Search results for: thermal insulating properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11132

Search results for: thermal insulating properties

902 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 103
901 Modelling Tyre Rubber Materials for High Frequency FE Analysis

Authors: Bharath Anantharamaiah, Tomas Bouda, Elke Deckers, Stijn Jonckheere, Wim Desmet, Juan J. Garcia

Abstract:

Automotive tyres are gaining importance recently in terms of their noise emission, not only with respect to reduction in noise, but also their perception and detection. Tyres exhibit a mechanical noise generation mechanism up to 1 kHz. However, owing to the fact that tyre is a composite of several materials, it has been difficult to model it using finite elements to predict noise at high frequencies. The currently available FE models have a reliability of about 500 Hz, the limit which, however, is not enough to perceive the roughness or sharpness of noise from tyre. These noise components are important in order to alert pedestrians on the street about passing by slow, especially electric vehicles. In order to model tyre noise behaviour up to 1 kHz, its dynamic behaviour must be accurately developed up to a 1 kHz limit using finite elements. Materials play a vital role in modelling the dynamic tyre behaviour precisely. Since tyre is a composition of several components, their precise definition in finite element simulations is necessary. However, during the tyre manufacturing process, these components are subjected to various pressures and temperatures, due to which these properties could change. Hence, material definitions are better described based on the tyre responses. In this work, the hyperelasticity of tyre component rubbers is calibrated, using the design of experiments technique from the tyre characteristic responses that are measured on a stiffness measurement machine. The viscoelasticity of rubbers are defined by the Prony series for rubbers, which are determined from the loss factor relationship between the loss and storage moduli, assuming that the rubbers are excited within the linear viscoelasticity ranges. These values of loss factor are measured and theoretically expressed as a function of rubber shore hardness or hyperelasticities. From the results of the work, there exists a good correlation between test and simulation vibrational transfer function up to 1 kHz. The model also allows flexibility, i.e., the frequency limit can also be extended, if required, by calibrating the Prony parameters of rubbers corresponding to the frequency of interest. As future work, these tyre models are used for noise generation at high frequencies and thus for tyre noise perception.

Keywords: tyre dynamics, rubber materials, prony series, hyperelasticity

Procedia PDF Downloads 179
900 Controlling RPV Embrittlement through Wet Annealing in Support of Life Extension

Authors: E. A. Krasikov

Abstract:

As a main barrier against radioactivity outlet reactor pressure vessel (RPV) is a key component in terms of NPP safety. Therefore, present-day demands in RPV reliability enhance have to be met by all possible actions for RPV in-service embrittlement mitigation. Annealing treatment is known to be the effective measure to restore the RPV metal properties deteriorated by neutron irradiation. There are two approaches to annealing. The first one is so-called ‘dry’ high temperature (~475°C) annealing. It allows obtaining practically complete recovery, but requires the removal of the reactor core and internals. External heat source (furnace) is required to carry out RPV heat treatment. The alternative approach is to anneal RPV at a maximum coolant temperature which can be obtained using the reactor core or primary circuit pumps while operating within the RPV design limits. This low temperature «wet» annealing, although it cannot be expected to produce complete recovery, is more attractive from the practical point of view especially in cases when the removal of the internals is impossible. The first RPV «wet» annealing was done using nuclear heat (US Army SM-1A reactor). The second one was done by means of primary pumps heat (Belgian BR-3 reactor). As a rule, there is no recovery effect up to annealing and irradiation temperature difference of 70°C. It is known, however, that along with radiation embrittlement neutron irradiation may mitigate the radiation damage in metals. Therefore, we have tried to test the possibility to use the effect of radiation-induced ductilization in ‘wet’ annealing technology by means of nuclear heat utilization as heat and neutron irradiation sources at once. In support of the above-mentioned conception the 3-year duration reactor experiment on 15Cr3NiMoV type steel with preliminary irradiation at operating PWR at 270°C and following extra irradiation (87 h at 330°C) at IR-8 test reactor was fulfilled. In fact, embrittlement was partly suppressed up to value equivalent to 1,5 fold neutron fluence decrease. The degree of recovery in case of radiation enhanced annealing is equal to 27% whereas furnace annealing results in zero effect under existing conditions. Mechanism of the radiation-induced damage mitigation is proposed. It is hoped that «wet » annealing technology will help provide a better management of the RPV degradation as a factor affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long-term operation of PWRs.

Keywords: controlling, embrittlement, radiation, steel, wet annealing

Procedia PDF Downloads 360
899 Using ICESat-2 Dynamic Ocean Topography to Estimate Western Arctic Freshwater Content

Authors: Joshua Adan Valdez, Shawn Gallaher

Abstract:

Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport, modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116km3/year across the Beaufort Gyre. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff, and is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity-driven pycnocline as opposed to the temperature-driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and dynamic ocean topography (DOT). In situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time-consuming. Utilizing NASA’s ICESat-2’s DOT remote sensing capabilities and Air Expendable CTD (AXCTD) data from the Seasonal Ice Zone Reconnaissance Surveys (SIZRS), a linear regression model between DOT and freshwater content is determined along the 150° west meridian. Freshwater content is calculated by integrating the volume of water between the surface and a depth with a reference salinity of ~34.8. Using this model, we compare interannual variability in freshwater content within the gyre, which could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non-in situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially demonstrate the value of remote sensing tools to reduce reliance on field deployment platforms to characterize physical ocean properties.

Keywords: Cryosphere, remote sensing, Arctic oceanography, climate modeling, Ekman transport

Procedia PDF Downloads 60
898 Evaluating Viability of Using South African Forestry Process Biomass Waste Mixtures as an Alternative Pyrolysis Feedstock in the Production of Bio Oil

Authors: Thembelihle Portia Lubisi, Malusi Ntandoyenkosi Mkhize, Jonas Kalebe Johakimu

Abstract:

Fertilizers play an important role in maintaining the productivity and quality of plants. Inorganic fertilizers (containing nitrogen, phosphorus, and potassium) are largely used in South Africa as they are considered inexpensive and highly productive. When applied, a portion of the excess fertilizer will be retained in the soil, a portion enters water streams due to surface runoff or the irrigation system adopted. Excess nutrient from the fertilizers entering the water stream eventually results harmful algal blooms (HABs) in freshwater systems, which not only disrupt wildlife but can also produce toxins harmful to humans. Use of agro-chemicals such as pesticides and herbicides has been associated with increased antimicrobial resistance (AMR) in humans as the plants are consumed by humans. This resistance of bacterial poses a threat as it prevents the Health sector from being able to treat infectious disease. Archaeological studies have found that pyrolysis liquids were already used in the time of the Neanderthal as a biocide and plant protection product. Pyrolysis is thermal degradation process of plant biomass or organic material under anaerobic conditions leading to production of char, bio-oils and syn gases. Bio-oil constituents can be categorized as water soluble (wood vinegar) and water insoluble fractions (tar and light oils). Wood vinegar (pyro-ligneous acid) is said to contain contains highly oxygenated compounds including acids, alcohols, aldehydes, ketones, phenols, esters, furans, and other multifunctional compounds with various molecular weights and compositions depending on the biomass material derived from and pyrolysis operating conditions. Various researchers have found the wood vinegar to be efficient in the eradication of termites, effective in plant protection and plant growth, has antibacterial characteristics and was found effective in inhibiting the micro-organisms such as candida yeast, E-coli, etc. This study investigated characterisation of South African forestry product processing waste with intention of evaluating the potential of using the respective biomass waste as feedstock for boil oil production via pyrolysis process. Ability to use biomass waste materials in production of wood-vinegar has advantages that it does not only allows for reduction of environmental pollution and landfill requirement, but it also does not negatively affect food security. The biomass wastes investigated were from the popular tree types in KZN, which are, pine saw dust (PSD), pine bark (PB), eucalyptus saw dust (ESD) and eucalyptus bark (EB). Furthermore, the research investigates the possibility of mixing the different wastes with an aim to lessen the cost of raw material separation prior to feeding into pyrolysis process and mixing also increases the amount of biomass material available for beneficiation. A 50/50 mixture of PSD and ESD (EPSD) and mixture containing pine saw dust; eucalyptus saw dust, pine bark and eucalyptus bark (EPSDB). Characterisation of the biomass waste will look at analysis such as proximate (volatiles, ash, fixed carbon), ultimate (carbon, hydrogen, nitrogen, oxygen, sulphur), high heating value, structural (cellulose, hemicellulose and lignin) and thermogravimetric analysis.

Keywords: characterisation, biomass waste, saw dust, wood waste

Procedia PDF Downloads 51
897 Formulation and In vivo Evaluation of Venlafaxine Hydrochloride Long Acting Tablet

Authors: Abdulwahhab Khedr, Tamer Shehata, Hanaa El-Ghamry

Abstract:

Venlafaxine HCl is a novel antidepressant drug used in the treatment of major depressive disorder, generalized anxiety disorder, social anxiety disorder and panic disorder. Conventional therapeutic regimens with venlafaxine HCl immediate-release dosage forms require frequent dosing due to short elimination half-life of the drug and reduced bioavailability. Hence, this study was carried out to develop sustained-release dosage forms of venlafaxine HCl to reduce its dosing frequency, to improve patient compliance and to reduce side effects of the drug. The polymers used were hydroxypropylmethyl cellulose, xanthan gum, sodium alginate, sodium carboxymethyl cellulose, Carbopol 940 and ethyl cellulose. The physical properties of the prepared tablets including tablet thickness, diameter, weight uniformity, content uniformity, hardness and friability were evaluated. Also, the in-vitro release of venlafaxine HCl from different matrix tablets was studied. Based on physical characters and in-vitro release profiles, certain formulae showing promising sustained-release profiles were subjected to film coating with 15% w/v EC in dichloromethane/ethanol mixture (1:1 ratio) using 1% w/v HPMC as pore former and 30% w/w dibutyl phthalate as plasticizer. The optimized formulations were investigated for drug-excipient compatibility using FTIR and DSC studies. Physical evaluation of the prepared tablets fulfilled the pharmacopoeial requirements for tablet friability test, where the weight loss of the prepared formulae did not exceed 1% of the weight of the tested tablets. Moderate release was obtained from tablets containing HPMC. FTIR and DSC studies for such formulae revealed the absence of any type of chemical interaction between venlafaxine HCl and the used polymers or excipients. Forced swimming test in rats was used to evaluate the antidepressant activity of the selected matrix tablets of venlafaxine HCl. Results showed that formulations significantly decreased the duration of animals’ immobility during the 24 hr-period of the test compared to non-treated group.

Keywords: antidepressant, sustained-release, matrix tablet, venlafaxine hydrochloride

Procedia PDF Downloads 226
896 Peach as a Potential Functional Food: Biological Activity and Important Phenolic Compound Source

Authors: Luís R. Silva, Catarina Bento, Ana C. Gonçalves, Fábio Jesus, Branca M. Silva

Abstract:

Nowadays, the general population is more and more concerned about nutrition and the health implications of an unbalanced diet. Current knowledge regarding the health benefits and antioxidant properties of certain foods such as fruits and vegetables has gained the interest of both the general public and scientific community. Peach (Prunus persica (L.) Batsch) is one of the most consumed fruits worldwide, with low sugar contents and a broad range of nutrients essential to the normal functioning of the body. Six different peach cultivars from the Fundão region in Portugal were evaluated regarding their phenolic composition by LC-DAD and biological activity. The prepared extracts’ capacity to scavenge free-radicals was tested through the stable free radical DPPH• and nitric oxide (•NO). Additionally, antidiabetic potential and protective effects against peroxyl radical (ROO•) induced damage to erythrocytes were also tested. LC-DAD analysis allowed the identification of 17 phenolic compounds, among which 5-O-caffeoylquinic acids and 3-O-caffeoylquinic acids are pointed out as the most abundant. Regarding the antioxidant activity, all cultivars displayed concentration-dependent free-radical scavenging activity against both nitrogen species and DPPH•. In respect to α-glucosidase inhibitory activity, Royal Magister and Royal Glory presented the highest inhibitory activity (IC50 = 11.7 ± 1.4 and 17.1 ± 1.7 μg/mL, respectively), nevertheless all six cultivars presented higher activity than the control acarbose. As for the protective effect of Royal Lu extract on the oxidative damage induced in erythrocytes by ROO•, the results were quite promising showing inhibition IC50 values of 110.0 ± 4.5 μg/mL and 83.8 ± 6.5 μg/mL for hemolysis and hemoglobin oxidation, respectively. The demonstrated activity is of course associated to the peaches’ phenolic profile, rich in phenolic acids and flavonoids with high hydrogen donating capacity. These compounds have great industrial interest for the manufacturing of natural products. The following step would naturally be the extraction and isolation from the plant tissues and large-scale production through biotechnology techniques.

Keywords: antioxidants, functional food, phenolic compounds, peach

Procedia PDF Downloads 275
895 Carbendazim Toxicity and Ameliorative Effect of Vitamin E in African Giant Rats

Authors: A. O. Omonona, T. A. Jarikre

Abstract:

Increase specialization in agriculture and use of pesticides may inadvertently cause ecosystem degradation and eventually loss of biodiversity. The populations of numerous wildlife species have undergone a precipitous decline. Many of these problems have been attributed directly to habitat loss and over exploitation resulting from unregulated pesticide uses. Carbendazim a broad spectrum benzimidazole fungicide and a metabolite of benomyl, is used to control plant disease in cereals and fruit. The effect of carbendazim exposure and the ameliorative effect of tocopherol (vitamin E) were assessed on African giant rat AGR. Hematological, biochemical and histological changes were used to determine the health condition of the animals exposed to pesticide. Sixteen AGR were stabilized, weighed and then divided into four experimental groups (A to D). Two groups were pretreated with vitamin. Group A was exposed to carbendazim only, B- carbendazim + vitamin, C- vitamin only, and D- blank (control). Packed cell volume PCV was estimated by the microhematocrit method, Leucocyte and Platelet counts were determined using the hemocytometric method. Cholinesterase (AchE) and markers of oxidative stress were quantified, and tissue changes examined microscopically. There were no behavioral changes observed in the animals, but there was a decrease in body weight and abortion after 23 days of exposure to carbendazim. There was significant differences in the packed cell volume, the hemoglobin concentration and the red blood cell counts (p < 0.05). The increases in malonyl aldehyde MDA was significant (p < 0.05) in the pesticide intoxicated rats compared to control. Vitamin E supplementation reduced MDA level significantly (p < 0.05). There was a sharp remarkable decrease in acetylcholinesterase levels in the pesticide intoxicated rats (p < 0.05). Vitamin E supplementation normalise the AchE levels comparable to that in control. Grossly, the vital organs appeared normal in the pesticide exposed and control groups except moderate pulmonary congestion. Microscopically, there was severe diffuse hepatocellular swelling in carbendazim exposed group. The severity of hepatocellular injury was reduced in the rats with vitamin E. This study ascertained the toxic effect of carbendazim and antioxidative properties of vitamins in the Africa giant rat.

Keywords: African giant rat, antioxidant, carbendazim, pesticides, toxicity

Procedia PDF Downloads 344
894 Effects of Turmeric on Uterine Tissue in Rats with Metabolic Syndrome Induced by High Fructose Diet

Authors: Mesih Kocamuftuoglu, Gonca Ozan, Enver Ozan, Nalan Kaya, Sema Temizer Ozan

Abstract:

Metabolic Syndrome, one of the common metabolic disorder, occurs with co-development of insulin resistance, obesity, dislipidemia and hypertension problems. Insulin resistance appears to play a pathogenic role in the metabolic syndrome. Also, there is a relationship between insulin resistance and infertility as known. Turmeric (Curcuma longa L.) a polyphenolic chemical is widely used for its coloring, flavoring, and medicinal properties, and exhibits a strong antioxidant activity. In this study, we assess the effects of turmeric on rat uterine tissue in metabolic syndrome model induced by high fructose diet. Thirty-two adult female Wistar rats weighing 220±20 g were randomly divided into four groups (n=8) as follows; control, fructose, turmeric, and fructose plus turmeric. Metabolic syndrome was induced by fructose solution 20% (w/v) in tap water, and turmeric (C.Longa) administered at the dose of 80 mg/kg body weight every other day by oral gavage. After the experimental period of 8 weeks, rats were decapitated, serum and uterine tissues were removed. Serum lipid profile, glucose, insülin levels were measured. Uterine tissues were fixed for histological analyzes. The uterine tissue sections were stained with hematoxylin-eosin (H & E) stain, then examined and photographed on a light microscope (Novel N-800Mx20). As a result, fructose consumption effected serum lipids, insulin levels, and insulin resistance significantly. Endometrium and myometrium layers were observed in normal structure in control group of uterine tissues. Perivascular edema, peri glandular fibrosis, and inflammatory cell increase were detected in fructose group. Sections of the fructose plus turmeric group showed a significant improvement in findings when compared to the fructose group. Turmeric group cell structures were observed similar with the control group. These results demonstrated that high-fructose consumption could change the structure of the uterine tissue. On the other hand, turmeric administration has beneficial effects on uterine tissue at that dose and duration when administered with fructose.

Keywords: metabolic syndrome, rat, turmeric, uterus

Procedia PDF Downloads 161
893 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.

Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate

Procedia PDF Downloads 108
892 Enhanced Performance of Supercapacitor Based on Boric Acid Doped Polyvinyl Alcohol-H₂SO₄ Gel Polymer Electrolyte System

Authors: Hamide Aydin, Banu Karaman, Ayhan Bozkurt, Umran Kurtan

Abstract:

Recently, Proton Conducting Gel Polymer Electrolytes (GPEs) have drawn much attention in supercapacitor applications due to their physical and electrochemical characteristics and stability conditions for low temperatures. In this research, PVA-H2SO4-H3BO3 GPE has been used for electric-double layer capacitor (EDLCs) application, in which electrospun free-standing carbon nanofibers are used as electrodes. Introduced PVA-H2SO4-H3BO3 GPE behaves as both separator and the electrolyte in the supercapacitor. Symmetric Swagelok cells including GPEs were assembled via using two electrode arrangements and the electrochemical properties were searched. Electrochemical performance studies demonstrated that PVA-H2SO4-H3BO3 GPE had a maximum specific capacitance (Cs) of 134 F g-1 and showed great capacitance retention (%100) after 1000 charge/discharge cycles. Furthermore, PVA-H2SO4-H3BO3 GPE yielded an energy density of 67 Wh kg-1 with a corresponding power density of 1000 W kg-1 at a current density of 1 A g-1. PVA-H2SO4 based polymer electrolyte was produced according to following procedure; Firstly, 1 g of commercial PVA was dissolved in distilled water at 90°C and stirred until getting transparent solution. This was followed by addition of the diluted H2SO4 (1 g of H2SO4 in a distilled water) to the solution to obtain PVA-H2SO4. PVA-H2SO4-H3BO3 based polymer electrolyte was produced by dissolving H3BO3 in hot distilled water and then inserted into the PVA-H2SO4 solution. The mole fraction was arranged to ¼ of the PVA repeating unit. After the stirring 2 h at RT, gel polymer electrolytes were obtained. The final electrolytes for supercapacitor testing included 20% of water in weight. Several blending combinations of PVA/H2SO4 and H3BO3 were studied to observe the optimized combination in terms of conductivity as well as electrolyte stability. As the amount of boric acid increased in the matrix, excess sulfuric acid was excluded due to cross linking, especially at lower solvent content. This resulted in the reduction of proton conductivity. Therefore, the mole fraction of H3BO3 was chosen as ¼ of PVA repeating unit. Within this optimized limits, the polymer electrolytes showed better conductivities as well as stability.

Keywords: electrical double layer capacitor, energy density, gel polymer electrolyte, ultracapacitor

Procedia PDF Downloads 202
891 Enhancing Cultural Heritage Data Retrieval by Mapping COURAGE to CIDOC Conceptual Reference Model

Authors: Ghazal Faraj, Andras Micsik

Abstract:

The CIDOC Conceptual Reference Model (CRM) is an extensible ontology that provides integrated access to heterogeneous and digital datasets. The CIDOC-CRM offers a “semantic glue” intended to promote accessibility to several diverse and dispersed sources of cultural heritage data. That is achieved by providing a formal structure for the implicit and explicit concepts and their relationships in the cultural heritage field. The COURAGE (“Cultural Opposition – Understanding the CultuRal HeritAGE of Dissent in the Former Socialist Countries”) project aimed to explore methods about socialist-era cultural resistance during 1950-1990 and planned to serve as a basis for further narratives and digital humanities (DH) research. This project highlights the diversity of flourished alternative cultural scenes in Eastern Europe before 1989. Moreover, the dataset of COURAGE is an online RDF-based registry that consists of historical people, organizations, collections, and featured items. For increasing the inter-links between different datasets and retrieving more relevant data from various data silos, a shared federated ontology for reconciled data is needed. As a first step towards these goals, a full understanding of the CIDOC CRM ontology (target ontology), as well as the COURAGE dataset, was required to start the work. Subsequently, the queries toward the ontology were determined, and a table of equivalent properties from COURAGE and CIDOC CRM was created. The structural diagrams that clarify the mapping process and construct queries are on progress to map person, organization, and collection entities to the ontology. Through mapping the COURAGE dataset to CIDOC-CRM ontology, the dataset will have a common ontological foundation with several other datasets. Therefore, the expected results are: 1) retrieving more detailed data about existing entities, 2) retrieving new entities’ data, 3) aligning COURAGE dataset to a standard vocabulary, 4) running distributed SPARQL queries over several CIDOC-CRM datasets and testing the potentials of distributed query answering using SPARQL. The next plan is to map CIDOC-CRM to other upper-level ontologies or large datasets (e.g., DBpedia, Wikidata), and address similar questions on a wide variety of knowledge bases.

Keywords: CIDOC CRM, cultural heritage data, COURAGE dataset, ontology alignment

Procedia PDF Downloads 130
890 Validation of the Arabic Version of the Positive and Negative Syndrome Scale (PANSS)

Authors: Arij Yehya, Suhaila Ghuloum, Abdlmoneim Abdulhakam, Azza Al-Mujalli, Mark Opler, Samer Hammoudeh, Yahya Hani, Sundus Mari, Reem Elsherbiny, Ziyad Mahfoud, Hassen Al-Amin

Abstract:

Introduction: The Positive and Negative Syndrome Scale (PANSS) is a valid instrument developed by Kay and colleagues6 to assess symptoms of patients with schizophrenia. It consists of 30 items that factor the symptoms into three subscales: positive, negative and general psychopathology. This scale has been translated and validated in several languages. Objective: This study aims to determine the validity and psychometric properties of the Arabic version of the PANSS. Methods: A standardized translation and cultural adaptation method was adopted. Patients diagnosed with schizophrenia (n=98), according to psychiatrist’s diagnosis based on DSM-IV criteria, were recruited from the Psychiatry Department at Rumailah Hospital, Qatar. A first rater confirmed the diagnosis using the Arabic version of Mini International Neuropsychiatric Interview (MINI 6). A second and independent rater-administered the Arabic version of PANSS. Also, a control group (n=101), with no history of psychiatric disorder was recruited from the family and friends of the patients and from primary health care centers in Qatar. Results: There were more males than females in our sample of patients with schizophrenia (68.9% and 31.6%, respectively). On the other hand, in the control group the number of females outweighed that of males (58.4% and 41.6% respectively). The scale had a good internal consistency with Cronbach’s alpha 0.91. There was a significant difference between the scores on the three subscales of the PANSS. Patients with schizophrenia scored significantly higher (p<.0001) than the control subjects on subscales for positive symptoms 20.01(SD=7.21) and 7.30(SD=1.38), negative symptoms 18.89(SD=8.88) and 7.37(SD=2.38) and general psychopathology 34.41 (SD=11.56) and 16.93 (SD=3.93), respectively. Factor analysis and ROC curve were carried out to further test the psychometrics of the scale. Conclusions: The Arabic version of PANSS is a reliable and valid tool to assess both positive and negative symptoms of patients with schizophrenia in a balanced manner. In addition to providing the Arab population with a standardized tool to monitor symptoms of schizophrenia, this version provides a gateway to compare the prevalence of positive and negative symptoms in the Arab world which can be compared to others done elsewhere.

Keywords: Arabic version, assessment, diagnosis, schizophrenia, validation

Procedia PDF Downloads 617
889 Sponge Urbanism as a Resilient City Design to Overcome Urban Flood Risk, for the Case of Aluva, Kerala, India

Authors: Gayathri Pramod, Sheeja K. P.

Abstract:

Urban flooding has been seen rising in cities for the past few years. This rise in urban flooding is the result of increasing urbanization and increasing climate change. A resilient city design focuses on 'living with water'. This means that the city is capable of accommodating the floodwaters without having to risk any loss of lives or properties. The resilient city design incorporates green infrastructure, river edge treatment, open space design, etc. to form a city that functions as a whole for resilience. Sponge urbanism is a recent method for building resilient cities and is founded by China in 2014. Sponge urbanism is the apt method for resilience building for a tropical town like Aluva of Kerala. Aluva is a tropical town that experiences rainfall of about 783 mm per month during the rainy season. Aluva is an urbanized town which faces the risk of urban flooding and riverine every year due to the presence of Periyar River in the town. Impervious surfaces and hard construction and developments contribute towards flood risk by posing as interference for a natural flow and natural filtration of water into the ground. This type of development is seen in Aluva also. Aluva is designed in this research as a town that have resilient strategies of sponge city and which focusses on natural methods of construction. The flood susceptibility of Aluva is taken into account to design the spaces for sponge urbanism and in turn, reduce the flood susceptibility for the town. Aluva is analyzed, and high-risk zones for development are identified through studies. These zones are designed to withstand the risk of flooding. Various catchment areas are identified according to the natural flow of water, and then these catchment areas are designed to act as a public open space and as detention ponds in case of heavy rainfall. Various development guidelines, according to land use, is also prescribed, which help in increasing the green cover of the town. Aluva is then designed to be a completely flood-adapted city or sponge city according to the guidelines and interventions.

Keywords: climate change, flooding, resilient city, sponge city, sponge urbanism, urbanization

Procedia PDF Downloads 137
888 Biological Regulation of Endogenous Enzymatic Activity of Rainbow Trout (Oncorhynchus Mykiss) with Protease Inhibitors Chickpea in Model Systems

Authors: Delgado-Meza M., Minor-Pérez H.

Abstract:

Protease is the generic name of enzymes that hydrolyze proteins. These are classified in the subgroup EC3.4.11-99X of the classification enzymes. In food technology the proteolysis is used to modify functional and nutritional properties of food, and in some cases this proteolysis may cause food spoilage. In general, seafood and rainbow trout have accelerated decomposition process once it has done its capture, due to various factors such as the endogenous enzymatic activity that can result in loss of structure, shape and firmness, besides the release of amino acid precursors of biogenic amines. Some studies suggest the use of protease inhibitors from legume as biological regulators of proteolytic activity. The enzyme inhibitors are any substance that reduces the rate of a reaction catalyzed by an enzyme. The objective of this study was to evaluate the reduction of the proteolytic activity of enzymes in extracts of rainbow trout with protease inhibitors obtained from chickpea flour. Different proportions of rainbow trout enzyme extract (75%, 50% and 25%) and extract chickpea enzyme inhibitors were evaluated. Chickpea inhibitors were obtained by mixing 5 g of flour in 30 mL of pH 7.0 phosphate buffer. The sample was centrifuged at 8000 rpm for 10 min. The supernatant was stored at -15°C. Likewise, 20 g of rainbow trout were ground in 20 mL of phosphate buffer solution at pH 7.0 and the mixture was centrifuged at 5000 rpm for 20 min. The supernatant was used for the study. In each treatment was determined the specific enzymatic activity with the technique of Kunitz, using hemoglobin as substrate for the enzymes acid fraction and casein for basic enzymes. Also biuret protein was quantified for each treatment. The results showed for fraction of basic enzymes in the treatments evaluated, that were inhibition of endogenous enzymatic activity. Inhibition values compared to control were 51.05%, 56.59% and 59.29% when the proportions of endogenous enzymes extract rainbow trout were 75%, 50% and 25% and the remaining volume used was extract with inhibitors. Treatments with acid enzymes showed no reduction in enzyme activity. In conclusion chickpea flour reduced the endogenous enzymatic activity of rainbow trout, which may favor its application to increase the half-life of this food. The authors acknowledge the funding provided by the CONACYT for the project 131998.

Keywords: rainbouw trout, enzyme inhibitors, proteolysis, enzyme activity

Procedia PDF Downloads 400
887 Unzipping the Stress Response Genes in Moringa oleifera Lam. through Transcriptomics

Authors: Vivian A. Panes, Raymond John S. Rebong, Miel Q. Diaz

Abstract:

Moringa oleifera Lam. is known mainly for its high nutritional value and medicinal properties contributing to its popular reputation as a 'miracle plant' in the tropical climates where it usually grows. The main objective of this study is to discover the genes and gene products involved in abiotic stress-induced activity that may impact the M. oleifera Lam. mature seeds as well as their corresponding functions. In this study, RNA-sequencing and de novo transcriptome assembly were performed using two assemblers, Trinity and Oases, which produced 177,417 and 120,818 contigs respectively. These transcripts were then subjected to various bioinformatics tools such as Blast2GO, UniProt, KEGG, and COG for gene annotation and the analysis of relevant metabolic pathways. Furthermore, FPKM analysis was performed to identify gene expression levels. The sequences were filtered according to the 'response to stress' GO term since this study dealt with stress response. Clustered Orthologous Groups (COG) showed that the highest frequencies of stress response gene functions were those of cytoskeleton which make up approximately 14% and 23% of stress-related sequences under Trinity and Oases respectively, recombination, repair and replication at 11% and 14% respectively, carbohydrate transport and metabolism at 23% and 9% respectively and defense mechanisms 16% and 12% respectively. KEGG pathway analysis determined the most abundant stress-response genes in the phenylpropanoid biosynthesis at counts of 187 and 166 pathways for Oases and Trinity respectively, purine metabolism at 123 and 230 pathways, and biosynthesis of antibiotics at 105 and 102. Unique and cumulative GO term counts revealed that majority of the stress response genes belonged to the category of cellular response to stress at cumulative counts of 1,487 to 2,187 for Oases and Trinity respectively, defense response at 754 and 1,255, and response to heat at 213 and 208, response to water deprivation at 229 and 228, and oxidative stress at 508 and 488. Lastly, FPKM was used to determine the levels of expression of each stress response gene. The most upregulated gene encodes for thiamine thiazole synthase chloroplastic-like enzyme which plays a significant role in DNA damage tolerance. Data analysis implies that M. oleifera stress response genes are directed towards the effects of climate change more than other stresses indicating the potential of M. oleifera for cultivation in harsh environments because it is resistant to climate change, pathogens, and foreign invaders.

Keywords: stress response, genes, Moringa oleifera, transcriptomics

Procedia PDF Downloads 128
886 Macroeconomic Effects and Dynamics of Natural Disaster Damages: Evidence from SETX on the Resiliency Hypothesis

Authors: Agim Kukelii, Gevorg Sargsyan

Abstract:

This study, focusing on the base regional area (county level), estimates the effect of natural disaster damages on aggregate personal income, aggregate wages, wages per worker, aggregate employment, and aggregate income transfer. The study further estimates the dynamics of personal income, employment, and wages under natural disaster shocks. Southeast Texas, located at the center of Golf Coast, is hit by meteorological and hydrological caused natural disasters yearly. On average, there are more than four natural disasters per year that cane an estimated damage average of 2.2% of real personal income. The study uses the panel data method to estimate the average effect of natural disasters on the area’s economy (personal income, wages, employment, and income transfer). It also uses Panel Vector Autoregressive (PVAR) model to study the dynamics of macroeconomic variables under natural disaster shocks. The study finds that the average effect of natural disasters is positive for personal income and income transfer and is negative for wages and employment. The PVAR and the impulse response function estimates reveal that natural disaster shocks cause a decrease in personal income, employment, and wages. However, the economy’s variables bounce back after three years. The novelty of this study rests on several aspects. First, this is the first study to investigate the effects of natural disasters on macroeconomic variables at a regional level. Second, the study uses direct measures of natural disaster damages. Third, the study estimates that the time that the local economy takes to absorb the natural disaster damages shocks is three years. This is a relatively good reaction to the local economy, therefore, adding to the “resiliency” hypothesis. The study has several implications for policymakers, businesses, and households. First, this study serves to increase the awareness of local stakeholders that natural disaster damages do worsen, macroeconomic variables, such as personal income, employment, and wages beyond the immediate damages to residential and commercial properties, physical infrastructure, and discomfort in daily lives. Second, the study estimates that these effects linger on the economy on average for three years, which would require policymakers to factor in the time area need to be on focus.

Keywords: natural disaster damages, macroeconomics effects, PVAR, panel data

Procedia PDF Downloads 72
885 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 217
884 Zinc Sorption by Six Agricultural Soils Amended with Municipal Biosolids

Authors: Antoine Karam, Lotfi Khiari, Bruno Breton, Alfred Jaouich

Abstract:

Anthropogenic sources of zinc (Zn), including industrial emissions and effluents, Zn–rich fertilizer materials and pesticides containing Zn, can contribute to increasing the concentration of soluble Zn at levels toxic to plants in acid sandy soils. The application of municipal sewage sludge or biosolids (MBS) which contain metal immobilizing agents on coarse-textured soils could improve the metal sorption capacity of the low-CEC soils. The purpose of this experiment was to evaluate the sorption of Zn in surface samples (0-15 cm) of six Quebec (Canada) soils amended with MBS (pH 6.9) from Val d’Or (Quebec, Canada). Soil samples amended with increasing amounts (0 to 20%) of MBS were equilibrated with various amounts of Zn as ZnCl2 in 0.01 M CaCl2 for 48 hours at room temperature. Sorbed Zn was calculated from the difference between the initial and final Zn concentration in solution. Zn sorption data conformed to the linear form of Freundlich equation. The amount of sorbed Zn increased considerably with increasing MBS rate. Analysis of variance revealed a highly significant effect (p ≤ 0.001) of soil texture and MBS rate on the amount of sorbed Zn. The average values of the Zn-sorption capacity of MBS-amended coarse-textured soils were lower than those of MBS-amended fine textured soils. The two sandy soils (86-99% sand) amended with MBS retained 2- to 5-fold Zn than those without MBS (control). Significant Pearson correlation coefficients between the Zn sorption isotherm parameter, i.e. the Freundlich sorption isotherm (KF), and commonly measured physical and chemical entities were obtained. Among all the soil properties measured, soil pH gave the best significant correlation coefficients (p ≤ 0.001) for soils receiving 0, 5 and 10% MBS. Furthermore, KF values were positively correlated with soil clay content, exchangeable basic cations (Ca, Mg or K), CEC and clay content to CEC ratio. From these results, it can be concluded that (i) municipal biosolids provide sorption sites that have a strong affinity for Zn, (ii) both soil texture, especially clay content, and soil pH are the main factors controlling anthropogenic Zn sorption in the municipal biosolids-amended soils, and (iii) the effect of municipal biosolids on Zn sorption will be more pronounced for a sandy soil than for a clay soil.

Keywords: metal, recycling, sewage sludge, trace element

Procedia PDF Downloads 265
883 Nanoparticles Made of Amino Acid Derived Biodegradable Polymers as Promising Drug Delivery Containers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Polymeric disperse systems such as nanoparticles (NPs) are of high interest for numerous applications in contemporary medicine and nanobiotechnology to a considerable potential for treatment of many human diseases. The important technological advantages of NPs usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic(water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. At the next step of this research was carried out an evaluation of biocompability and bioavailability of the synthesized NPs using a stable human cell culture line – A549. It was established that the obtained NPs are not only biocompatible but they stimulate the cell growth.

Keywords: amino acids, biodegradable polymers, bioavailability, nanoparticles

Procedia PDF Downloads 279
882 Research on Structural Changes in Plastic Deformation during Rolling and Crimping of Tubes

Authors: Hein Win Zaw

Abstract:

Today, the advanced strategies for aircraft production technology potentially need the higher performance, and on the other hand, those strategies and engineering technologies should meet considerable process and reduce of production costs. Thus, professionals who are working in these scopes are attempting to develop new materials to improve the manufacturability of designs, the creation of new technological processes, tools and equipment. This paper discusses about the research on structural changes in plastic deformation during rotary expansion and crimp of pipes. Pipelines are experiencing high pressure and pulsating load. That is why, it is high demands on the mechanical properties of the material, the quality of the external and internal surfaces, preserve cross-sectional shape and the minimum thickness of the pipe wall are taking into counts. In the manufacture of pipes, various operations: distribution, crimping, bending, etc. are used. The most widely used at various semi-products, connecting elements found the process of rotary expansion and crimp of pipes. In connection with the use of high strength materials and less-plastic, these conventional techniques do not allow obtaining high-quality parts, and also have a low economic efficiency. Therefore, research in this field is relevantly considerable to develop in advanced. Rotary expansion and crimp of pipes are accompanied by inhomogeneous plastic deformation, which leads to structural changes in the material, causes its deformation hardening, by this result changes the operational reliability of the product. Parts of the tube obtained by rotary expansion and crimp differ by multiplicity of form and characterized by various diameter in the various section, which formed in the result of inhomogeneous plastic deformation. The reliability of the coupling, obtained by rotary expansion and crimp, is determined by the structural arrangement of material formed by the formation process; there is maximum value of deformation, the excess of which is unacceptable. The structural state of material in this condition is determined by technological mode of formation in the rotary expansion and crimp. Considering the above, objective of the present study is to investigate the structural changes at different levels of plastic deformation, accompanying rotary expansion and crimp, and the analysis of stress concentrators of different scale levels, responsible for the formation of the primary zone of destruction.

Keywords: plastic deformation, rolling of tubes, crimping of tubes, structural changes

Procedia PDF Downloads 317
881 Determination of Bromides, Chlorides and Fluorides in Case of Their Joint Presence in Ion-Conducting Electrolyte

Authors: V. Golubeva, O. Vakhnina, I. Konopkina, N. Gerasimova, N. Taturina, K. Zhogova

Abstract:

To improve chemical current sources, the ion-conducting electrolytes based on Li halides (LiCl-KCl, LiCl-LiBr-KBr, LiCl-LiBr-LiF) are developed. It is necessary to have chemical analytical methods for determination of halides to control the electrolytes technology. The methods of classical analytical chemistry are of interest, as they are characterized by high accuracy. Using these methods is a difficult task because halides have similar chemical properties. The objective of this work is to develop a titrimetric method for determining the content of bromides, chlorides, and fluorides in their joint presence in an ion-conducting electrolyte. In accordance with the developed method of analysis to determine fluorides, electrolyte sample is dissolved in diluted HCl acid; fluorides are titrated by La(NO₃)₃ solution with potentiometric indication of equivalence point, fluoride ion-selective electrode is used as sensor. Chlorides and bromides do not form a hardly soluble compound with La and do not interfere in result of analysis. To determine the bromides, the sample is dissolved in a diluted H₂SO₄ acid. The bromides are oxidized with a solution of KIO₃ to Br₂, which is removed from the reaction zone by boiling. Excess of KIO₃ is titrated by iodometric method. The content of bromides is calculated from the amount of KIO₃ spent on Br₂ oxidation. Chlorides and fluorides are not oxidized by KIO₃ and do not interfere in result of analysis. To determine the chlorides, the sample is dissolved in diluted HNO₃ acid and the total content of chlorides and bromides is determined by method of visual mercurometric titration with diphenylcarbazone indicator. Fluorides do not form a hardly soluble compound with mercury and do not interfere with determination. The content of chlorides is calculated taking into account the content of bromides in the sample of electrolyte. The validation of the developed analytical method was evaluated by analyzing internal reference material with known chlorides, bromides and fluorides content. The analytical method allows to determine chlorides, bromides and fluorides in case of their joint presence in ion-conducting electrolyte within the range and with relative total error (δ): for bromides from 60.0 to 65.0 %, δ = ± 2.1 %; for chlorides from 8.0 to 15.0 %, δ = ± 3.6 %; for fluorides from 5.0 to 8.0%, ± 1.5% . The analytical method allows to analyze electrolytes and mixtures that contain chlorides, bromides, fluorides of alkali metals and their mixtures (K, Na, Li).

Keywords: bromides, chlorides, fluorides, ion-conducting electrolyte

Procedia PDF Downloads 111
880 Crossing of the Intestinal Barrier Thanks to Targeted Biologics: Nanofitins

Authors: Solene Masloh, Anne Chevrel, Maxime Culot, Leonardo Scapozza, Magali Zeisser-Labouebe

Abstract:

The limited stability of clinically proven therapeutic antibodies limits their administration by the parenteral route. However, oral administration remains the best alternative as it is the most convenient and less invasive one. Obtaining a targeted treatment based on biologics, which can be orally administered, would, therefore, be an ideal situation to improve patient adherence and compliance. Nevertheless, the delivery of macromolecules through the intestine remains challenging because of their sensitivity to the harsh conditions of the gastrointestinal tract and their low permeability across the intestinal mucosa. To address this challenge, this project aims to demonstrate that targeting receptor-mediated endocytosis followed by transcytosis could maximize the intestinal uptake and transport of large molecules, such as Nanofitins. These affinity proteins of 7 kDa with binding properties similar to antibodies have already demonstrated retained stability in the digestive tract and local efficiency. However, their size does not allow passive diffusion through the intestinal barrier. Nanofitins having a controlled affinity for membrane receptors involved in the transcytosis mechanism used naturally for the transport of large molecules in humans were generated. Proteins were expressed using ribosome display and selected based on affinity to the targeted receptor and other characteristics. Their uptake and transport ex vivo across viable porcine intestines were investigated using an Ussing chambers system. In this paper, we will report the results achieved while addressing the different challenges linked to this study. To validate the ex vivo model, first, we proved the presence of the receptors targeted in humans on the porcine intestine. Then, after the identification of an optimal way of detection of Nanofitins, transport experiments were performed on porcine intestines with viability followed during the time of the experiment. The results, showing that the physiological process of transcytosis is capable of being triggered by the binding of Nanofitins on their target, will be reported here. In conclusion, the results show that Nanofitins can be transported across the intestinal barrier by triggering the receptor-mediated transcytosis and that the ex vivo model is an interesting technique to assess biologics absorption through the intestine.

Keywords: ex-vivo, Nanofitins, oral administration, transcytosis

Procedia PDF Downloads 166
879 Increase of Quinoa Tolerance to High Salinity Involves Agrophysiological Parameters Improvement by Soil Amendments

Authors: Bourhim Mohammad Redouane, Cheto Said, Qaddoury Ahmed, Hirich Abdelaziz, Ghoulam Cherki

Abstract:

Several abiotic stresses cause disruptions in the properties of agricultural soils and hence their loss worldwide. Among these abiotic stresses, Salinity to which most crops were exposed caused an important reduction in their productivity. Therefore, in order to deal with this challenging problem, we rely on cultivating alternative plants that can tolerate the adverse salinity stress, such as quinoa (Chenopodium quinoa). Although even it was qualified as tolerant to Salinity, the quinoa’s performance could be negatively affected under high salinity levels. Thus, our study aims to assess the effects of the application of soil amendments to improve quinoa tolerance levels under high Salinity. Thus, three quinoa varieties (Puno, ICBA-Q5, and Titicaca) were grown on agricultural soil under a greenhouse with five amendments; Biochar “Bc,” compost “Cp,” black soldier insect frass “If,” cow manure “Fb” and phosphogypsum “Pg.” Two controls without amendment were adopted consisting of the salinized negative one “T(-)” and the non-salinized positive one “T(+).” After 20 days from sowing, the plants were irrigated with a saline solution of 16 dS/m prepared with NaCl for a period of 60 days. Then plant tolerance was assessed based on agrophysiological parameters. The results showed that salinity stress negatively affected the quinoa plants for all the analyzed agrophysiological parameters in the three varieties compared to their corresponding controls “T(+).” However, most of these parameters were significantly enhanced by the application of soil amendments compared to their negative controls “T(-).” For instance, the biomass was improved by 91.8% and 69.4%, respectively, for Puno and Titicaca varieties amended with “Bc.” The total nitrogen amount was increased by 220% for Titicaca and ICBA-Q5 plants cultivated in the soil amended with “If.” One of the most important improvements was noted for potassium content in Titicaca amended with “Pg,” which was six times higher compared to the negative control. Besides, the plants of Puno amended with “Cp” showed an improvement of 75.9% for the stomatal conductance and 58.5% for nitrate reductase activity. Nevertheless, the pronounced varietal difference was registered between Puno and Titicaca, presenting the highest performances mainly for the soil amended with “If,” “Bc,” and “Pg.”

Keywords: chenopodium quinoa, salinity, soil amendments, growth, nutrients, nitrate reductase

Procedia PDF Downloads 57
878 Insecticidal and Repellent Efficacy of Clove and Lemongrass Oils Against Museum Pest, Lepisma Saccharina (Zygentoma: Lepismatidae)

Authors: Suboohi Nasrin, MHD. Shahid, Abduraheem K.

Abstract:

India is a tropical country, and it is estimated that biological and abiological agents are the major factors in the destruction and deterioration of archival materials like herbarium, paper, cellulose, bookbinding, etc. Silverfish, German Cockroaches, Termites, Booklice, Tobacco beetle and Carpet beetles are the common insect's pests in the museum, which causes deterioration to collections of museum specimens. Among them, silverfish is one of the most notorious pests and primarily responsible for the deterioration of Archival materials. So far, the investigation has been carried to overcome this existing problem as different management strategies such as chemical insecticides, fungicides, herbicides, nematicides, etc., have been applied. Moreover, Synthetic molecules lead to affect the ecological balance, have a detrimental effects on human health, reduce the beneficial microbial flora and fauna, etc. With a view, numbers of chemicals have been banned and advised not to be used due to their long-lasting persistency in soil ecosystem, water and carcinogenic. That’s why the authors used natural products with biocidal activity, cost-effective and eco-friendly approaches. In this study, various concentrations (30, 60 and 90 ml/L) of clove and lemongrass essential oil at different treatment duration (30, 60, 90 and 120-minutes) were investigated to test its properties as a silverfish repellent and insecticidal effect. The result of two ways ANOVA revealed that the mortality was significantly influenced by oil concentration, treatment duration and interaction between two independent factors was also found significant. The mortality rate increased with increasing the oil concentration in clove oil, and 100 % mortality was recorded in 0.9 ml at 120-minute. It was also observed that the treatment duration has the highest effect on the mortality rate of silverfish. The clove oil had the greatest effect on the silverfish in comparison to lemongrass. While in the case of percentage, repellency of adult silverfish was oil concentration and treatment duration-dependent, i.e., increase in concentration and treatment duration resulted in higher repellency percentage. The clove oil was found more effective, showing maximum repellency of 80.00% at 0.9ml/cm2 (highest) concentration, and in lemongrass highest repellency was observed at 33.4% at 0.9 ml/cm2 concentration in the treated area.

Keywords: adult silverfish, oils, oil concentration, treatment duration, mortality (%) and repellency

Procedia PDF Downloads 154
877 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 127
876 Cardiac Protective Effect of Olive Oil against Ischemia Reperfusion- Induced Cardiac Arrhythmias in Isolated Diabetic Rat Hearts

Authors: Ishfaq A. Bukhari, Bassem Yousef Sheikh, Abdulrahman Almotrefi, Osama Yousaf, Amer Mahmood

Abstract:

Olive oil is the primary source of fat in the Mediterranean diet which is associated with a low mortality for cardiovascular disease. Olive oil is rich in monounsaturated fatty acids, and has been reported for variety of beneficial cardiovascular effects including blood pressure lowering, anti-platelet, anti-diabetic and anti-inflammatory effects. Growing number evidences from preclinical and clinical studies have shown that olive oil improves insulin resistance, decrease vessels stiffness and prevent thromboembolism. We evaluated the effects of olive against streptozotocin-induced physiological disorders in the animal models of diabetes and ischemia and reperfusion (I/R)- induced cardiac arrhythmias. Diabetes was induced in male rats with a single intraperitoneal injection of streptozotocin (60 mg/kg), rats were treated for two months with olive oil (1 ml/kg p.o). Control animals received saline. Blood glucose, body weight were monitored every 14 days. At the end of the treatment rats were sacrificed hearts were isolated for mounting on langedorff’s apparatus. The blood glucose and body weight was not significantly different in the control and olive treated animals. The control diabetic animals exhibited 100% incidence of I/R –induced ventricular fibrillation which was reduced to 0% with olive oil, treatment. The duration of ventricular fibrillation reduced from 98.8± 2.3 (control) to 0 seconds in the olive oil treated group. Diltiazem, a calcium channel blocker (1 µm/L) showed similar results and protected the I/R-induced cardiac disorders. The biochemical analysis of the cardiac tissues showed that diabetes and I/R produce marked pathological changes in the cardiomyocytes including decreased glutathione (GSH) and increased oxidative stress (Malondialdehyde; MDA). Pretreatment of animals with olive oil (1 ml/kg p.o) increased GSH and MDA levels. Olive oil also improved the diabetic-induced histopathological changes in the cardiomyocytes. These finding indicates that olive possesses cardiac protective properties. Further studies are under way in our lab to explore the mechanism of the cardio-protective effect of olive oil.

Keywords: diabeties, ischemia-reperfusion, olive oil, rats heart

Procedia PDF Downloads 449
875 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon

Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi

Abstract:

The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range  to  MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.

Keywords: Bhagwat-Gambhir-Patil density, Coulomb modified Glauber model, halo nucleus, optical limit approximation

Procedia PDF Downloads 145
874 Production of High Purity Cellulose Products from Sawdust Waste Material

Authors: Simiksha Balkissoon, Jerome Andrew, Bruce Sithole

Abstract:

Approximately half of the wood processed in the Forestry, Timber, Pulp and Paper (FTPP) sector is accumulated as waste. The concept of a “green economy” encourages industries to employ revolutionary, transformative technologies to eliminate waste generation by exploring the development of new value chains. The transition towards an almost paperless world driven by the rise of digital media has resulted in a decline in traditional paper markets, prompting the FTTP sector to reposition itself and expand its product offerings by unlocking the potential of value-adding opportunities from renewable resources such as wood to generate revenue and mitigate its environmental impact. The production of valuable products from wood waste such as sawdust has been extensively explored in recent years. Wood components such as lignin, cellulose and hemicelluloses, which can be extracted selectively by chemical processing, are suitable candidates for producing numerous high-value products. In this study, a novel approach to produce high-value cellulose products, such as dissolving wood pulp (DWP), from sawdust was developed. DWP is a high purity cellulose product used in several applications such as pharmaceutical, textile, food, paint and coatings industries. The proposed approach demonstrates the potential to eliminate several complex processing stages, such as pulping and bleaching, which are associated with traditional commercial processes to produce high purity cellulose products such as DWP, making it less chemically energy and water-intensive. The developed process followed the path of experimentally designed lab tests evaluating typical processing conditions such as residence time, chemical concentrations, liquid-to-solid ratios and temperature, followed by the application of suitable purification steps. Characterization of the product from the initial stage was conducted using commercially available DWP grades as reference materials. The chemical characteristics of the products thus far have shown similar properties to commercial products, making the proposed process a promising and viable option for the production of DWP from sawdust.

Keywords: biomass, cellulose, chemical treatment, dissolving wood pulp

Procedia PDF Downloads 169
873 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites

Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler

Abstract:

Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.

Keywords: failure, strength, stress concentration, unidirectional composites

Procedia PDF Downloads 139