Search results for: time representation
8812 Conflict Causes within Construction Projects; Conflict Interaction across Project Phases
Authors: Abdullah Mohammed Alshehri
Abstract:
The projects in the construction industry have significantly increased, given its contribution to the overall Gross Domestic Product (GDP) of the countries. Reflecting upon the complex nature and involvement of various agents, the study aims to analyze the conflicts cause within construction projects. Therefore, the study strived to come out with understanding the levels of conflict interaction across project phases. However, this conducted by investigating the association between antecedents and apparent conflicts inherent in. The study used a qualitative approach for collecting the data through a quantitative, semi-structured method. Formation of a questionnaire survey has been conducted for over 30 respondents. However, the survey came out with the identification of 25 conflict cause categories, which can take place in different construction project phases, including pre-design phase, pre-construction phase, construction phase, commissioning, and completion phase. For example, conflicts associated with inconsistencies or discrepancies within or between project documents, which took place at tendering time in the pre-construction phase were relatable with the selection of material specifications that should be supplied or used in the construction projects at the construction phase. Its analysis can provide comprehensive understanding, trace the root of the problem, which offers a roadmap to deepen the understanding of the conflict conditions and ‘course of action’ necessary for project management strategy actions toward avoiding or minimizing conflict causes at project life.Keywords: construction, conflict causes, levels, interaction, phases
Procedia PDF Downloads 1848811 A Simple Algorithm for Real-Time 3D Capturing of an Interior Scene Using a Linear Voxel Octree and a Floating Origin Camera
Authors: Vangelis Drosos, Dimitrios Tsoukalos, Dimitrios Tsolis
Abstract:
We present a simple algorithm for capturing a 3D scene (focused on the usage of mobile device cameras in the context of augmented/mixed reality) by using a floating origin camera solution and storing the resulting information in a linear voxel octree. Data is derived from cloud points captured by a mobile device camera. For the purposes of this paper, we assume a scene of fixed size (known to us or determined beforehand) and a fixed voxel resolution. The resulting data is stored in a linear voxel octree using a hashtable. We commence by briefly discussing the logic behind floating origin approaches and the usage of linear voxel octrees for efficient storage. Following that, we present the algorithm for translating captured feature points into voxel data in the context of a fixed origin world and storing them. Finally, we discuss potential applications and areas of future development and improvement to the efficiency of our solution.Keywords: voxel, octree, computer vision, XR, floating origin
Procedia PDF Downloads 1378810 Production of Nanocrystalline Cellulose (NCC) from Rice Husk Biomass by Chemical Extraction Process
Authors: Md. Sakinul Islam, Nhol Kao, Sati Bhattacharya, Rahul Gupta
Abstract:
The objective of the study is to produce naocrystalline cellulose (NCC) from rice husk by chemical extraction process. The chemical extraction processes of this production are delignification, bleaching and hydrolysis. In order to produce NCC, raw rice husk (RRH) was grinded and converted to powder form. Powder rice husk was obtained by sieving and the particles in the 75-710 μm size range was used for experimental work. The production of NCC was conducted into the jacketed glass reactor at 80 ˚C temperature under predetermined experimental conditions. In this work NaOH (4M) solution was used for delignification process. After certain experimental time delignified powder RH was collected from the reactor then washed, bleached and finally hydrolyzed in order to degrade cellulose to nanocrystalline cellulose (NCC). For bleaching and hydrolysis processes NaOCl (20%) and H2SO4 (4M) solutions were used, respectively. The resultant products from hydrolysis was neutralized by buffer solution and analyzed by FTIR, XRD, SEM, AFM and TEM. From the analysis, NCC has been identified successfully and the particle dimension has been confirmed to be in the range of 20-50 nm. From XRD results, the crystallinity of NCC was found to be approximately 45%.Keywords: nanocrystalline cellulose, NCC, rice husk, biomass, chemical extraction
Procedia PDF Downloads 4048809 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.Keywords: bed topography, FBM, LBM, shallow water, simulations
Procedia PDF Downloads 1038808 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method
Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt
Abstract:
Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS
Procedia PDF Downloads 1568807 Multiloop Fractional Order PID Controller Tuned Using Cuckoo Algorithm for Two Interacting Conical Tank Process
Authors: U. Sabura Banu, S. K. Lakshmanaprabu
Abstract:
The improvement of meta-heuristic algorithm encourages control engineer to design an optimal controller for industrial process. Most real-world industrial processes are non-linear multivariable process with high interaction. Even in sub-process unit, thousands of loops are available mostly interacting in nature. Optimal controller design for such process are still challenging task. Closed loop controller design by multiloop PID involves a tedious procedure by performing interaction study and then PID auto-tuning the loop with higher interaction. Finally, detuning the controller to accommodate the effects of the other process variables. Fractional order PID controllers are replacing integer order PID controllers recently. Design of Multiloop Fractional Order (MFO) PID controller is still more complicated. Cuckoo algorithm, a swarm intelligence technique is used to optimally tune the MFO PID controller with easiness minimizing Integral Time Absolute Error. The closed loop performance is tested under servo, regulatory and servo-regulatory conditions.Keywords: Cuckoo algorithm, mutliloop fractional order PID controller, two Interacting conical tank process
Procedia PDF Downloads 5028806 Deep Learning Based Fall Detection Using Simplified Human Posture
Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif
Abstract:
Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.Keywords: fall detection, machine learning, deep learning, pose estimation, tracking
Procedia PDF Downloads 1938805 A Survey on Requirements and Challenges of Internet Protocol Television Service over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
Over the last years, the demand for high bandwidth services, such as live (IPTV Service) and on-demand video streaming, steadily and rapidly increased. It has been predicted that video traffic (IPTV, VoD, and WEB TV) will account more than 90% of global Internet Protocol traffic that will cross the globe in 2016. Consequently, the importance and consideration on requirements and challenges of service providers faced today in supporting user’s requests for entertainment video across the various IPTV services through virtualization over Software Defined Networks (SDN), is tremendous in the highest stage of attention. What is necessarily required, is to deliver optimized live and on-demand services like Internet Protocol Service (IPTV Service) with low cost and good quality by strictly fulfill the essential requirements of Clients and ISP’s (Internet Service Provider’s) in the same time. The aim of this study is to present an overview of the important requirements and challenges of IPTV service with two network trends on solving challenges through virtualization (SDN and Network Function Virtualization). This paper provides an overview of researches published in the last five years.Keywords: challenges, IPTV service, requirements, software defined networking (SDN)
Procedia PDF Downloads 2748804 Impact of Six-Minute Walk or Rest Break during Extended GamePlay on Executive Function in First Person Shooter Esport Players
Authors: Joanne DiFrancisco-Donoghue, Seth E. Jenny, Peter C. Douris, Sophia Ahmad, Kyle Yuen, Hillary Gan, Kenney Abraham, Amber Sousa
Abstract:
Background: Guidelines for the maintenance of health of esports players and the cognitive changes that accompany competitive gaming are understudied. Executive functioning is an important cognitive skill for an esports player. The relationship between executive functions and physical exercise has been well established. However, the effects of prolonged sitting regardless of physical activity level have not been established. Prolonged uninterrupted sitting reduces cerebral blood flow. Reduced cerebral blood flow is associated with lower cognitive function and fatigue. This decrease in cerebral blood flow has been shown to be offset by frequent and short walking breaks. These short breaks can be as little as 2 minutes at the 30-minute mark and 6 minutes following 60 minutes of prolonged sitting. The rationale is the increase in blood flow and the positive effects this has on metabolic responses. The primary purpose of this study was to evaluate executive function changes following 6-minute bouts of walking and complete rest mid-session, compared to no break, during prolonged gameplay in competitive first-person shooter (FPS) esports players. Methods: This study was conducted virtually due to the Covid-19 pandemic and was approved by the New York Institute of Technology IRB. Twelve competitive FPS participants signed written consent to participate in this randomized pilot study. All participants held a gold ranking or higher. Participants were asked to play for 2 hours on three separate days. Outcome measures to test executive function included the Color Stroop and the Tower of London tests which were administered online each day prior to gaming and at the completion of gaming. All participants completed the tests prior to testing for familiarization. One day of testing consisted of a 6-minute walk break after 60-75 minutes of play. The Rate of Perceived Exertion (RPE) was recorded. The participant continued to play for another 60-75 minutes and completed the tests again. Another day the participants repeated the same methods replacing the 6-minute walk with lying down and resting for 6 minutes. On the last day, the participant played continuously with no break for 2 hours and repeated the outcome tests pre and post-play. A Latin square was used to randomize the treatment order. Results: Using descriptive statistics, the largest change in mean reaction time incorrect congruent pre to post play was seen following the 6-minute walk (662.0 (609.6) ms pre to 602.8 (539.2) ms post), followed by the 6-minute rest group (681.7(618.1) ms pre to 666.3 (607.9) ms post), and with minimal change in the continuous group (594.0(534.1) ms pre to 589.6(552.9) ms post). The mean solution time was fastest in the resting condition (7774.6(6302.8)ms), followed by the walk condition (7929.4 (5992.8)ms), with the continuous condition being slowest (9337.3(7228.7)ms). the continuous group 9337.3(7228.7) ms; 7929.4 (5992.8 ) ms 774.6(6302.8) ms. Conclusion: Short walking breaks improve blood flow and reduce the risk of venous thromboembolism during prolonged sitting. This pilot study demonstrated that a low intensity 6 -minute walk break, following 60 minutes of play, may also improve executive function in FPS gamers.Keywords: executive function, FPS, physical activity, prolonged sitting
Procedia PDF Downloads 2318803 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: object detection, feature, descriptors, SIFT, SURF, depth images, service robots
Procedia PDF Downloads 5508802 An Efficient Architecture for Dynamic Customization and Provisioning of Virtual Appliance in Cloud Environment
Authors: Rajendar Kandan, Mohammad Zakaria Alli, Hong Ong
Abstract:
Cloud computing is a business model which provides an easier management of computing resources. Cloud users can request virtual machine and install additional softwares and configure them if needed. However, user can also request virtual appliance which provides a better solution to deploy application in much faster time, as it is ready-built image of operating system with necessary softwares installed and configured. Large numbers of virtual appliances are available in different image format. User can download available appliances from public marketplace and start using it. However, information published about the virtual appliance differs from each providers leading to the difficulty in choosing required virtual appliance as it is composed of specific OS with standard software version. However, even if user choses the appliance from respective providers, user doesn’t have any flexibility to choose their own set of softwares with required OS and application. In this paper, we propose a referenced architecture for dynamically customizing virtual appliance and provision them in an easier manner. We also add our experience in integrating our proposed architecture with public marketplace and Mi-Cloud, a cloud management software.Keywords: cloud computing, marketplace, virtualization, virtual appliance
Procedia PDF Downloads 3008801 Aquinas Be Damned: Tension between Nothingness and Suffering
Authors: Elizabeth Latham
Abstract:
Aquinas has long been revered by the Catholic Church as one of the greatest theologians of all time. His most well-known and widely respected theological work, the Summa Theologica has been referenced by countless members of the clergy in support of arguments for and about the existence of God. It is surprising, then, and important that one component in his ontological arguments seems to contradict a precept upheld by the Catechism, the Catholic Church’s comprehensive document detailing their theological positions and laws. In Summa Theologica, Thomas Aquinas argued that God’s eternal existence is both an observable and necessary quality. In the Catechism, the Catholic Church argues that souls in Hell are separated from God, and only souls in Heaven are like him. After introducing research on Philosophical Psychology and the natures of consciousness and pain, this paper comes to the conclusion that in order to reconcile the theology of the Catholic Church at large with that of Thomas Aquinas, one must somehow solve the following problem: if a soul must exist eternally to suffer eternally, it must be like God; and, if a soul is in Hell, it is completely separate from God and not like him at all. Thomas Aquinas deviates at this point from the current theological holdings of the Catholic Church, and this apparent discrepancy must be resolved if the Church hopes to use him going forward as a standard for natural theology.Keywords: aquinas, catholic catechism, consciousness, philosophical psychology, summa theologica
Procedia PDF Downloads 2148800 Climate Change and the Role of Foreign-Invested Enterprises
Authors: Xuemei Jiang, Kunfu Zhu, Shouyang Wang
Abstract:
In this paper, we selected China as a case and employ a time-series of unique input-output tables distinguishing firm ownership and processing exports, to evaluate the role of foreign-invested enterprises (FIEs) in China’s rapid carbon dioxide emission growth. The results suggested that FIEs contributed to 11.55% of the economic outputs’ growth in China between 1992-2010, but accounted for only 9.65% of the growth of carbon dioxide emissions. In relative term, until 2010 FIEs still emitted much less than Chinese-owned enterprises (COEs) when producing the same amount of outputs, although COEs experienced much faster technology upgrades. In an ideal scenario where we assume the final demands remain unchanged and COEs completely mirror the advanced technologies of FIEs, more than 2000 Mt of carbon dioxide emissions would be reduced for China in 2010. From a policy perspective, the widespread FIEs are very effective and efficient channel to encourage technology transfer from developed to developing countries.Keywords: carbon dioxide emissions, foreign-invested enterprises, technology transfer, input–output analysis, China
Procedia PDF Downloads 4028799 Competencies and Training Needs for School Sport Managers in the North West Province, South Africa
Authors: Elriena Eksteen, Yolandi Willemse, Dawie D. J. Malan, Suria Ellis
Abstract:
It is important to understand which competencies are needed for managerial and administrative effectiveness of school sport managers with regard to the design, delivery and direction of school sport programmes. The purpose of this study was to determine the competencies and training needs for secondary school sport managers in the North West Province. Data were gathered from 79 school sport managers in the North West Province by means of a validated self-compiled questionnaire. Descriptive statistics, factor analysis and a dependent t-test were used to compare which competencies school sport managers perceive as important in their work with the competencies they actually perform. Functional competencies and core competencies were both found to be important for managing school sport effectively. There were statistically significant differences between the perceived importance of competencies and the frequency with which competencies were actually performed. Respondents attached greater importance to functional and core competencies than the proportion of time spent actually performing them. Furthermore, results indicated the need to train teachers in managing sport finance, sport facilities and human resources, as well as presenting workshops in public relations, sport marketing and sport organisation.Keywords: competencies, functional competencies, core competencies, school sport manager, training needs
Procedia PDF Downloads 4338798 Large Eddy Simulation of Particle Clouds Using Open-Source CFD
Authors: Ruo-Qian Wang
Abstract:
Open-source CFD has become increasingly popular and promising. The recent progress in multiphase flow enables new CFD applications, which provides an economic and flexible research tool for complex flow problems. Our numerical study using four-way coupling Euler-Lagrangian Large-Eddy Simulations to resolve particle cloud dynamics with OpenFOAM and CFDEM will be introduced: The fractioned Navier-Stokes equations are numerically solved for fluid phase motion, solid phase motion is addressed by Lagrangian tracking for every single particle, and total momentum is conserved by fluid-solid inter-phase coupling. The grid convergence test was performed, which proves the current resolution of the mesh is appropriate. Then, we validated the code by comparing numerical results with experiments in terms of particle cloud settlement and growth. A good comparison was obtained showing reliability of the present numerical schemes. The time and height at phase separations were defined and analyzed for a variety of initial release conditions. Empirical formulas were drawn to fit the results.Keywords: four-way coupling, dredging, land reclamation, multiphase flows, oil spill
Procedia PDF Downloads 4298797 Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem
Authors: Taisir Eldos, Aws Kanan, Waleed Nazih, Ahmad Khatatbih
Abstract:
Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept.Keywords: evolutionary algorithms, chemical reaction optimization, traveling salesman, board drilling
Procedia PDF Downloads 5238796 Implementation of Edge Detection Based on Autofluorescence Endoscopic Image of Field Programmable Gate Array
Authors: Hao Cheng, Zhiwu Wang, Guozheng Yan, Pingping Jiang, Shijia Qin, Shuai Kuang
Abstract:
Autofluorescence Imaging (AFI) is a technology for detecting early carcinogenesis of the gastrointestinal tract in recent years. Compared with traditional white light endoscopy (WLE), this technology greatly improves the detection accuracy of early carcinogenesis, because the colors of normal tissues are different from cancerous tissues. Thus, edge detection can distinguish them in grayscale images. In this paper, based on the traditional Sobel edge detection method, optimization has been performed on this method which considers the environment of the gastrointestinal, including adaptive threshold and morphological processing. All of the processes are implemented on our self-designed system based on the image sensor OV6930 and Field Programmable Gate Array (FPGA), The system can capture the gastrointestinal image taken by the lens in real time and detect edges. The final experiments verified the feasibility of our system and the effectiveness and accuracy of the edge detection algorithm.Keywords: AFI, edge detection, adaptive threshold, morphological processing, OV6930, FPGA
Procedia PDF Downloads 2338795 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 1888794 Fluid Inclusions Analysis of Fluorite from the Hammam Jedidi District, North-Eastern Tunisia
Authors: Miladi Yasmine, Bouhlel Salah, Garnit Hechmi
Abstract:
Hydrothermal vein-type deposits of the Hammam Jedidi F-Ba(Pb-Zn-Cu) are hosted in Lower Jurassic, Cretaceous and Tertiary series, and located near a very important structural lineament (NE-SW) corresponding to the Hammam Jedidi Fault in the Tunisian Dorsale. The circulation of the ore forming fluid is triggered by a regional tectonic compressive phase which occurred during the miocène time. Mineralization occurs as stratabound and vein-type orebodies adjacent to the Triassic salt diapirs and within fault in Jurassic limestone. Fluid inclusions data show that two distinct fluids were involved in the mineralisation deposition: a warmer saline fluid (180°C, 20 wt % NaCl equivalent) and cooler less saline fluid (126°C, 5wt%NaCl equivalent). The contrasting salinities and halogen ratios suggest that this two fluid derived from one of the brine originated after the dissolution of halite as suggested by its high salinity. The other end member, as indicated by the low Cl/Br ratios, acquired its low salinity by dilution of Br enriched evaporated seawater. These results are compatible with Mississippi-Valley- type mineralization.Keywords: Jebel Oust, fluid inclusions, North Eastern Tunisia, mineralization
Procedia PDF Downloads 3478793 The New Media and Their Economic and Socio-Political Imperatives for Africa: A Study of Nigeria
Authors: Chukwukelue Uzodinma Umenyilorah
Abstract:
The advent of the New Media as enabled by information and communication technology from the 19th through the 21st century has no doubt taken its toll on all fronts of human existence; especially in Africa. Apart from shortening the distance between all parts of the world, technology and the new media has also succeeded in making the world a global village. Hence, it is now easy to relay live audio and visual signals across the length and breadth of the world in real time. People now contract and execute businesses across countries, conferences are held and ideas are shared with a simple push of a button. Likewise, political leaders and diplomats are now just a click away from reaching those important decisions that take their country’s fortunes to the next level. On the flip side, ICT and the New Media have also contributed in no small measure in aiding global terrorism and general insecurity around the world. More interesting is the fact that as developing economies, African countries have massively embraced the information technology and this has helped them in keeping up with the trends in the polity of other model democracies around the world. This paper is therefore designed to determine the how much effect ICT and the New Media has exerted on the economic, social and political lives of African. Nigeria shall be used as a case in point for the purpose of this paper.Keywords: Africa, ICT, new media, Nigeria
Procedia PDF Downloads 2578792 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).Keywords: chemometrics, chromatography, pesticides, sum of ranking differences
Procedia PDF Downloads 3778791 Assessment of Artists’ Socioeconomic and Working Conditions: The Empirical Case of Lithuania
Authors: Rusne Kregzdaite, Erika Godlevska, Morta Vidunaite
Abstract:
The main aim of this research is to explore existing methodologies for artists’ labour force and create artists’ socio-economic and creative conditions in an assessment model. Artists have dual aims in their creative working process: 1) income and 2) artistic self-expression. The valuation of their conditions takes into consideration both sides: the factors related to income and the satisfaction of the creative process and its result. The problem addressed in the study: tangible and intangible artists' criteria used for assessments creativity conditions. The proposed model includes objective factors (working time, income, etc.) and subjective factors (salary covering essential needs, self-satisfaction). Other intangible indicators are taken into account: the impact on the common culture, social values, and the possibility to receive awards, to represent the country in the international market. The empirical model consists of 59 separate indicators, grouped into eight categories. The deviation of each indicator from the general evaluation allows for identifying the strongest and the weakest components of artists’ conditions.Keywords: artist conditions, artistic labour force, cultural policy, indicator, assessment model
Procedia PDF Downloads 1558790 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis
Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu
Abstract:
Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding
Procedia PDF Downloads 1748789 Fueling Efficient Reporting And Decision-Making In Public Health With Large Data Automation In Remote Areas, Neno Malawi
Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Julia Huggins, Fabien Munyaneza
Abstract:
Background: Partners In Health – Malawi introduced one of Operational Researches called Primary Health Care (PHC) Surveys in 2020, which seeks to assess progress of delivery of care in the district. The study consists of 5 long surveys, namely; Facility assessment, General Patient, Provider, Sick Child, Antenatal Care (ANC), primarily conducted in 4 health facilities in Neno district. These facilities include Neno district hospital, Dambe health centre, Chifunga and Matope. Usually, these annual surveys are conducted from January, and the target is to present final report by June. Once data is collected and analyzed, there are a series of reviews that take place before reaching final report. In the first place, the manual process took over 9 months to present final report. Initial findings reported about 76.9% of the data that added up when cross-checked with paper-based sources. Purpose: The aim of this approach is to run away from manually pulling the data, do fresh analysis, and reporting often associated not only with delays in reporting inconsistencies but also with poor quality of data if not done carefully. This automation approach was meant to utilize features of new technologies to create visualizations, reports, and dashboards in Power BI that are directly fished from the data source – CommCare hence only require a single click of a ‘refresh’ button to have the updated information populated in visualizations, reports, and dashboards at once. Methodology: We transformed paper-based questionnaires into electronic using CommCare mobile application. We further connected CommCare Mobile App directly to Power BI using Application Program Interface (API) connection as data pipeline. This provided chance to create visualizations, reports, and dashboards in Power BI. Contrary to the process of manually collecting data in paper-based questionnaires, entering them in ordinary spreadsheets, and conducting analysis every time when preparing for reporting, the team utilized CommCare and Microsoft Power BI technologies. We utilized validations and logics in CommCare to capture data with less errors. We utilized Power BI features to host the reports online by publishing them as cloud-computing process. We switched from sharing ordinary report files to sharing the link to potential recipients hence giving them freedom to dig deep into extra findings within Power BI dashboards and also freedom to export to any formats of their choice. Results: This data automation approach reduced research timelines from the initial 9 months’ duration to 5. It also improved the quality of the data findings from the original 76.9% to 98.9%. This brought confidence to draw conclusions from the findings that help in decision-making and gave opportunities for further researches. Conclusion: These results suggest that automating the research data process has the potential of reducing overall amount of time spent and improving the quality of the data. On this basis, the concept of data automation should be taken into serious consideration when conducting operational research for efficiency and decision-making.Keywords: reporting, decision-making, power BI, commcare, data automation, visualizations, dashboards
Procedia PDF Downloads 1228788 Identifying Future Helminth Zoonotic in Indonesian Slow Loris (Nycticebus coucang)
Authors: Nafisatul Ulfa, Elok Budi Retnani, R. P. Agus Lelana
Abstract:
Emerging zoonotic parasite infection could originate in wildlife so its time very important to identify zoonotic agents in wild populations or maintained. According to the International Union Conservation of Nature (IUCN), Sumateran slow loris (Nycticebus coucang) was protected primate which have vulnerable status. Their population in wildlife decreased cause hunting for trade and destroy habitat. Helminthiasis can caused dead regularly and its so The study was conducted to know prevalence of gastrointestinal helminth infection of slow loris (Nycticebus coucang) in The Centre of Primate Rehabilitation of International Animal Rescue Indonesia (YIARI). Total of 13 fecal sampel from captive group of Nycticebus coucang were collected for 6 days and analysed from Februari-Mei 2014 by using McMaster, flotasion and Baermann technique. All fecal sampel was examined based on its fecal pool. Out of 13 fecal sampel examined, all of sampel (100%) was infected with five types of helminth Ascaris (84,61%), Hymenolepis (76,92%), Strongylid (61,54%), Oxyurid (15,38%) dan Trichuris (7,69%). The average number of egg per gram (EPG) was 11-1810.Keywords: fecal, helminth, Nycticebus coucang, parasite, prevalence, slow loris
Procedia PDF Downloads 5688787 Past, Present, and Future of Robotics Technology in Construction Industry (Literature Review)
Authors: Samira Haghbin, Behnam Daryayelaal, Zeinab Amiri
Abstract:
As a result of rapid progress of technology in various industries, the only way to survive in a competitive market of business is to update one's situation along with the said developments. During recent decades, Robotics and automation of the construction operation has emerged as one of the important technologies grabbing the attention of various industries and specially the construction industry. Because of the coming labor shortage of the aging society in the near future, robots will be used in construction fields more than ever. By predicting the condition of Robotics in world's future construction industry, we can make necessary preparations to face with needs imposed by the time and stay ahead. This article takes a library study approach and presents a literature review of existing studies with an aim to investigate the use of robotics in past, present and future of construction industry and make predictions on its' growth and change process. Therefore, to make familiar with this kind of technology and its' requirements in the construction industry, the status of Robotics in construction industry of different countries of the world has been studied and necessary context for its' future progress is expressed. It is hoped that identifying needs and required contexts will facilitate further development of advanced technologies such as robotics industry and lead to more preparation for future.Keywords: future of robotics, construction industry, construction automation, trends of automation
Procedia PDF Downloads 3948786 Axiomatic Systems as an Alternative to Teach Physics
Authors: Liliana M. Marinelli, Cristina T. Varanese
Abstract:
In the last few years, students from higher education have difficulties in grasping mathematical concepts which support physical matters, especially those in the first years of this education. Classical Physics teaching turns to be complex when students are not able to make use of mathematical tools which lead to the conceptual structure of Physics. When derivation and integration rules are not used or developed in parallel with other disciplines, the physical meaning that we attempt to convey turns to be complicated. Due to this fact, it could be of great use to see the Classical Mechanics from an axiomatic approach, where the correspondence rules give physical meaning, if we expect students to understand concepts clearly and accurately. Using the Minkowski point of view adapted to a two-dimensional space and time where vectors, matrices, and straight lines (worked from an affine space) give mathematical and physical rigorosity even when it is more abstract. An interesting option would be to develop the disciplinary contents from an axiomatic version which embraces the Classical Mechanics as a particular case of Relativistic Mechanics. The observation about the increase in the difficulties stated by students in the first years of education allows this idea to grow as a possible option to improve performance and understanding of the concepts of this subject.Keywords: axioms, classical physics, physical concepts, relativity
Procedia PDF Downloads 3118785 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 718784 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking
Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim
Abstract:
In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network
Procedia PDF Downloads 1678783 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)
Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos
Abstract:
The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.Keywords: rotor noise, acoustic tool, GPU Programming, UAV noise
Procedia PDF Downloads 404