones. However, price and liquidity for stocks transferred from call system to continuous system have decreased.

Keywords: microstructure, call auction, continuous auction, price, liquidity and event study

Procedia PDF Downloads 384
27755 Modern Technology for Strengthening Concrete Structures Makes Them Resistant to Earthquakes

Authors: Mohsen Abdelrazek Khorshid Ali Selim

Abstract:

Disadvantages and errors of current concrete reinforcement methodsL: Current concrete reinforcement methods are adopted in most parts of the world in their various doctrines and names. They adopt the so-called concrete slab system, where these slabs are semi-independent and isolated from each other and from the surrounding environment of concrete columns or beams, so that the reinforcing steel does not cross from one slab to another or from one slab to adjacent columns. It or the beams surrounding it and vice versa are only a few centimeters and no more. The same applies exactly to the concrete columns that support the building, where the reinforcing steel does not extend from the slabs or beams to the inside of the columns or vice versa except for a few centimeters and no more, just as the reinforcing steel does not extend from inside the column at the top. The ceiling is only a few centimetres, and the same thing is literally repeated in the concrete beams that connect the columns and separate the slabs, where the reinforcing steel does not cross from one beam to another or from one beam to the slabs or columns adjacent to it and vice versa, except for a few centimeters, which makes the basic building elements of columns, slabs and beams They all work in isolation from each other and from the environment surrounding them from all sides. This traditional method of reinforcement may be valid and lasting in geographical areas that are not exposed to earthquakes and earthquakes, where all the loads and tensile forces in the building are constantly directed vertically downward due to gravity and are borne directly by the vertical reinforcement of the building. However, in the case of earthquakes and earthquakes, the loads and tensile forces in the building shift from the vertical direction to the horizontal direction at an angle of inclination that depends on the strength of the earthquake, and most of them are borne by the horizontal reinforcement extending between the basic elements of the building, such as columns, slabs and beams, and since the crossing of the reinforcement between each of the columns, slabs and beams between them And each other, and vice versa, does not exceed several centimeters. In any case, the tensile strength, cohesion and bonding between the various parts of the building are very weak, which causes the buildings to disintegrate and collapse in the horrific manner that we saw in the earthquake in Turkey and Syria in February 2023, which caused the collapse of tens of thousands of buildings in A few seconds later, it left more than 50,000 dead, hundreds of thousands injured, and millions displaced. Description of the new earthquake-resistant model: The idea of the new model in the reinforcement of concrete buildings and constructions is based on the theory that we have formulated as follows: [The tensile strength, cohesion and bonding between the basic parts of the concrete building (columns, beams and slabs) increases as the lengths of the reinforcing steel bars increase and they extend and branch and the different parts of the building share them with each other.] . In other words, the strength, solidity, and cohesion of concrete buildings increase and they become resistant to earthquakes as the lengths of the reinforcing steel bars increase, extend, branch, and share with the various parts of the building, such as columns, beams, and slabs. That is, the reinforcing skewers of the columns must extend in their lengths without cutting to cross from one floor to another until their end. Likewise, the reinforcing skewers of the beams must extend in their lengths without cutting to cross from one beam to another. The ends of these skewers must rest at the bottom of the columns adjacent to the beams. The same thing applies to the reinforcing skewers of the slabs where they must These skewers should be extended in their lengths without cutting to cross from one tile to another, and the ends of these skewers should rest either under the adjacent columns or inside the beams adjacent to the slabs as follows: First, reinforce the columns: The columns have the lion's share of the reinforcing steel in this model in terms of type and quantity, as the columns contain two types of reinforcing bars. The first type is large-diameter bars that emerge from the base of the building, which are the nerves of the column. These bars must extend over their normal length of 12 meters or more and extend to a height of three floors, if desired. In raising other floors, bars with the same diameter and the same length are added to the top after the second floor. The second type is bars with a smaller diameter, and they are the same ones that are used to reinforce beams and slabs, so that the bars that reinforce the beams and slabs facing each column are bent down inside this column and along the entire length of the column. This requires an order. Most engineers do not prefer it, which is to pour the entire columns and pour the roof at once, but we prefer this method because it enables us to extend the reinforcing bars of both the beams and slabs to the bottom of the columns so that the entire building becomes one concrete block that is cohesive and resistant to earthquakes. Secondly, arming the cameras: The beams' reinforcing skewers must also extend to a full length of 12 meters or more without cutting. The ends of the skewers are bent and dropped inside the column at the beginning of the beam to its bottom. Then the skewers are extended inside the beam so that their other end falls under the facing column at the end of the beam. The skewers may cross over the head of a column. Another passes through another adjacent beam and rests at the bottom of a third column, according to the lengths of each of the skewers and beams. Third, reinforcement of slabs: The slab reinforcing skewers must also extend their entire length, 12 meters or more, without cutting, distinguishing between two cases. The first case is the skewers opposite the columns, and their ends are dropped inside one of the columns. Then the skewers cross inside the adjacent slab and their other end falls below the opposite column. The skewers may cross over The head of the adjacent column passes through another adjacent slab and rests at the bottom of a third column, according to the dimensions of the slabs and the lengths of the skewers. The second case is the skewers opposite the beams, and their ends must be bent in the form of a square or rectangle according to the dimensions of the beam’s width and height, and this square or rectangle is dropped inside the beam at the beginning of the slab, and it serves as The skewers are for the beams, then the skewers are extended along the length of the slab, and at the end of the slab, the skewers are bent down to the bottom of the adjacent beam in the shape of the letter U, after which the skewers are extended inside the adjacent slab, and this is repeated in the same way inside the other adjacent beams until the end of the skewer, then it is bent downward in the form of a square or rectangle inside the beam, as happened. In its beginning.

Keywords: earthquake resistant buildings, earthquake resistant concrete constructions, new technology for reinforcement of concrete buildings, new technology in concrete reinforcement

Procedia PDF Downloads 60
27754 Geographic Information System (GIS) for Structural Typology of Buildings

Authors: Néstor Iván Rojas, Wilson Medina Sierra

Abstract:

Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.

Keywords: microzonation, buildings, geo-processing, cadastral number

Procedia PDF Downloads 330
27753 The Role of Social Capital in Community-Based Water Resources Management in Kenya's Polycentric Water Resource Governance System

Authors: Brenda Margaret Behan

Abstract:

Kenya is a water-stressed country with highly varied socio-ecological environments in its devolved county system, and is currently implementing a polycentric water governance system; this paper examines the importance of social capital in community-based natural resource management and its role in supporting good water governance systems in the Kenya context. Through a robust literature review of theory and case studies, specific aspects of social capital are examined to determine their importance in the implementation of local community-based water management arrangements which support and complement the more formal institutions outlined in the 2002 and 2016 Water Acts of Kenya. Water is an increasingly important and scarce resource not only for Kenya, but for many communities across the globe, and lessons learned in the Kenya context can be useful for other countries and communities faced with similar challenges. Changing climates, increasing populations, and increased per capita consumption of water is contributing to a situation in which the management of water resources will be vital to community resilience. Community-based natural resource management is widely recognized as a building block and component of wider water resource management systems, and when properly conducted can provide a way to enable sustainable use of resources and empower communities. Greater attention to the social and cultural norms and traditional institutions associated with a community’s social capital can lead to better results for Kenya’s polycentric governance of water. The key findings and recommendations from this research show that in Kenya, traditional institutions need to be understood and integrated into governance systems; social values and cultural norms have a significant impact on the implementation of community-based water management efforts; and social capital is a dynamic concept which influences and is influenced by policies and practices. The community-based water management approach will continue to be a key cornerstone for Kenya’s polycentric water governance structure, especially in the more remote arid and semi-arid lands; thus, the successful integration of social capital aspects into planning and implementation will contribute to a strengthened, sustainable, and more equitable national water governance system. Specific observations and recommendations from this study will help practitioners and policymakers to better craft community-based interventions.

Keywords: community-based natural resource management, social capital, traditional institutions, water governance

Procedia PDF Downloads 165
27752 Hygrothermal Properties of Raw Earth Material

Authors: Ichrak Hamrouni, Tariq Ouahbi, Natalija Lhuissier, Saïd Taibi, Mehrez Jemai, Olivier Crumeyrolle, Hatem Zenzri

Abstract:

Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented.

Keywords: raw earth material, hygro-thermal, thermal conductivity, water vapour permeability, building materials, building materials

Procedia PDF Downloads 171
27751 Focus on Sustainable Future of New Vernacular Architecture — Building "Vernacular Consciousness" in the New Ara

Authors: Ji Min China

Abstract:

The 20th century was the century of globalization. Developed transportation and the progress of information media made the earth into a global village. The differences between regions is increasingly reduced, "cultural convergence" phenomenon intensified, regional specialties and traditional culture has been eroded. In the field of architecture, while experienced orderly rational modernism baptism, it is increasingly recognized that set the expense of cultural differences and forced to follow the universal international-style building has been outdated. At the same time, in the 21st century environmental issues has been paid more and more attention, and the concept of sustainable development and sustainable building have been proposed.This makes the domestic and foreign architects began to explore the possibilities of building and reflect local cultural characteristics of the new vernacular architecture as a viable diversified architectural tendencies by domestic and foreign architects’ favor. The author will use the production and creative process of the new vernacular architecture at home and abroad as the background, and select some outstanding examples of the analysis and discussion, then reinterpret the "new vernacular architecture" in China now. This paper will pay more attention to how to master the true meaning of the here and now "new vernacular" as well as its multiple dimensions of sustainability in the future. It also determines the paper will be a two-way aspect and multi-dimensional understanding and mining of the "new vernacular".

Keywords: new vernacular architecture, regional culture, multi dimension, sustainable

Procedia PDF Downloads 446
27750 Application of Modal Analysis for Commissioning of a Ball Screw System

Authors: T. D. Tran, H. Schlegel, R. Neugebauer

Abstract:

Ball screws are an important component in machine tools. In mechatronic systems and machine tools, a ball screw has to work usually at a high speed. Otherwise the axial compliance of the ball screw, in combination with the inertia of the slide, the motor, the coupling and the screw, will cause an oscillation resonance, which limits the systems bandwidth and consequently influences performance of the motion controller. In this paper, the modal analysis method by measuring and analysing the vibrating parameters of the ball screw system to determine the dynamic characteristic of existing structures is used. On the one hand, the results of this study were obtained by the theoretical analysis and the modal testing of a ball screw system test station with the help of an impact hammer, respectively using excitation by motor. The experimental study showed oscillating forms of the ball screw for each frequency and obtained eigenfrequencies of the ball screw system. On the other hand, in this research a simulation with the help of the numerical modal analysis in order to analyse the oscillation and to find the eigenfrequencies of the ball screw system is used. Furthermore, the model order reduction by modal reduction and also according to Guyan is carried out. On the basis of these results a secure and also rapid commissioning of the control loops with regard to operating in their optimal function is targeted.

Keywords: modal analysis, ball screw, controller system, machine tools

Procedia PDF Downloads 455
27749 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement

Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer

Abstract:

Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.

Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator

Procedia PDF Downloads 217
27748 Entry, Descent and Landing System Design and Analysis of a Small Platform in Mars Environment

Authors: Daniele Calvi, Loris Franchi, Sabrina Corpino

Abstract:

Thanks to the latest Mars mission, the planetary exploration has made enormous strides over the past ten years increasing the interest of the scientific community and beyond. These missions aim to fulfill many complex operations which are of paramount importance to mission success. Among these, a special mention goes to the Entry, Descent and Landing (EDL) functions which require a dedicated system to overcome all the obstacles of these critical phases. The general objective of the system is to safely bring the spacecraft from orbital conditions to rest on the planet surface, following the designed mission profile. For this reason, this work aims to develop a simulation tool integrating the re-entry trajectory algorithm in order to support the EDL design during the preliminary phase of the mission. This tool was used on a reference unmanned mission, whose objective is finding bio-evidence and bio-hazards on Martian (sub)surface in order to support the future manned mission. Regarding the concept of operations (CONOPS) of the mission, it concerns the use of Space Penetrator Systems (SPS) that will descend on Mars surface following a ballistic fall and will penetrate the ground after the impact with the surface (around 50 and 300 cm of depth). Each SPS shall contain all the instrumentation required to sample and make the required analyses. Respecting the low-cost and low-mass requirements, as result of the tool, an Entry Descent and Impact (EDI) system based on inflatable structure has been designed. Hence, a solution could be the one chosen by Finnish Meteorological Institute in the Mars Met-Net mission, using an inflatable Thermal Protection System (TPS) called Inflatable Braking Unit (IBU) and an additional inflatable decelerator. Consequently, there are three configurations during the EDI: at altitude of 125 km the IBU is inflated at speed 5.5 km/s; at altitude of 16 km the IBU is jettisoned and an Additional Inflatable Braking Unit (AIBU) is inflated; Lastly at about 13 km, the SPS is ejected from AIBU and it impacts on the Martian surface. Since all parameters are evaluated, it is possible to confirm that the chosen EDI system and strategy verify the requirements of the mission.

Keywords: EDL, Mars, mission, SPS, TPS

Procedia PDF Downloads 165
27747 Design and Modeling of Amphibious Houses for Flood Prone Areas: The Case of Nigeria

Authors: Onyebuchi Mogbo, Abdulsalam Mohammed, Salsabila Wali

Abstract:

This research discusses the design and modeling of an amphibious building. The amphibious building is a house with the function of floating during a flood event. Over the years, houses have been built to resist flood events some of which have failed. The floating house is designed to work with nature and not against it. In the event of a flood, the house will rise with the increasing water level and protect the house from sinking. For the design and modeling of this house an estimated cost of N250, 000, approximately $700, will be needed. It is expected that the house will rise when lightweight materials are incorporated in the design, and the concrete dock (in form of a hollow box) carrying the entire house in its hollow space is well designed. When there is flooding the water will fill up the concrete dock, and the house will rise upwards with vertical guides preventing it from moving side to side or out of its boundary. Architectural and Structural designs will be used in this project.

Keywords: amphibious building, flood, housing, design and modelling

Procedia PDF Downloads 173
27746 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes

Authors: Ritwik Dutta, Marylin Wolf

Abstract:

This paper describes the trade-offs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The back-end consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.

Keywords: flask, Java, JavaScript, health monitoring, long-term care, Mongo, Python, smart home, software engineering, webserver

Procedia PDF Downloads 384
27745 Initial Experiences of the First Version of Slovene Sustainable Building Indicators That are Based on Level(s)

Authors: Sabina Jordan, Marjana Šijanec Zavrl, Miha Tomšič, Friderik Knez

Abstract:

To determine the possibilities for the implementation of sustainable building indicators in Slovenia, testing of the first version of the indicators, developed in the CARE4CLIMATE project and based on the EU Level(s) framework, was carried out in 2022. Invited and interested stakeholders of the construction process were provided with video content and instructions on the Slovenian e-platform of sustainable building indicators. In addition, workshops and lectures with individual subjects were also performed. The final phase of the training and testing procedure included a questionnaire, which was used to obtain information about the participants' opinions regarding the indicators. The analysis of the results of the testing, which was focused on level 2, confirmed the key preliminary finding of the development group, namely that currently, due to the lack of certain knowledge, data, and tools, all indicators for this level are not yet feasible in practice. The research also highlighted the greater need for training and specialization of experts in this field. At the same time, it showed that the testing of the first version itself was a big challenge: only 30 experts fully participated and filled out the online questionnaire. This number seems alarmingly low at first glance, but compared to level(s) testing in the EU member states, it is much more than 50 times higher. However, for the further execution of the indicators in Slovenia, it will therefore be necessary to invest a lot of effort and engagement. It is likely that state support will also be needed, for example, in the form of financial mechanisms or incentives and/or legislative background.

Keywords: sustainability, building, indicator, implementation, testing, questionnaire

Procedia PDF Downloads 88
27744 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 209
27743 Priority Analysis for Korean Disaster Mental Health Service Model Using Analytic Hierarchy Process

Authors: Myung-Soo Lee, Sun-Jin Jo, Kyoung-Sae Na, Joo-Eon Park

Abstract:

Early intervention after a disaster is important for recovery of disaster victims and each country has its own professional mental health service system such as Disaster Psychiatric Assistant Team in Japan and Crisis Counseling Program in the USA. The purpose of this study was to determine key prior components of the Korean Disaster Psychiatric Assistant Team (K-DPAT) for building up Korean disaster mental health service system. We conducted an Analytic Hierarchy Process(AHP) with disaster mental health experts using pairwise comparison questionnaire which compares the relative importance of the key components of Korean disaster mental health service system. Forty-one experts answered the first online survey, and among them, 36 responded to the second. Ten experts were participated in panel meeting and discussed the results of the survey and AHP process. Participants decided the relative importance of the Korean disaster mental health service system regarding initial professional intervention as follows. K-DPAT could be organized at a national level (43.0%) or regional level (40.0%). K-DPAT members should be managed (59.0%) and educated (52.1%) by national level than regional or local level. K-DPAT should be organized independent of the preexisting mental health system (70.1%). Funding for K-DPAT should be from the Ministry of Public Safety and the system could be managed by Ministry of Health (65.8%). Experts agreed K-DPAT leader is suitable for key decision maker for most types of disaster except infectious disease. We expect new model for disaster mental health services can improve insufficiency of the system such as fragmentation and decrease the unmet needs of early professional intervention for the disaster victims.

Keywords: analytic hierarchy process, decision making, disaster, DPAT, mental health services

Procedia PDF Downloads 267
27742 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 557
27741 The Relationship of Building Information Modeling (BIM) Capability in Quantity Surveying Practice and Project Performance

Authors: P. F. Wong, H. Salleh, F. A. Rahim

Abstract:

The adoption of building information modeling (BIM) is increasing in the construction industry. However, quantity surveyors are slow in adoption compared to other professions due to lack of awareness of the BIM’s potential in their profession. It is still unclear on how BIM application can enhance quantity surveyors’ work performance and project performance. The aim of this research is to identify the capabilities of BIM in quantity surveying practices and examine the relationship between BIM capabilities and project performance. Questionnaire survey and interviews were adopted for data collection. Literature reviews identified there are eleven BIM capabilities in quantity surveying practice. Questionnaire results showed that there are several BIM capabilities significantly correlated with project performance in time, cost and quality aspects and the results were validated through interviews. These findings show that BIM has the capabilities to enhance quantity surveyors’ performances and subsequently improved project performance.

Keywords: Building Information Modeling (BIM), quantity surveyors, capability, project performance

Procedia PDF Downloads 361
27740 Performance Monitoring and Environmental Impact Analysis of a Photovoltaic Power Plant: A Numerical Modeling Approach

Authors: Zahzouh Zoubir

Abstract:

The widespread adoption of photovoltaic panel systems for global electricity generation is a prominent trend. Algeria, demonstrating steadfast commitment to strategic development and innovative projects for harnessing solar energy, emerges as a pioneering force in the field. Heat and radiation, being fundamental factors in any solar system, are currently subject to comprehensive studies aiming to discern their genuine impact on crucial elements within photovoltaic systems. This endeavor is particularly pertinent given that solar module performance is exclusively assessed under meticulously defined Standard Test Conditions (STC). Nevertheless, when deployed outdoors, solar modules exhibit efficiencies distinct from those observed under STC due to the influence of diverse environmental factors. This discrepancy introduces ambiguity in performance determination, especially when surpassing test conditions. This article centers on the performance monitoring of an Algerian photovoltaic project, specifically the Oued El Keberite power (OKP) plant boasting a 15 megawatt capacity, situated in the town of Souk Ahras in eastern Algeria. The study elucidates the behavior of a subfield within this facility throughout the year, encompassing various conditions beyond the STC framework. To ensure the optimal efficiency of solar panels, this study integrates crucial factors, drawing on an authentic technical sheet from the measurement station of the OKP photovoltaic plant. Numerical modeling and simulation of a sub-field of the photovoltaic station were conducted using MATLAB Simulink. The findings underscore how radiation intensity and temperature, whether low or high, impact the short-circuit current, open-circuit voltage; fill factor, and overall efficiency of the photovoltaic system.

Keywords: performance monitoring, photovoltaic system, numerical modeling, radiation intensity

Procedia PDF Downloads 62
27739 Application Case and Result Consideration About Basic and Working Design of Floating PV Generation System Installed in the Upstream of Dam

Authors: Jang-Hwan Yin, Hae-Jeong Jeong, Hyo-Geun Jeong

Abstract:

K-water (Korea Water Resources Corporation) conducted basic and working design about floating PV generation system installed above water in the upstream of dam to develop clean energy using water with importance of green growth is magnified ecumenically. PV Generation System on the ground applied considerably until now raise environmental damage by using farmland and forest land, PV generation system on the building roof is already installed at almost the whole place of business and additional installation is almost impossible. Installation space of PV generation system is infinite and efficient national land use is possible because it is installed above water. Also, PV module's efficiency increase by natural water cooling method and no shade. So it is identified that annual power generation is more than PV generation system on the ground by operating performance data. Although it is difficult to design and construct by high cost, little application case, difficult installation of floater, mooring device, underwater cable, etc. However, it has been examined cost reduction plan such as structure weight lightening, floater optimal design, etc. This thesis described basic and working design result systematically about K-water's floating PV generation system development and suggested optimal design method of floating PV generation system. Main contents are photovoltaic array location select, substation location select related underwater cable, PV module and inverter design, transmission and substation equipment design, floater design related structure weight lightening, mooring system design related water level fluctuation, grid connecting technical review, remote control and monitor equipment design, etc. This thesis will contribute to optimal design and business extension of floating PV generation system, and it will be opportunity revitalize clean energy development using water.

Keywords: PV generation system, clean energy, green growth, solar energy

Procedia PDF Downloads 407