Search results for: remote racking device (RRD)
2089 Artificial Neural Network Approach for Vessel Detection Using Visible Infrared Imaging Radiometer Suite Day/Night Band
Authors: Takashi Yamaguchi, Ichio Asanuma, Jong G. Park, Kenneth J. Mackin, John Mittleman
Abstract:
In this paper, vessel detection using the artificial neural network is proposed in order to automatically construct the vessel detection model from the satellite imagery of day/night band (DNB) in visible infrared in the products of Imaging Radiometer Suite (VIIRS) on Suomi National Polar-orbiting Partnership (Suomi-NPP).The goal of our research is the establishment of vessel detection method using the satellite imagery of DNB in order to monitor the change of vessel activity over the wide region. The temporal vessel monitoring is very important to detect the events and understand the circumstances within the maritime environment. For the vessel locating and detection techniques, Automatic Identification System (AIS) and remote sensing using Synthetic aperture radar (SAR) imagery have been researched. However, each data has some lack of information due to uncertain operation or limitation of continuous observation. Therefore, the fusion of effective data and methods is important to monitor the maritime environment for the future. DNB is one of the effective data to detect the small vessels such as fishery ships that is difficult to observe in AIS. DNB is the satellite sensor data of VIIRS on Suomi-NPP. In contrast to SAR images, DNB images are moderate resolution and gave influence to the cloud but can observe the same regions in each day. DNB sensor can observe the lights produced from various artifact such as vehicles and buildings in the night and can detect the small vessels from the fishing light on the open water. However, the modeling of vessel detection using DNB is very difficult since complex atmosphere and lunar condition should be considered due to the strong influence of lunar reflection from cloud on DNB. Therefore, artificial neural network was applied to learn the vessel detection model. For the feature of vessel detection, Brightness Temperature at the 3.7 μm (BT3.7) was additionally used because BT3.7 can be used for the parameter of atmospheric conditions.Keywords: artificial neural network, day/night band, remote sensing, Suomi National Polar-orbiting Partnership, vessel detection, Visible Infrared Imaging Radiometer Suite
Procedia PDF Downloads 2352088 The Effect of Acid Treatment of PEDOT: PSS Anode for Organic Solar Cells
Authors: Ismail Borazan, Ayse Celik Bedeloglu, Ali Demir, David Carroll
Abstract:
In this project, PEDOT:PSS layer was treated with formic acid, sulphuric acid, and hydrochloric acid, methanol, acetone, and dichlorobenzene:methanol. The resistivity measurements with 2-probes were carried out and the best-chosen method was employed to make an organic solar cell device.Keywords: organic solar cells, PEDOT:PSS, polymer electrodes, resistivity
Procedia PDF Downloads 8142087 A Wearable Device to Overcome Post–Stroke Learned Non-Use; The Rehabilitation Gaming System for wearables: Methodology, Design and Usability
Authors: Javier De La Torre Costa, Belen Rubio Ballester, Martina Maier, Paul F. M. J. Verschure
Abstract:
After a stroke, a great number of patients experience persistent motor impairments such as hemiparesis or weakness in one entire side of the body. As a result, the lack of use of the paretic limb might be one of the main contributors to functional loss after clinical discharge. We aim to reverse this cycle by promoting the use of the paretic limb during activities of daily living (ADLs). To do so, we describe the key components of a system that is composed of a wearable bracelet (i.e., a smartwatch) and a mobile phone, designed to bring a set of neurorehabilitation principles that promote acquisition, retention and generalization of skills to the home of the patient. A fundamental question is whether the loss in motor function derived from learned–non–use may emerge as a consequence of decision–making processes for motor optimization. Our system is based on well-established rehabilitation strategies that aim to reverse this behaviour by increasing the reward associated with action execution as well as implicitly reducing the expected cost associated with the use of the paretic limb, following the notion of the reinforcement–induced movement therapy (RIMT). Here we validate an accelerometer–based measure of arm use, and its capacity to discriminate different activities that require increasing movement of the arm. We also show how the system can act as a personalized assistant by providing specific goals and adjusting them depending on the performance of the patients. The usability and acceptance of the device as a rehabilitation tool is tested using a battery of self–reported and objective measurements obtained from acute/subacute patients and healthy controls. We believe that an extension of these technologies will allow for the deployment of unsupervised rehabilitation paradigms during and beyond the hospitalization time.Keywords: stroke, wearables, learned non use, hemiparesis, ADLs
Procedia PDF Downloads 2172086 Analyzing How Working From Home Can Lead to Higher Job Satisfaction for Employees Who Have Care Responsibilities Using Structural Equation Modeling
Authors: Christian Louis Kühner, Florian Pfeffel, Valentin Nickolai
Abstract:
Taking care of children, dependents, or pets can be a difficult and time-consuming task. Especially for part- and full-time employees, it can feel exhausting and overwhelming to meet these obligations besides working a job. Thus, working mostly at home and not having to drive to the company can save valuable time and stress. This study aims to show the influence that the working model has on the job satisfaction of employees with care responsibilities in comparison to employees who do not have such obligations. Using structural equation modeling (SEM), the three work models, “work from home”, “working remotely”, and a hybrid model, have been analyzed based on 13 influencing constructs on job satisfaction. These 13 factors have been further summarized into three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, an online survey was conducted with n = 684 employees from the service sector. Here, Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. In addition, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that among the employees with care responsibilities, the higher the proportion of working from home in comparison to working from the office, the more satisfied the employees are with their job. Since the work models that meet the requirements of comprehensive care led to higher job satisfaction amongst employees with such obligations, adapting as a company to such private obligations by employees can be crucial to sustained success. Conversely, the satisfaction level of the working model where employees work at the office is higher for workers without caregiving responsibilities.Keywords: care responsibilities, home office, job satisfaction, structural equation modeling
Procedia PDF Downloads 832085 Alterations in Habitation and Architectural Education Due to the COVID-19 Pandemic: The Operation of the Architectural Studio as a Crossroad
Authors: Chrysi K. Nikoloutsou, Gianna Th. Siapati
Abstract:
The pandemic limitations have altered architectural education as the discourse shifted towards virtual studios and blended learning. In addition, lockdown conditions and remote working have affected habitation. Adaptability is now a key factor. The architectural studio needs to adjust to these new terms both in education and in inhabitation. This paper will investigate the operation of an architectural studio in relation to how one experiences their house due to the pandemic, based on a literature review and qualitative research methods (interviews & workshops with students). Zenetos’ prophetic ideas of ‘Electronic Urbanism’ and ‘tele-activities’ are now more present than ever.Keywords: architectural education, pandemic, residential design, studio pedagogy
Procedia PDF Downloads 1052084 Application of GIS Techniques for Analysing Urban Built-Up Growth of Class-I Indian Cities: A Case Study of Surat
Authors: Purba Biswas, Priyanka Dey
Abstract:
Worldwide rapid urbanisation has accelerated city expansion in both developed and developing nations. This unprecedented urbanisation trend due to the increasing population and economic growth has caused challenges for the decision-makers in city planning and urban management. Metropolitan cities, class-I towns, and major urban centres undergo a continuous process of evolution due to interaction between socio-cultural and economic attributes. This constant evolution leads to urban expansion in all directions. Understanding the patterns and dynamics of urban built-up growth is crucial for policymakers, urban planners, and researchers, as it aids in resource management, decision-making, and the development of sustainable strategies to address the complexities associated with rapid urbanisation. Identifying spatio-temporal patterns of urban growth has emerged as a crucial challenge in monitoring and assessing present and future trends in urban development. Analysing urban growth patterns and tracking changes in land use is an important aspect of urban studies. This study analyses spatio-temporal urban transformations and land-use and land cover changes using remote sensing and GIS techniques. Built-up growth analysis has been done for the city of Surat as a case example, using the GIS tools of NDBI and GIS models of the Built-up Urban Density Index and Shannon Entropy Index to identify trends and the geographical direction of transformation from 2005 to 2020. Surat is one of the fastest-growing urban centres in both the state and the nation, ranking as the 4th fastest-growing city globally. This study analyses the dynamics of urban built-up area transformations both zone-wise and geographical direction-wise, in which their trend, rate, and magnitude were calculated for the period of 15 years. This study also highlights the need for analysing and monitoring the urban growth pattern of class-I cities in India using spatio-temporal and quantitative techniques like GIS for improved urban management.Keywords: urban expansion, built-up, geographic information system, remote sensing, Shannon’s entropy
Procedia PDF Downloads 722083 A Case Study of Low Head Hydropower Opportunities at Existing Infrastructure in South Africa
Authors: Ione Loots, Marco van Dijk, Jay Bhagwan
Abstract:
Historically, South Africa had various small-scale hydropower installations in remote areas that were not incorporated in the national electricity grid. Unfortunately, in the 1960s most of these plants were decommissioned when Eskom, the national power utility, rapidly expanded its grid and capability to produce cheap, reliable, coal-fired electricity. This situation persisted until 2008, when rolling power cuts started to affect all citizens. This, together with the rising monetary and environmental cost of coal-based power generation, has sparked new interest in small-scale hydropower development, especially in remote areas or at locations (like wastewater treatment works) that could not afford to be without electricity for long periods at a time. Even though South Africa does not have the same, large-scale, hydropower potential as some other African countries, significant potential for micro- and small-scale hydropower is hidden in various places. As an example, large quantities of raw and potable water are conveyed daily under either pressurized or gravity conditions over large distances and elevations. Due to the relative water scarcity in the country, South Africa also has more than 4900 registered dams of varying capacities. However, institutional capacity and skills have not been maintained in recent years and therefore the identification of hydropower potential, as well as the development of micro- and small-scale hydropower plants has not gained significant momentum. An assessment model and decision support system for low head hydropower development has been developed to assist designers and decision makers with first-order potential analysis. As a result, various potential sites were identified and many of these sites were situated at existing infrastructure like weirs, barrages or pipelines. One reason for the specific interest in existing infrastructure is the fact that capital expenditure could be minimized and another is the reduced negative environmental impact compared to greenfield sites. This paper will explore the case study of retrofitting an unconventional and innovative hydropower plant to the outlet of a wastewater treatment works in South Africa.Keywords: low head hydropower, retrofitting, small-scale hydropower, wastewater treatment works
Procedia PDF Downloads 2522082 Qusai-Solid-State Electrochromic Device Based on PolyMethyl Methacrylate (PMMA)/Succinonitrile Gel Polymer Electrolyte
Authors: Jen-Yuan Wang, Min-Chuan Wang, Der-Jun Jan
Abstract:
Polymer electrolytes can be classified into four major categories, solid polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), polyelectrolytes and composite polymer electrolytes. SPEs suffer from low ionic conductivity at room temperature. The main problems for GPEs are the poor thermal stability and mechanical properties. In this study, a GPE containing PMMA and succinonitrile is prepared to solve the problems mentioned above, and applied to the assembly of a quasi-solid-state electrochromic device (ECD). In the polymer electrolyte, poly(methyl methacrylate) (PMMA) is the polymer matrix and propylene carbonate (PC) is used as the plasticizer. To enhance the mechanical properties of this GPE, succinonitrile (SN) is introduced as the additive. For the electrochromic materials, tungsten oxide (WO3) is used as the cathodic coloring film, which is fabricated by pulsed dc magnetron reactive sputtering. For the anodic coloring material, Prussian blue nanoparticles (PBNPs) are synthesized and coated on the transparent Sn-doped indium oxide (ITO) glass. The thickness of ITO, WO3 and PB film is 110, 170 and 200 nm, respectively. The size of the ECD is 5×5 cm2. The effect of the introduction of SN into the GPEs is discussed by observing the electrochromic behaviors of the WO3-PB ECD. Besides, the composition ratio of PC to SN is also investigated by measuring the ionic conductivity. The optimized ratio of PC to SN is 4:1, and the ionic conductivity under this condition is 6.34x10-5 S∙cm-1, which is higher than that of PMMA/PC (1.35x10-6 S∙cm-1) and PMMA/EC/PC (4.52x10-6 S∙cm-1). This quasi-solid-state ECD fabricated with the PMMA/SN based GPE shows an optical contrast of ca. 53% at 690 nm. The optical transmittance of the ECD can be reversibly modulated from 72% (bleached) to 19% (darkened), by applying potentials of 1.5 and -2.2 V, respectively. During the durability test, the optical contrast of this ECD remains 44.5% after 2400 cycles, which is 83% of the original one.Keywords: electrochromism, tungsten oxide, prussian blue, poly(methyl methacrylate), succinonitrile
Procedia PDF Downloads 2972081 Federated Learning in Healthcare
Authors: Ananya Gangavarapu
Abstract:
Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment
Procedia PDF Downloads 1412080 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation
Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang
Abstract:
The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics
Procedia PDF Downloads 1332079 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 1292078 Source Separation for Global Multispectral Satellite Images Indexing
Authors: Aymen Bouzid, Jihen Ben Smida
Abstract:
In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach.Keywords: blind source separation, content based image retrieval, feature extraction multispectral, satellite images
Procedia PDF Downloads 4032077 Real-Time Monitoring of Complex Multiphase Behavior in a High Pressure and High Temperature Microfluidic Chip
Authors: Renée M. Ripken, Johannes G. E. Gardeniers, Séverine Le Gac
Abstract:
Controlling the multiphase behavior of aqueous biomass mixtures is essential when working in the biomass conversion industry. Here, the vapor/liquid equilibria (VLE) of ethylene glycol, glycerol, and xylitol were studied for temperatures between 25 and 200 °C and pressures of 1 to 10 bar. These experiments were performed in a microfluidic platform, which exhibits excellent heat transfer properties so that equilibrium is reached fast. Firstly, the saturated vapor pressure as a function of the temperature and the substrate mole fraction of the substrate was calculated using AspenPlus with a Redlich-Kwong-Soave Boston-Mathias (RKS-BM) model. Secondly, we developed a high-pressure and high-temperature microfluidic set-up for experimental validation. Furthermore, we have studied the multiphase flow pattern that occurs after the saturation temperature was achieved. A glass-silicon microfluidic device containing a 0.4 or 0.2 m long meandering channel with a depth of 250 μm and a width of 250 or 500 μm was fabricated using standard microfabrication techniques. This device was placed in a dedicated chip-holder, which includes a ceramic heater on the silicon side. The temperature was controlled and monitored by three K-type thermocouples: two were located between the heater and the silicon substrate, one to set the temperature and one to measure it, and the third one was placed in a 300 μm wide and 450 μm deep groove on the glass side to determine the heat loss over the silicon. An adjustable back pressure regulator and a pressure meter were added to control and evaluate the pressure during the experiment. Aqueous biomass solutions (10 wt%) were pumped at a flow rate of 10 μL/min using a syringe pump, and the temperature was slowly increased until the theoretical saturation temperature for the pre-set pressure was reached. First and surprisingly, a significant difference was observed between our theoretical saturation temperature and the experimental results. The experimental values were 10’s of degrees higher than the calculated ones and, in some cases, saturation could not be achieved. This discrepancy can be explained in different ways. Firstly, the pressure in the microchannel is locally higher due to both the thermal expansion of the liquid and the Laplace pressure that has to be overcome before a gas bubble can be formed. Secondly, superheating effects are likely to be present. Next, once saturation was reached, the flow pattern of the gas/liquid multiphase system was recorded. In our device, the point of nucleation can be controlled by taking advantage of the pressure drop across the channel and the accurate control of the temperature. Specifically, a higher temperature resulted in nucleation further upstream in the channel. As the void fraction increases downstream, the flow regime changes along the channel from bubbly flow to Taylor flow and later to annular flow. All three flow regimes were observed simultaneously. The findings of this study are key for the development and optimization of a microreactor for hydrogen production from biomass.Keywords: biomass conversion, high pressure and high temperature microfluidics, multiphase, phase diagrams, superheating
Procedia PDF Downloads 2172076 Remote Sensing Application in Environmental Researches: Case Study of Iran Mangrove Forests Quantitative Assessment
Authors: Neda Orak, Mostafa Zarei
Abstract:
Environmental assessment is an important session in environment management. Since various methods and techniques have been produces and implemented. Remote sensing (RS) is widely used in many scientific and research fields such as geology, cartography, geography, agriculture, forestry, land use planning, environment, etc. It can show earth surface objects cyclical changes. Also, it can show earth phenomena limits on basis of electromagnetic reflectance changes and deviations records. The research has been done on mangrove forests assessment by RS techniques. Mangrove forests quantitative analysis in Basatin and Bidkhoon estuaries was the aim of this research. It has been done by Landsat satellite images from 1975- 2013 and match to ground control points. This part of mangroves are the last distribution in northern hemisphere. It can provide a good background to improve better management on this important ecosystem. Landsat has provided valuable images to earth changes detection to researchers. This research has used MSS, TM, +ETM, OLI sensors from 1975, 1990, 2000, 2003-2013. Changes had been studied after essential corrections such as fix errors, bands combination, georeferencing on 2012 images as basic image, by maximum likelihood and IPVI Index. It was done by supervised classification. 2004 google earth image and ground points by GPS (2010-2012) was used to compare satellite images obtained changes. Results showed mangrove area in bidkhoon was 1119072 m2 by GPS and 1231200 m2 by maximum likelihood supervised classification and 1317600 m2 by IPVI in 2012. Basatin areas is respectively: 466644 m2, 88200 m2, 63000 m2. Final results show forests have been declined naturally. It is due to human activities in Basatin. The defect was offset by planting in many years. Although the trend has been declining in recent years again. So, it mentioned satellite images have high ability to estimation all environmental processes. This research showed high correlation between images and indexes such as IPVI and NDVI with ground control points.Keywords: IPVI index, Landsat sensor, maximum likelihood supervised classification, Nayband National Park
Procedia PDF Downloads 2932075 Studies on Space-Based Laser Targeting System for the Removal of Orbital Space Debris
Authors: Krima M. Rohela, Raja Sabarinath Sundaralingam
Abstract:
Humans have been launching rockets since the beginning of the space age in the late 1950s. We have come a long way since then, and the success rate for the launch of rockets has increased considerably. With every successful launch, there is a large amount of junk or debris which is released into the upper layers of the atmosphere. Space debris has been a huge concern for a very long time now. This includes the rocket shells released from the launch and the parts of defunct satellites. Some of this junk will come to fall towards the Earth and burn in the atmosphere. But most of the junk goes into orbit around the Earth, and they remain in orbits for at least 100 years. This can cause a lot of problems to other functioning satellites and may affect the future manned missions to space. The main concern of the space-debris is the increase in space activities, which leads to risks of collisions if not taken care of soon. These collisions may result in what is known as Kessler Syndrome. This debris can be removed by a space-based laser targeting system. Hence, the matter is investigated and discussed. The first step in this involves launching a satellite with a high-power laser device into space, above the debris belt. Then the target material is ablated with a focussed laser beam. This step of the process is highly dependent on the attitude and orientation of the debris with respect to the Earth and the device. The laser beam will cause a jet of vapour and plasma to be expelled from the material. Hence, the force is applied in the opposite direction, and in accordance with Newton’s third law of motion, this will cause the material to move towards the Earth and get pulled down due to gravity, where it will get disintegrated in the upper layers of the atmosphere. The larger pieces of the debris can be directed towards the oceans. This method of removal of the orbital debris will enable safer passage for future human-crewed missions into space.Keywords: altitude, Kessler syndrome, laser ablation, Newton’s third law of motion, satellites, Space debris
Procedia PDF Downloads 1492074 An Investigation of the Effects of Gripping Systems in Geosynthetic Shear Testing
Authors: Charles Sikwanda
Abstract:
The use of geosynthetic materials in geotechnical engineering projects has rapidly increased over the past several years. These materials have resulted in improved performance and cost reduction of geotechnical structures as compared to the use of conventional materials. However, working with geosynthetics requires knowledge of interface parameters for design. These parameters are typically determined by the large direct shear device in accordance with ASTM-D5321 and ASTM-D6243 standards. Although these laboratory tests are standardized, the quality of the results can be largely affected by several factors that include; the shearing rate, applied normal stress, gripping mechanism, and type of the geosynthetic specimens tested. Amongst these factors, poor surface gripping of a specimen is the major source of the discrepancy. If the specimen is inadequately secured to the shearing blocks, it experiences progressive failure and shear strength that deviates from the true field performance of the tested material. This leads to inaccurate, unsafe, and cost ineffective designs of projects. Currently, the ASTM-D5321 and ASTM-D6243 standards do not provide a standardized gripping system for geosynthetic shear strength testing. Over the years, researchers have come up with different gripping systems that can be used such as; glue, metal textured surface, sandblasting, and sandpaper. However, these gripping systems are regularly not adequate to sufficiently secure the tested specimens to the shearing device. This has led to large variability in test results and difficulties in results interpretation. Therefore, this study was aimed at determining the effects of gripping systems in geosynthetic interface shear strength testing using a 300 x 300 mm direct shear box. The results of the research will contribute to easy data interpretation and increase result accuracy and reproducibility.Keywords: geosynthetics, shear strength parameters, gripping systems, gripping
Procedia PDF Downloads 2032073 Infrared Detection Device for Accurate Scanning 3D Objects
Authors: Evgeny A. Rybakov, Dmitry P. Starikov
Abstract:
This article contains information about creating special unit for scanning 3D objects different nature, different materials, for example plastic, plaster, cardboard, wood, metal and etc. The main part of the unit is infrared transducer, which is sends the wave to the object and receive back wave for calculating distance. After that, microcontroller send to PC data, and computer program create model for printing from the plastic, gypsum, brass, etc.Keywords: clutch, infrared, microcontroller, plastic, shaft, stage
Procedia PDF Downloads 4432072 An Artificial Neural Network Model Based Study of Seismic Wave
Authors: Hemant Kumar, Nilendu Das
Abstract:
A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.Keywords: ANN, Bayesion class, earthquakes, IMD
Procedia PDF Downloads 1252071 Shared Vision System Support for Maintenance Tasks of Wind Turbines
Authors: Buket Celik Ünal, Onur Ünal
Abstract:
Communication is the most challenging part of maintenance operations. Communication between expert and fieldworker is crucial for effective maintenance and this also affects the safety of the fieldworkers. To support a machine user in a remote collaborative physical task, both, a mobile and a stationary device are needed. Such a system is called a shared vision system and the system supports two people to solve a problem from different places. This system reduces the errors and provides a reliable support for qualified and less qualified users. Through this research, it was aimed to validate the effectiveness of using a shared vision system to facilitate communication between on-site workers and those issuing instructions regarding maintenance or inspection works over long distances. The system is designed with head-worn display which is called a shared vision system. As a part of this study, a substitute system is used and implemented by using a shared vision system for maintenance operation. The benefits of the use of a shared vision system are analyzed and results are adapted to the wind turbines to improve the occupational safety and health for maintenance technicians. The motivation for the research effort in this study can be summarized in the following research questions: -How can expert support technician over long distances during maintenance operation? -What are the advantages of using a shared vision system? Experience from the experiment shows that using a shared vision system is an advantage for both electrical and mechanical system failures. Results support that the shared vision system can be used for wind turbine maintenance and repair tasks. Because wind turbine generator/gearbox and the substitute system have similar failures. Electrical failures, such as voltage irregularities, wiring failures and mechanical failures, such as alignment, vibration, over-speed conditions are the common and similar failures for both. Furthermore, it was analyzed the effectiveness of the shared vision system by using a smart glasses in connection with the maintenance task performed by a substitute system under four different circumstances, namely by using a shared vision system, an audio communication, a smartphone and by yourself condition. A suitable method for determining dependencies between factors measured in Chi Square Test, and Chi Square Test for Independence measured for determining a relationship between two qualitative variables and finally Mann Whitney U Test is used to compare any two data sets. While based on this experiment, no relation was found between the results and the gender. Participants` responses confirmed that the shared vision system is efficient and helpful for maintenance operations. From the results of the research, there was a statistically significant difference in the average time taken by subjects on works using a shared vision system under the other conditions. Additionally, this study confirmed that a shared vision system provides reduction in time to diagnose and resolve maintenance issues, reduction in diagnosis errors, reduced travel costs for experts, and increased reliability in service.Keywords: communication support, maintenance and inspection tasks, occupational health and safety, shared vision system
Procedia PDF Downloads 2602070 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.Keywords: fire prediction, drone, smoke toxicity, analyser, fire management
Procedia PDF Downloads 892069 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops
Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann
Abstract:
The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule
Procedia PDF Downloads 1502068 Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device
Authors: Pradakshina Sharma, Jagriti Narang
Abstract:
Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported.Keywords: biosensors, ePAD, arboviral infections, point of care
Procedia PDF Downloads 972067 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology
Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa
Abstract:
Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.Keywords: network, mixing, hydrates, continuous process, carbon dioxide
Procedia PDF Downloads 522066 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R
Authors: Jaya Mathew
Abstract:
Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R
Procedia PDF Downloads 3792065 Three-Dimensional Computer Graphical Demonstration of Calcified Tissue and Its Clinical Significance
Authors: Itsuo Yokoyama, Rikako Kikuti, Miti Sekikawa, Tosinori Asai, Sarai Tsuyoshi
Abstract:
Introduction: Vascular access for hemodialysis therapy is often difficult, even for experienced medical personnel. Ultrasound guided needle placement have been performed occasionally but is not always helpful in certain cases with complicated vascular anatomy. Obtaining precise anatomical knowledge of the vascular structure is important to prevent access-related complications. With augmented reality (AR) device such as AR glasses, the virtual vascular structure is shown superimposed on the actual patient vessels, thus enabling the operator to maneuver catheter placement easily with free both hands. We herein report our method of AR guided vascular access method in dialysis treatment Methods: Three dimensional (3D) object of the arm with arteriovenous fistula is computer graphically created with 3D software from the data obtained by computer tomography, ultrasound echogram, and image scanner. The 3D vascular object thus created is viewed on the screen of the AR digital display device (such as AR glass or iPad). The picture of the vascular anatomical structure becomes visible, which is superimposed over the real patient’s arm, thereby the needle insertion be performed under the guidance of AR visualization with ease. By this method, technical difficulty in catheter placement for dialysis can be lessened and performed safely. Considerations: Virtual reality technology has been applied in various fields and medical use is not an exception. Yet AR devices have not been widely used among medical professions. Visualization of the virtual vascular object can be achieved by creation of accurate three dimensional object with the help of computer graphical technique. Although our experience is limited, this method is applicable with relative easiness and our accumulating evidence has suggested that our method of vascular access with the use of AR can be promising.Keywords: abdominal-aorta, calcification, extraskeletal, dialysis, computer graphics, 3DCG, CT, calcium, phosphorus
Procedia PDF Downloads 1632064 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 832063 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification
Authors: Zahrasadat Hosseini, Jie Yuan
Abstract:
Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices.Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping
Procedia PDF Downloads 852062 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload
Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou
Abstract:
Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity
Procedia PDF Downloads 2702061 Optimization of Cloud Classification Using Particle Swarm Algorithm
Authors: Riffi Mohammed Amine
Abstract:
A cloud is made up of small particles of liquid water or ice suspended in the atmosphere, which generally do not reach the ground. Various methods are used to classify clouds. This article focuses specifically on a technique known as particle swarm optimization (PSO), an AI approach inspired by the collective behaviors of animals living in groups, such as schools of fish and flocks of birds, and a method used to solve complex classification and optimization problems with approximate solutions. The proposed technique was evaluated using a series of second-generation METOSAT images taken by the MSG satellite. The acquired results indicate that the proposed method gave acceptable results.Keywords: remote sensing, particle swarm optimization, clouds, meteorological image
Procedia PDF Downloads 162060 Hierarchical Manganese and Nickel Selenide based Ultra-efficient Electrode Material for All-Solid-State Asymmetric Supercapacitors with Extended Energy Efficacy
Authors: Siddhant Srivastav, Soumyaranjan Mishra, Sumanta Kumar Meher
Abstract:
Researchers are attempting to develop extremely efficient electrochemical energy storage technologies as a result of the phenomenal advancement of portable electronic devices. Because of their improved electrical conductivity and narrower band gap, transition metal selenide-based nanostructures have piqued the interest of many researchers in this field. Based on this concept, we present a simple anion exchange hydrothermal synthesis method for synthesizing manganese and nickel based selenide (Mn/NiSe2) nanostructure for use in all-solid-state asymmetric supercapacitors. According to the comprehensive physicochemical characterizations, the material has lowly crystalline properties, a distinct porous microstructure, and a significant bonding contact between the metal and the selenium. The electrochemical investigations of the Mn/NiSe2 electrode material revealed supercapacitive charge discharge properties, excellent electro-kinetic reversibility, and minimal charge transfer resistance (Rct). Furthermore, the all-solid-state asymmetric supercapacitor device assembled using Mn/NiSe2 as positive electrode, nitrogen doped reduced graphene oxide (N-rGO) as negative electrode, and PVA-KOH gel as electrolyte/separator exhibit good redox behaviour, excellent charge-discharge properties with negligible voltage (IR) drop, and lower impedance characteristics. The solid state asymmetric supercapacitor device (Mn/NiSe2||N-rGO) demonstrated the power density of ultra-capacitors and the energy density of rechargeable batteries. Conclusively, the Mn/NiSe2 has been proposed as a potential outstanding electrode material for the next generation of all-solid-state asymmetric supercapacitors.Keywords: anion exchange, asymmetric supercapacitor, supercapacitive charge-discharge, voltage drop
Procedia PDF Downloads 106