In-Flight Radiometric Performances Analysis of an Airborne Optical Payload

Authors : Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou Abstract : Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (L_i) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point

(L < sub > H < / sub >) and the low point (L < sub > L < / sub >) of dynamic range can be described as L < sub > H < / sub > = (G & times; DN < sub > H < / sub > H = B) and L < sub > L < / sub > = B, respectively, where DN < sub > H < / sub > is equal to 2 < sup > n < / sup > − 1 (n is the quantization number of the payload). Meanwhile, the sensor & sup > H < / sub > H

Keywords : calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity **Conference Title :** ICSRD 2020 : International Conference on Scientific Research and Development

Conference Location : Chicago, United States

Conference Dates : December 12-13, 2020