Search results for: support materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13509

Search results for: support materials

12519 A Novel Geometrical Approach toward the Mechanical Properties of Particle Reinforced Composites

Authors: Hamed Khezrzadeh

Abstract:

Many investigations on the micromechanical structure of materials indicate that there exist fractal patterns at the micro scale in some of the main construction and industrial materials. A recently presented micro-fractal theory brings together the well-known periodic homogenization and the fractal geometry to construct an appropriate model for determination of the mechanical properties of particle reinforced composite materials. The proposed multi-step homogenization scheme considers the mechanical properties of different constituent phases in the composite together with the interaction between these phases throughout a step-by-step homogenization technique. In the proposed model the interaction of different phases is also investigated. By using this method the effect of fibers grading on the mechanical properties also could be studied. The theory outcomes are compared to the experimental data for different types of particle-reinforced composites which very good agreement with the experimental data is observed.

Keywords: fractal geometry, homogenization, micromehcanics, particulate composites

Procedia PDF Downloads 295
12518 Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites

Authors: A. Feliczak Guzik, I. Nowak

Abstract:

Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained.

Keywords: catalytic application, characterization, epoxidation, hierarchical zeolites, synthesis

Procedia PDF Downloads 88
12517 Occurrence of Foreign Matter in Food: Applied Identification Method - Association of Official Agricultural Chemists (AOAC) and Food and Drug Administration (FDA)

Authors: E. C. Mattos, V. S. M. G. Daros, R. Dal Col, A. L. Nascimento

Abstract:

The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.

Keywords: extraneous materials, food contamination, foreign matter, surveillance

Procedia PDF Downloads 360
12516 Analysis on the Satisfaction of University-Industry Collaboration

Authors: Jeonghwan Jeon

Abstract:

Recently, the industry and academia have been planning development through industry/university cooperation (IUC), and the government has been promoting alternative methods to achieve successful IUC. Representatively, business cultivation involves the lead university (regarding IUC), research and development (R&D), company support, professional manpower cultivation, and marketing, etc., and the scale of support expands every year. Research is performed by many academic researchers to achieve IUC and although satisfaction of their results is high, expectations are not being met and study of the main factor is insufficient. Therefore, this research improves on theirs by analysing the main factors influencing their satisfaction. Each factor is analysed by AHP, and portfolio analysis is performed on the importance and current satisfaction level. This will help improve satisfaction of business participants and ensure effective IUC in the future.

Keywords: industry/university cooperation, satisfaction, portfolio analysis, business participant

Procedia PDF Downloads 497
12515 Waste Recovery: A Sustainable Way for Application of Solid Waste from WTP's in Building Materials

Authors: Flavio Araujo, Livia Dias, Fabiolla Lima, Paulo Scalize, Antonio Albuquerque

Abstract:

Water treatment residues (WTR) are solid waste produced during drinking water treatment and have recently been seen as a reusable material. The aim of this research was show how to use the residue generated in a Water Treatment Plant, located in Goiania, Brazil, following the considerations of the law of solid waste to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: residue, sustainable, water treatment plants, WTR, WTP

Procedia PDF Downloads 495
12514 The Experimental and Statistical Analysis of the Wood Strength against Pressure According to Different Wood Types, Sizes, and Coatings

Authors: Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Sakir Tasdemir, Sevda Altin

Abstract:

In this study, an experimental study was executed related to the strength of wooden materials which have been commonly used both in the past and present against pressure and whether fire retardant materials used against fire have any effects or not. Totally, 81 samples which included three different wood species, three different sizes, two different fire retardants and two unprocessed samples were prepared. Compressive pressure tests were applied to the prepared samples, their variance analyses were executed in accordance with the obtained results and it was aimed to determine the most convenient wooden materials and fire-retardant coating material. It was also determined that the species of wood and the species of coating caused the decrease and/or increase in the resistance against pressure.

Keywords: resistance of wood against pressure, species of wood, variance analysis, wood coating, wood fire safety

Procedia PDF Downloads 432
12513 Salinity Reduction from Saharan Brackish Water by Fluoride Removal on Activated Natural Materials: A Comparative Study

Authors: Amina Ramadni, Safia Taleb, André Dératani

Abstract:

The present study presents, firstly, to characterize the physicochemical quality of brackish groundwater of the Terminal Complex (TC) from the region of Eloued-souf and to investigate the presence of fluoride, and secondly, to study the comparison of adsorbing power of three materials, such as (activated alumina AA, sodium clay SC and hydroxyapatite HAP) against the groundwater in the region of Eloued-souf. To do this, a sampling campaign over 16 wells and consumer taps was undertaken. The results show that the groundwater can be characterized by very high fluoride content and excessive mineralization that require in some cases, specific treatment before supply. The study of adsorption revealed removal efficiencies fluoride by three adsorbents, maximum adsorption is achieved after 45 minutes at 90%, 83.4% and 73.95%, and with an adsorbed fluoride content of 0.22 mg/L, 0.318 mg/L and 0.52 mg/L for AA, HAP and SC, respectively. The acidity of the medium significantly affects the removal fluoride. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. The adsorption tests by adsorbent materials show that the physicochemical characteristics of brackish water are changed after treatment. The adsorption mechanism is an exchange between the OH- ions and fluoride ions. Three materials are proving to be effective adsorbents for fluoride removal that could be developed into a viable technology to help reduce the salinity of the Saharan hyper-fluorinated waters. Finally, a comparison between the results obtained from the different adsorbents allowed us to conclude that the defluoridation by AA is the process of choice for many waters of the region of Eloued-souf, because it was shown to be a very interesting and promising technique.

Keywords: fluoride removal, hydrochemical characterization of groundwater, natural materials, nanofiltration

Procedia PDF Downloads 219
12512 Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking

Authors: W. C. Bracken

Abstract:

Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation.

Keywords: concrete masonry, masonry wall cracking, structural defect, structural damage, construction defect, forensic investigation

Procedia PDF Downloads 249
12511 Synthesis of DHA Rich Glycerides with Immobilized Lipases from Mucor miehei and Rhizopus oryzae

Authors: Satyendra P. Chaurasia, Aditi Sharma, Ajay K. Dalai

Abstract:

The esterification of Docosahexaenoic acid (DHA) with glycerol using immobilized Mucor mie-hei lipase (MML) and Rhizopus oryzae lipase (ROL) have been studied in the present paper to synthesize triglycerides (TG) rich in DHA. Both immobilized lipases (MML and ROL), and their support materials (immobead-150 and ion-exchange resin) were characterized and compared for surface properties with BET, for chemical functional groups with FT-IR, and for particle size distribution with particle size analyzer. The most suitable reaction conditions for synthesis of DHA rich TG in biphasic solvent system were found as 1:3 (wt/wt) glycerol to DHA ratio, 1:1 (wt/wt) buffer to DHA ratio, 1:1 (wt/wt) solvent to DHA ratio at 50 ºC temperature, and 600 rpm speed of agitation with 100 mg of immobilized lipases. Maximum 95.9 % esterification was obtained with immobilized MML in 14 days reaction with formation of 65.7 wt% DHA rich TG. Whereas, immobilized ROL has shown formation of only 23.8 wt% DHA rich TG with total 78.9 % esterification in 15 days. Additionally, repeated use of both immobilized lipases was con-ducted up to five cycles, indicated 50.4% and 41.2 % activity retention after fifth repeated use of immobilized MML and ROL, respectively.

Keywords: DHA, immobilized Mucor miehei lipase, Rhizopus oryzae lipase, esterification

Procedia PDF Downloads 354
12510 The Effect of Silanization on Alumina for Improving the Compatibility with Poly(Methacrylic Acid) Matrix for Dental Restorative Materials

Authors: Andrei Tiberiu Cucuruz, Ecaterina Andronescu, Cristina Daniela Ghitulica, Andreia Cucuruz

Abstract:

In modern dentistry, the application of resin-based composites continues to increase and in the majority of countries has completely replaced mercury amalgams. Alumina (Al2O3) is a representative bioinert ceramic with a variety of applications in industry as well as in medicine. Alumina has the potential to improve electrical resistivity and thermal conductivity of polymers. The application of poly(methacrylic acid) (PMAA) in medicine was poorly investigated in the past but can lead to good results by the incorporation of alumina particles that can bring bioinertness to the composite. However, because of the differences related to chemical bonding of these materials, the interaction is very weak at the interface leading to no significant values in practical situations. The aim of this work was to modify the structure of alumina with silane coupling agents and to study the influence of silanization on the physicomechanical properties of the resulting composite materials. Two silanes were used in this study: 3-aminopropyl-trimethoxysilane (APTMS) and dichlorodimethylsilane (DCDMS). Both silanes proved to have a significant effect on the overall performance of composites by establishing bonds with the polymer matrix and the filler. All these improvements in dental adhesive systems made for bonding resin composites to tooth structure have enhanced the clinical application of polymeric restorative materials to the position that they are now considered the material of choice for esthetic restoration.

Keywords: alumina, compressive strength, dental materials, silane coupling agents, poly(methacrylic acid)

Procedia PDF Downloads 351
12509 Support for Planning of Mobile Personnel Tasks by Solving Time-Dependent Routing Problems

Authors: Wlodzimierz Ogryczak, Tomasz Sliwinski, Jaroslaw Hurkala, Mariusz Kaleta, Bartosz Kozlowski, Piotr Palka

Abstract:

Implementation concepts of a decision support system for planning and management of mobile personnel tasks (sales representatives and others) are discussed. Large-scale periodic time-dependent vehicle routing and scheduling problems with complex constraints are solved for this purpose. Complex nonuniform constraints with respect to frequency, time windows, working time, etc. are taken into account with additional fast adaptive procedures for operational rescheduling of plans in the presence of various disturbances. Five individual solution quality indicators with respect to a single personnel person are considered. This paper deals with modeling issues corresponding to the problem and general solution concepts. The research was supported by the European Union through the European Regional Development Fund under the Operational Programme ‘Innovative Economy’ for the years 2007-2013; Priority 1 Research and development of modern technologies under the project POIG.01.03.01-14-076/12: 'Decision Support System for Large-Scale Periodic Vehicle Routing and Scheduling Problems with Complex Constraints.'

Keywords: mobile personnel management, multiple criteria, time dependent, time windows, vehicle routing and scheduling

Procedia PDF Downloads 323
12508 The Influence of Fiber Fillers on the Bonding Safety of Structural Adhesives: A Fracture Analytical Evaluation

Authors: Brandtner-Hafner Martin

Abstract:

Adhesives have established themselves as an innovative joining technology in the industry. Their strengths lie in joining different materials, avoiding structural weakening as in welding or screwing, and enabling lightweight construction methods. Now there are a variety of ways to improve the efficiency and effectiveness of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion and cohesion (structural integrity). In this study, the effectiveness of fiber-modified adhesives for bonding different construction materials is reviewed. A series of experimental tests were performed using the fracture analytical GF principle to study the adhesive bonding safety and performance of the joint. Three different structural adhesive systems based on epoxy, CA/A hybrid, and PUR were modified with different fiber materials on different substrates. The results show that significant performance improvements can be achieved and that bonding reliability can be sustainably increased.

Keywords: fiber-modified adhesives, bonding safety, GF-principle, fracture analysis

Procedia PDF Downloads 173
12507 Effectiveness of Micania micrantha Extract on Woven Wound Dressing Materials

Authors: Md. Lutfor Rahman, Shaikh Md. Mominul Alam

Abstract:

Sometimes it causes external bleeding when human skin gets seriously injured. Natural source-based blood-clotting bandages are rarely used. The available chemically treated blood clotting materials sometimes show adverse effects and are not effective in quick recovery. Considering these facts, a new blood clotting woven wound dressing product has been developed which is a combination of Micania micrantha extract with woven fabric by absorption process. This product can be represented as an important addition to medical textiles. To develop a dressing material, Micania micrantha leaf juice was applied on bleached woven fabric, followed by sun drying. The effectiveness of this woven sample was tested on volunteers. It was observed that Micania micrantha containing woven sample has a tremendous effect over conventional wound dressing materials. This result is a milestone for the textile and medical sector.

Keywords: blood clotting, Micania micrantha, medical textiles, woven fabric

Procedia PDF Downloads 133
12506 The Optimisation of Salt Impregnated Matrices as Potential Thermochemical Storage Materials

Authors: Robert J. Sutton, Jon Elvins, Sean Casey, Eifion Jewell, Justin R. Searle

Abstract:

Thermochemical storage utilises chemical salts which store and release energy a fully reversible endo/exothermic chemical reaction. Highly porous vermiculite impregnated with CaCl2, LiNO3 and MgSO4 (SIMs – Salt In Matrices) are proposed as potential materials for long-term thermochemical storage. The behavior of these materials during typical hydration and dehydration cycles is investigated. A simple moisture experiment represents the hydration, whilst thermogravimetric analysis (TGA) represents the dehydration. Further experiments to approximate the energy density and to determine the peak output temperatures of the SIMs are conducted. The CaCl2 SIM is deemed the best performing SIM across most experiments, whilst the results of MgSO4 SIM indicate difficulty associated with energy recovery.

Keywords: hydrated states, inter-seasonal heat storage, moisture sorption, salt in matrix

Procedia PDF Downloads 554
12505 Developed Text-Independent Speaker Verification System

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.

Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis

Procedia PDF Downloads 58
12504 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 120
12503 Factors Influencing Health-related Quality of Life in Thai AMI Survivors

Authors: K. Masingboon, S. Duangpaeng, N. Chaiwong

Abstract:

Acute myocardial infarction (AMI) is the most common cause of death among Thai with coronary heart disease (CHD). Thai AMI survivors are most likely to have impaired health-related quality of life (HRQoL) due to their lifestyle, functional, and psychological problems. Guided by the Individual and Family Self-Management Theory, this study aimed to explore HRQoL and identify its predictors among Thai AMI survivors. 155 Thai AMI survivors were recruited by stratified random sampling from three hospitals located in eastern region of Thailand. HRQol was measured using the Short Form -12 Health Survey (SF-12). The Center for Epidemiologic studies Depression Scale (CES-D) was utilized to assess the presence of depression, and the Family Support questionnaire was administered to examine family support. Results revealed that 92 percent of Thai AMI survivors reported a generally high level of HRQoL and 80 percent of them reported higher level of HRQoL in physical health and mental health dimension. Depression and family support were significantly predicted HRQoL among Thai AMI survivors and accounted for 28.5 percent of variance (p < .001). Interestingly, depression was the most significant predictors of HRQoL (β = -.65, p < .001) In conclusion, depression is a significant predictor of HRQoL in Thai AMI survivors. Increasing awareness of depression among these survivors is important. Depressive symptoms in should be routinely assessed. In addition, intervention to improve HRQoL among Thai AMI survivors should be addressed through depressive symptom management and family collaboration.

Keywords: health-related quality of life, AMI survivors, predictors, collaboration

Procedia PDF Downloads 327
12502 The Mechanical Behavior of a Cement-Fiber Composite Material

Authors: K. Harrat, M. Hidjeb, M. T’kint

Abstract:

The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability.

Keywords: cement composite, durability, heat treatment, mechanical behaviour, vegetal fiber

Procedia PDF Downloads 454
12501 Recovery of Post-Consumer PET Bottles in a Composite Material Preparation

Authors: Rafenomananjara Tsinjo Nirina, Tomoo Sekito, Andrianaivoravelona Jaconnet Oliva

Abstract:

Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.

Keywords: PET recycling, polymer concrete, ecological building materials, pollution mitigation

Procedia PDF Downloads 94
12500 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 117
12499 Hygrothermal Properties of Raw Earth Material

Authors: Ichrak Hamrouni, Tariq Ouahbi, Natalija Lhuissier, Saïd Taibi, Mehrez Jemai, Olivier Crumeyrolle, Hatem Zenzri

Abstract:

Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented.

Keywords: raw earth material, hygro-thermal, thermal conductivity, water vapour permeability, building materials, building materials

Procedia PDF Downloads 176
12498 First-Year Experience Initiatives for Minority Groups in College and University: Promoting Inclusion and Success

Authors: Anastassis Kozanitis

Abstract:

The first year of college or university can be particularly challenging for students from minority groups, who often face unique obstacles related to their cultural background, socioeconomic status, or underrepresented identities. Recognizing the importance of fostering inclusivity and supporting the success of these students, educational institutions in Quebec, Canada, have implemented a range of initiatives tailored to address their specific needs. This presentation provides an overview of four key first-year experience measures for minority groups, focusing on mentorship programs, student-lead cultural centers, walk-in support offices, and diversity training, all aimed at promoting inclusion and enhancing the academic journey and overall well-being of these students. Semi-structured individual interviews were conducted with individuals working in connection with the measures of interest. A qualitative content analysis allowed for the characterization of facilitating factors of the support measures identified. Hence, all four measures have proven to be instrumental in supporting the transition and success of first-year students from minority groups. These initiatives provide safe spaces where students can connect with their cultural heritage, engage in dialogue, and celebrate diversity. In conclusion, first-year experience initiatives for minority groups in college and university play a pivotal role in fostering inclusivity and supporting the success of students from underrepresented backgrounds.

Keywords: diversity, first year, minority groups, inclusion, support measures, higher education

Procedia PDF Downloads 87
12497 Evaluation of the Efficiency of Nanomaterials in Consolidation of Limestone

Authors: Mohamed Saad Gad Eloghby

Abstract:

Nanomaterials are widely used nowadays for the consolidation of degraded archaeological limestone. It’s one of the most predominant stones in monumental buildings and statuary works. Exposure to different weathering processes caused degradation and the presence of deterioration pattern as cracks, fissures, and granular disintegration. Nanomaterials have been applied to limestone consolidation. Among these nanomaterials are nanolimes, i.e., dispersions of lime nanoparticles in alcohols and nanosilica, i.e., dispersions of silica nanoparticles in water promising consolidating products for limestone. It was investigated and applied to overcome the disadvantages of traditional consolidation materials such as lime water, water glass and paraliod. So, researchers investigated and tested the effectiveness of nanomaterials as consolidation materials for limestone. The present study includes the evaluation of some nano materials in consolidation limestone stone in comparison with traditional consolidantes. These consolidation materials are nano calcium hydroxide nanolime and nanosilica. The latter is known commercially as Nano Estel and the former is known as Nanorestore compared to traditional consolidantes Wacker OH (ethyl silicate) and Paraloid B72 (a copolymer of ethyl methacrylate and methyl acrylate). The study evaluated the consolidation effectiveness of nanomaterials and traditional consolidantes by using followed methods, Characterization of physical properties of stone, Scanning electron microscopy (SEM), X-ray diffractometry, Fourier transform infrared spectroscopy and Mechanical properties. The study confirmed that nanomaterials were better in the distribution and encapsulation of calcite grains in limestone, and traditional materials were better in improving the physical properties of limestone. It demonstrated that good results can be achieved through mixtures of nanomaterials and traditional consolidants.

Keywords: nanomaterials, limestone, consolidation, evaluation, weathering, nanolime, nanosilica, scanning electron microscope

Procedia PDF Downloads 76
12496 Purpose-Driven Collaborative Strategic Learning

Authors: Mingyan Hong, Shuozhao Hou

Abstract:

Collaborative Strategic Learning (CSL) teaches students to use learning strategies while working cooperatively. Student strategies include the following steps: defining the learning task and purpose; conducting ongoing negotiation of the learning materials by deciding "click" (I get it and I can teach it – green card, I get it –yellow card) or "clunk" (I don't get it – red card) at the end of each learning unit; "getting the gist" of the most important parts of the learning materials; and "wrapping up" key ideas. Find out how to help students of mixed achievement levels apply learning strategies while learning content area in materials in small groups. The design of CSL is based on social-constructivism and Vygotsky’s best-known concept of the Zone of Proximal Development (ZPD). The definition of ZPD is the distance between the actual acquisition level as decided by individual problem solution case and the level of potential acquisition level, similar to Krashen (1980)’s i+1, as decided through the problem-solution case under the facilitator’s guidance, or in group work with other more capable members (Vygotsky, 1978). Vygotsky claimed that learners’ ideal learning environment is in the ZPD. An ideal teacher or more-knowledgable-other (MKO) should be able to recognize a learner’s ZPD and facilitates them to develop beyond it. Then the MKO is able to leave the support step by step until the learner can perform the task without aid. Steven Krashen (1980) proposed Input hypothesis including i+1 hypothesis. The input hypothesis models are the application of ZPD in second language acquisition and have been widely recognized until today. Krashen (2019)’s optimal language learning environment (2019) further developed the application of ZPD and added the component of strategic group learning. The strategic group learning is composed of desirable learning materials learners are motivated to learn and desirable group members who are more capable and are therefore able to offer meaningful input to the learners. Purpose-driven Collaborative Strategic Learning Model is a strategic integration of ZPD, i+1 hypothesis model, and Optimal Language Learning Environment Model. It is purpose driven to ensure group members are motivated. It is collaborative so that an optimal learning environment where meaningful input from meaningful conversation can be generated. It is strategic because facilitators in the model strategically assign each member a meaningful and collaborative role, e.g., team leader, technician, problem solver, appraiser, offer group learning instrument so that the learning process is structured, and integrate group learning and team building making sure holistic development of each participant. Using data collected from college year one and year two students’ English courses, this presentation will demonstrate how purpose-driven collaborative strategic learning model is implemented in the second/foreign language classroom, using the qualitative data from questionnaire and interview. Particular, this presentation will show how second/foreign language learners grow from functioning with facilitator or more capable peer’s aid to performing without aid. The implication of this research is that purpose-driven collaborative strategic learning model can be used not only in language learning, but also in any subject area.

Keywords: collaborative, strategic, optimal input, second language acquisition

Procedia PDF Downloads 128
12495 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes

Authors: Rikke Lybæk

Abstract:

This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.

Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management

Procedia PDF Downloads 106
12494 Comparative Study of Traditional Classroom Learning and Distance Learning in Pakistan

Authors: Muhammad Afzal Malik

Abstract:

Traditional Learning & Distance based learning are the two systems prevailing in Pakistan. These systems affect the level of education standard. The purpose of this study was to compare the traditional classroom learning and distance learning in Pakistan: (a) To explore the effectiveness of the traditional to Distance learning in Pakistan; (b) To identify the factors that affect traditional and distance learning. This review found that, on average, students in traditional classroom conditions performed better than those receiving education in and distance learning. The difference between student outcomes for traditional Classroom and distance learning classes —measured as the difference between treatment and control means, divided by the pooled standard deviation— was larger in those studies contrasting conditions that blended elements of online and face-to-face instruction with conditions taught entirely face-to-face. This research was conducted to highlight the impact of distance learning education system on education standard. The education standards were institutional support, course development, learning process, student support, faculty support, evaluation and assessment. A well developed questionnaire was administered and distributed among 26 faculty members of GCET, H-9 and Virtual University of Pakistan from each. Data was analyzed through correlation and regression analysis. Results confirmed that there is a significant relationship and impact of DLE system on education standards. This will also provide baseline for future research. It will add value to the existing body of knowledge.

Keywords: distance learning education, higher education, education standards, student performance

Procedia PDF Downloads 280
12493 Gypsum Composites with CDW as Raw Material

Authors: R. Santos Jiménez, A. San-Antonio-González, M. del Río Merino, M. González Cortina, C. Viñas Arrebola

Abstract:

On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained.

Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum

Procedia PDF Downloads 510
12492 Analytical Study and Conservation Processes of a Wooden Coffin of Middel Kingdom, Ancient Egypt

Authors: Mohamed Ahmed Abd El Kader

Abstract:

This paper describes the conservation processes of an Ancient Egyptian wooden coffin dating back to the Middle Kingdom, ancient Egypt, using several scientific and analytical methods in order to provide a deeper understanding of the deterioration status and a greater awareness of how well preserved the object is. Visual observation and 2D Programs, as well as Optical Microscopy (OM), Environmental scanning Electron Microscopy (ESEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used in our study. The identification of wood species and the composition of the pigments and previous restoration materials were made. The coffin was previously conserved and stored in improper conditions, which led to its further deterioration; the surface of the lid dust, which obscured the decorations as well as all necessary restoration work was promptly carried out as soon as the coffin was transferred from the display hall from the Egyptian Museum to the Wood Conservation Laboratory of the Grand Egyptian Museum-Conservation Center (GEM-CC). The analyses provided detailed information concerning the original materials and the materials added during the previous treatment interventions, which was considered when applying the conservation plan. Conservation procedures have been applied with high accuracy to conserve the coffin including cleaning, consolidation of fragile painted layers, and the wooden boards forming the sides of the coffin were reassembled in their original positions. The materials and methods that were applied were extremely effective in stability and reinforcement of the coffin without harmfulness to the original materials and the coffin was successfully conserved and ready to display in the Grand Egyptian Museum (GEM).

Keywords: coffin, middle kingdom, deterioration, 2d program

Procedia PDF Downloads 53
12491 The Pyrolysis of Leather and Textile Waste in Carbonised Materials as an Element of the Circular Economy Model

Authors: Maciej Życki, Anna Kowalik-klimczak, Monika Łożyńska, Wioletta Barszcz, Jolanta Drabik Anna Kowalik-klimczak

Abstract:

The rapidly changing fashion trends generate huge amounts of leather and textile waste globally. The complexity of these types of waste makes recycling difficult in economic terms. Pyrolysis is suggested for this purpose, which transforms heterogeneous and complex waste into added-value products e.g. active carbons and soil fertilizer. The possibility of using pyrolysis for the valorization of leather and textile waste has been analyzed in this paper. In the first stage, leather and textile waste were subjected to TG/DTG thermogravimetric and DSC calorimetric analysis. These analyses provided basic information about thermochemical transformations and degradation rates during the pyrolysis of these types of waste and enabled the selection of the pyrolysis temperature. In the next stage, the effect of gas type using pyrolysis was investigated on the physicochemical properties, composition, structure, and formation of the specific surfaces of carbonized materials produced by means of a thermal treatment without oxygen access to the reaction chamber. These studies contribute some data about the thermal management and pyrolytic processing of leather and textile waste into useful carbonized materials, according to the circular economy model.

Keywords: pyrolysis, leather and textiles waste, composition and structure of carbonized materials, valorisation of waste, circular economy model

Procedia PDF Downloads 9
12490 Management of Small-Scale Companies in Nigeria. Case Study of Problems Faced by Entrepreneurs

Authors: Aderemi, Moses Aderibigbe

Abstract:

The supply chain of a manufacturing company can be classified into three categories, namely: 1) supplier chain, these are a network of suppliers of raw materials, machinery, and other requirements for daily operations for the company; 2) internal chain, which are departmental or functional relationships within the organization like production, finance, marketing, logistic and quality control departments all interacting together to achieve the goals and objective of the company; and 3) customer chain; these are networks used for products distribution to the final consumer which includes the product distributors and retailers in the marketplace as may be applicable. In a developing country like Nigeria, where government infrastructures are poor or, in some cases, none in existence, the survival of a small-scale manufacturing company often depends on how effectively its supply chain is managed. In Nigeria, suppliers of machinery and raw materials to most manufacturing companies are from low-cost but high-tech countries like China or India. The problem with the supply chain from these countries apart from the language barrier between these countries and Nigeria, is also that of product quality and after-sales support services. The internal chain also requires funding to employ an experienced and trained workforce to deliver the company’s goals and objectives effectively and efficiently, which is always a challenge for small-scale manufacturers, including product marketing. In Nigeria, the management of the supply chain by small-scale manufacturers is further complicated by unfavourable government policies. This empirical research is a review and analysis of the supply chain management of a small-scale manufacturing company located in Lagos, Nigeria. The company's performance for the past five years has been on the decline and company management thinks there is a need for a review of its supply chain management for business survival. The company’s supply chain is analyzed and compared with best global practices in this research, and recommendations are made to the company management. The research outcome justifies the company’s need for a strategic change in its supply chain management for business sustainability and provides a learning point to small-scale manufacturing companies from developing countries in Africa

Keywords: management, small scale, supply chain, companies, leaders

Procedia PDF Downloads 26