Search results for: pressure test
11694 Hemodynamic Effects of Magnesium Sulphate Therapy in Critically Ill Infants and Children with Wheezy Chest
Authors: Yasmin Sayed, Hala Hamdy, Hafez Bazaraa, Hanaa Rady, Sherif Elanwary
Abstract:
Intravenous and inhaled magnesium sulfate (MgSO₄) had been recently used as an adjuvant therapy in cases suffering from the wheezy chest. Objective: We aimed to determine the possible change in the hemodynamic state in cases received intravenous or inhaled MgSO₄ in comparison to cases received standard treatment in critically ill infants and children with the wheezy chest. Methods: A randomized controlled trial comprised 81 patients suffering from wheezy chest divided into 3 groups. In addition to bronchodilators and systemic steroids, MgSO₄ was given by inhalation in group A, intravenously in group B, and group C didn't receive MgSO₄. The hemodynamic state was determined by assessment of blood pressure, heart rate, capillary refill time and the need for shock therapy or inotropic support just before and 24 hours after receiving treatment in 3 groups. Results: There was no significant difference in the hemodynamic state of the studied groups before and after treatment. Means of blood pressure were 102.2/63.2, 105.1/64.8 before and after inhaled MgSO₄; respectively. Means of blood pressure were 105.5/64.2, 104.1/64.9 before and after intravenous MgSO₄; respectively. Means of blood pressure were 107.4/62.8, 104.4/62.1 before and after standard treatment, respectively. There was a statistically insignificant reduction of the means of the heart rate in group A and group B after treatment rather than group C. There was no associated prolongation in capillary refill time and/or the need for inotropic support or shock therapy after treatment in the studied groups. Conclusion: MgSO₄ is a safe adjuvant therapy and not associated with significant alteration in the hemodynamic state in critically ill infants and children with the wheezy chest.Keywords: critically ill infants and children, inhaled MgSO₄, intravenous MgSO₄, wheezy chest
Procedia PDF Downloads 14611693 The Effect of Inhalation of Ylang-ylang Aroma on the Levels of Anxiety of Parents with Hospitalized Toddlers Diagnosed with Pneumonia
Authors: Crisostomo Hart A., Cruz Anna Cecilia R., Cruz Bianca Isabelle A., Cruz John Edward Ligzurc M., Cruz Mikaela Denise P.
Abstract:
Aim/purpose: The researchers aimed to determine the effect of Ylang-ylang aroma in decreasing the anxiety levels of parents with hospitalized toddlers diagnosed with pneumonia. Method: Quantitative Quasi-experimental one-group pre-test post-test design was utilized in the study. The study includes a pretest, an intervention, and a posttest on the same experimental group. Participants are parents aged 20 – 35 years old with a hospitalized toddler who is diagnosed with pneumonia. Anxiety levels were measured before the intervention using the State Trait Anxiety Inventory by Spielberger. Those who scored 41-120 proceeded to receive the intervention. The intervention was a 3-day course of aromatherapy where the participants inhaled the Ylang-ylang flower at a distance of 10 – 15 cm away from the face for 10 minutes. The post-test using the same instrument measured the levels of anxiety after the 3-day aromatherapy. Paired T-test of SPSS 21.0 was used to analyze the pre-test and post-test scores. Results: Study yielded a p value of 0.047 which shows significant difference between the levels of anxiety before and after the intervention. Conclusions: Based on the data analysis, the researchers concluded that inhalation of Ylang-ylang aroma is effective in reducing the anxiety level of the parents of hospitalized toddlers diagnosed with Pneumonia.Keywords: Ylang-ylang, Pneumonia, Toddlers, Aromatherapy
Procedia PDF Downloads 41111692 Field-observed Thermal Fractures during Reinjection and Its Numerical Simulation
Authors: Wen Luo, Phil J. Vardon, Anne-Catherine Dieudonne
Abstract:
One key process that partly controls the success of geothermal projects is fluid reinjection, which benefits in dealing with waste water, maintaining reservoir pressure, and supplying heat-exchange media, etc. Thus, sustaining the injectivity is of great importance for the efficiency and sustainability of geothermal production. However, the injectivity is sensitive to the reinjection process. Field experiences have illustrated that the injectivity can be damaged or improved. In this paper, the focus is on how the injectivity is improved. Since the injection pressure is far below the formation fracture pressure, hydraulic fracturing cannot be the mechanism contributing to the increase in injectivity. Instead, thermal stimulation has been identified as the main contributor to improving the injectivity. For low-enthalpy geothermal reservoirs, which are not fracture-controlled, thermal fracturing, instead of thermal shearing, is expected to be the mechanism for increasing injectivity. In this paper, field data from the sedimentary low-enthalpy geothermal reservoirs in the Netherlands were analysed to show the occurrence of thermal fracturing due to the cooling shock during reinjection. Injection data were collected and compared to show the effects of the thermal fractures on injectivity. Then, a thermo-hydro-mechanical (THM) model for the near field formation was developed and solved by finite element method to simulate the observed thermal fractures. It was then compared with the HM model, decomposed from the THM model, to illustrate the thermal effects on thermal fracturing. Finally, the effects of operational parameters, i.e. injection temperature and pressure, on the changes in injectivity were studied on the basis of the THM model. The field data analysis and simulation results illustrate that the thermal fracturing occurred during reinjection and contributed to the increase in injectivity. The injection temperature was identified as a key parameter that contributes to thermal fracturing.Keywords: injectivity, reinjection, thermal fracturing, thermo-hydro-mechanical model
Procedia PDF Downloads 21511691 Ragging and Sludging Measurement in Membrane Bioreactors
Authors: Pompilia Buzatu, Hazim Qiblawey, Albert Odai, Jana Jamaleddin, Mustafa Nasser, Simon J. Judd
Abstract:
Membrane bioreactor (MBR) technology is challenged by the tendency for the membrane permeability to decrease due to ‘clogging’. Clogging includes ‘sludging’, the filling of the membrane channels with sludge solids, and ‘ragging’, the aggregation of short filaments to form long rag-like particles. Both sludging and ragging demand manual intervention to clear out the solids, which is time-consuming, labour-intensive and potentially damaging to the membranes. These factors impact on costs more significantly than membrane surface fouling which, unlike clogging, is largely mitigated by the chemical clean. However, practical evaluation of MBR clogging has thus far been limited. This paper presents the results of recent work attempting to quantify sludging and clogging based on simple bench-scale tests. Results from a novel ragging simulation trial indicated that rags can be formed within 24-36 hours from dispersed < 5 mm-long filaments at concentrations of 5-10 mg/L under gently agitated conditions. Rag formation occurred for both a cotton wool standard and samples taken from an operating municipal MBR, with between 15% and 75% of the added fibrous material forming a single rag. The extent of rag formation depended both on the material type or origin – lint from laundering operations forming zero rags – and the filament length. Sludging rates were quantified using a bespoke parallel-channel test cell representing the membrane channels of an immersed flat sheet MBR. Sludge samples were provided from two local MBRs, one treating municipal and the other industrial effluent. Bulk sludge properties measured comprised mixed liquor suspended solids (MLSS) concentration, capillary suction time (CST), particle size, soluble COD (sCOD) and rheology (apparent viscosity μₐ vs shear rate γ). The fouling and sludging propensity of the sludge was determined using the test cell, ‘fouling’ being quantified as the pressure incline rate against flux via the flux step test (for which clogging was absent) and sludging by photographing the channel and processing the image to determine the ratio of the clogged to unclogged regions. A substantial difference in rheological and fouling behaviour was evident between the two sludge sources, the industrial sludge having a higher viscosity but less shear-thinning than the municipal. Fouling, as manifested by the pressure increase Δp/Δt, as a function of flux from classic flux-step experiments (where no clogging was evident), was more rapid for the industrial sludge. Across all samples of both sludge origins the expected trend of increased fouling propensity with increased CST and sCOD was demonstrated, whereas no correlation was observed between clogging rate and these parameters. The relative contribution of fouling and clogging was appraised by adjusting the clogging propensity via increasing the MLSS both with and without a commensurate increase in the COD. Results indicated that whereas for the municipal sludge the fouling propensity was affected by the increased sCOD, there was no associated increased in the sludging propensity (or cake formation). The clogging rate actually decreased on increasing the MLSS. Against this, for the industrial sludge the clogging rate dramatically increased with solids concentration despite a decrease in the soluble COD. From this was surmised that sludging did not relate to fouling.Keywords: clogging, membrane bioreactors, ragging, sludge
Procedia PDF Downloads 17711690 Thermal Performance of Reheat, Regenerative, Inter-Cooled Gas Turbine Cycle
Authors: Milind S. Patil, Purushottam S. Desale, Eknath R. Deore
Abstract:
Thermal analysis of reheat, regenerative, inter-cooled gas turbine cycle is presented. Specific work output, thermal efficiency and SFC is simulated with respect to operating conditions. Analytical formulas were developed taking into account the effect of operational parameters like ambient temperature, compression ratio, compressor efficiency, turbine efficiency, regenerator effectiveness, pressure loss in inter cooling, reheating and regenerator. Calculations were made for wide range of parameters using engineering equation solver and the results were presented here. For pressure ratio of 12, regenerator effectiveness 0.95, and maximum turbine inlet temperature 1200 K, thermal efficiency decreases by 27% with increase in ambient temperature (278 K to 328 K). With decrease in regenerator effectiveness thermal efficiency decreases linearly. With increase in ambient temperature (278 K to 328 K) for the same maximum temperature and regenerator effectiveness SFC decreases up to a pressure ratio of 10 and then increases. Sharp rise in SFC is noted for higher ambient temperature. With increase in isentropic efficiency of compressor and turbine, thermal efficiency increases by about 40% for low ambient temperature (278 K to 298 K) however, for higher ambient temperature (308 K to 328 K) thermal efficiency increases by about 70%.Keywords: gas turbine, reheating, regeneration, inter-cooled, thermal analysis
Procedia PDF Downloads 33411689 Anchorage Effect on Axial Strength of Fiber Reinforced Polymers Confined Rectangular Columns
Authors: Yavuz Yardim
Abstract:
FRP systems have been largely used to improve the performance of structural members, due to their high strength to weight ratio and corrosion resistance. Application of this strengthening procedure in circular columns has resulted quite beneficial in increasing their seismic and axial capacity. Whereas in the rectangular ones, strength enhancement was considerably less due to stress concentration in the corner. In this work three anchorage configurations are tested for their efficiency in increasing the uniformity of confinement pressure in the CFRP strengthened non-circular sections. There is a slight increase in the axial strength of specimens as a general trend. More specifically fan anchorage reached an increase of 17.5% compared to the unanchored specimens. The study shows that uniformity of confining pressure has increased by adding anchorage.Keywords: rectangular columns, FRP, confinement, anchorage
Procedia PDF Downloads 35711688 Plasma Treatment of a Lignite Using Water-Stabilized Plasma Torch at Atmospheric Pressure
Authors: Anton Serov, Alan Maslani, Michal Hlina, Vladimir Kopecky, Milan Hrabovsky
Abstract:
Recycling of organic waste is an increasingly hot topic in recent years. This issue becomes even more interesting if the raw material for the fuel production can be obtained as the result of that recycling. A process of high-temperature decomposition of a lignite (a non-hydrolysable complex organic compound) was studied on the plasma gasification reactor PLASGAS, where water-stabilized plasma torch was used as a source of high enthalpy plasma. The plasma torch power was 120 kW and allowed heating of the reactor to more than 1000 °C. The material feeding rate in the gasification reactor was selected 30 and 60 kg per hour that could be compared with small industrial production. An efficiency estimation of the thermal decomposition process was done. A balance of the torch energy distribution was studied as well as an influence of the lignite particle size and an addition of methane (CH4) in a reaction volume on the syngas composition (H2+CO). It was found that the ratio H2:CO had values in the range of 1,5 to 2,5 depending on the experimental conditions. The recycling process occurred at atmospheric pressure that was one of the important benefits because of the lack of expensive vacuum pump systems. The work was supported by the Grant Agency of the Czech Republic under the project GA15-19444S.Keywords: atmospheric pressure, lignite, plasma treatment, water-stabilized plasma torch
Procedia PDF Downloads 37211687 Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine
Authors: Hany El Said Fawaz
Abstract:
This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75.Keywords: wind turbine, flanged diffuser, expansion angle, diffuser length
Procedia PDF Downloads 24511686 Simulation Research of Diesel Aircraft Engine
Authors: Łukasz Grabowski, Michał Gęca, Mirosław Wendeker
Abstract:
This paper presents the simulation results of a new opposed piston diesel engine to power a light aircraft. Created in the AVL Boost, the model covers the entire charge passage, from the inlet up to the outlet. The model shows fuel injection into cylinders and combustion in cylinders. The calculation uses the module for two-stroke engines. The model was created using sub-models available in this software that structure the model. Each of the sub-models is complemented with parameters in line with the design premise. Since engine weight resulting from geometric dimensions is fundamental in aircraft engines, two configurations of stroke were studied. For each of the values, there were calculated selected operating conditions defined by crankshaft speed. The required power was achieved by changing air fuel ratio (AFR). There was also studied brake specific fuel consumption (BSFC). For stroke S1, the BSFC was lowest at all of the three operating points. This difference is approximately 1-2%, which means higher overall engine efficiency but the amount of fuel injected into cylinders is larger by several mg for S1. The cylinder maximum pressure is lower for S2 due to the fact that compressor gear driving remained the same and boost pressure was identical in the both cases. Calculations for various values of boost pressure were the next stage of the study. In each of the calculation case, the amount of fuel was changed to achieve the required engine power. In the former case, the intake system dimensions were modified, i.e. the duct connecting the compressor and the air cooler, so its diameter D = 40 mm was equal to the diameter of the compressor outlet duct. The impact of duct length was also examined to be able to reduce the flow pulsation during the operating cycle. For the so selected geometry of the intake system, there were calculations for various values of boost pressure. The boost pressure was changed by modifying the gear driving the compressor. To reach the required level of cruising power N = 68 kW. Due to the mechanical power consumed by the compressor, high pressure ratio results in a worsened overall engine efficiency. The figure on the change in BSFC from 210 g/kWh to nearly 270 g/kWh shows this correlation and the overall engine efficiency is reduced by about 8%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: aircraft, diesel, engine, simulation
Procedia PDF Downloads 20611685 A Comparative Study of the Effectiveness of Narrative Therapy in Individual and Group Counseling on Promoting Hope in With Breast Cancer’s Women
Authors: Sajadian Akram, Tavasoli F.
Abstract:
Breast cancer is the second most common cancer in the world and certainly the most frequent cancer mostly among women. This study was aimed to compare the effectiveness of individual counseling and group narrative therapy on female patients' life expectancy afflicted by breast cancer. The present study is a pre-test-post-test clinical trial. Fifty-five patients with breast cancer were randomly selected in the follow-up period and after their active medical treatment completion. Then, they were randomly divided into two groups: individual counseling and group counseling. Herth hope index (HHI) was used to measure the patients' hope level. Data were analyzed using t-test and SPSS software. hope rate was statistically significant in both groups receiving individual and group narrative therapy in the post-test compared to the pre-test (P <00000). Moreover, the comparative evaluation of hope in both groups (individual & group counseling) in the post-test showed that group narrative counseling is more effective than individual narrative counseling (P <00000). Conclusion: Narrative therapy promotes hope in breast cancer patients effectively. Due to the nature of breast cancer and its psychological effects in the post-treatment period, providing narrative group therapy can improve life quality. Patients' life quality changes in tandem with changes in hope.Keywords: hope, narrative therapy, counseling, breast cancer
Procedia PDF Downloads 12111684 Numerical Evaluation of Deep Ground Settlement Induced by Groundwater Changes During Pumping and Recovery Test in Shanghai
Authors: Shuo Wang
Abstract:
The hydrogeological parameters of the engineering site and the hydraulic connection between the aquifers can be obtained by the pumping test. Through the recovery test, the characteristics of water level recovery and the law of surface subsidence recovery can be understood. The above two tests can provide the basis for subsequent engineering design. At present, the deformation of deep soil caused by pumping tests is often neglected. However, some studies have shown that the maximum settlement subject to groundwater drawdown is not necessarily on the surface but in the deep soil. In addition, the law of settlement recovery of each soil layer subject to water level recovery is not clear. If the deformation-sensitive structure is deep in the test site, safety accidents may occur. In this study, the pumping test and recovery test of a confined aquifer in Shanghai are introduced. The law of measured groundwater changes and surface subsidence are analyzed. In addition, the fluid-solid coupling model was established by ABAQUS based on the Biot consolidation theory. The models are verified by comparing the computed and measured results. Further, the variation law of water level and the deformation law of deep soil during pumping and recovery tests under different site conditions and different times and spaces are discussed through the above model. It is found that the maximum soil settlement caused by pumping in a confined aquifer is related to the permeability of the overlying aquitard and pumping time. There is a lag between soil deformation and groundwater changes, and the recovery rate of settlement deformation of each soil layer caused by the rise of water level is different. Finally, some possible research directions are proposed to provide new ideas for academic research in this field.Keywords: coupled hydro-mechanical analysis, deep ground settlement, numerical simulation, pumping test, recovery test
Procedia PDF Downloads 4311683 Pump-as-Turbine: Testing and Characterization as an Energy Recovery Device, for Use within the Water Distribution Network
Authors: T. Lydon, A. McNabola, P. Coughlan
Abstract:
Energy consumption in the water distribution network (WDN) is a well established problem equating to the industry contributing heavily to carbon emissions, with 0.9 kg CO2 emitted per m3 of water supplied. It is indicated that 85% of energy wasted in the WDN can be recovered by installing turbines. Existing potential in networks is present at small capacity sites (5-10 kW), numerous and dispersed across networks. However, traditional turbine technology cannot be scaled down to this size in an economically viable fashion, thus alternative approaches are needed. This research aims to enable energy recovery potential within the WDN by exploring the potential of pumps-as-turbines (PATs), to realise this potential. PATs are estimated to be ten times cheaper than traditional micro-hydro turbines, presenting potential to contribute to an economically viable solution. However, a number of technical constraints currently prohibit their widespread use, including the inability of a PAT to control pressure, difficulty in the selection of PATs due to lack of performance data and a lack of understanding on how PATs can cater for fluctuations as extreme as +/- 50% of the average daily flow, characteristic of the WDN. A PAT prototype is undergoing testing in order to identify the capabilities of the technology. Results of preliminary testing, which involved testing the efficiency and power potential of the PAT for varying flow and pressure conditions, in order to develop characteristic and efficiency curves for the PAT and a baseline understanding of the technologies capabilities, are presented here: •The limitations of existing selection methods which convert BEP from pump operation to BEP in turbine operation was highlighted by the failure of such methods to reflect the conditions of maximum efficiency of the PAT. A generalised selection method for the WDN may need to be informed by an understanding of impact of flow variations and pressure control on system power potential capital cost, maintenance costs, payback period. •A clear relationship between flow and efficiency rate of the PAT has been established. The rate of efficiency reductions for flows +/- 50% BEP is significant and more extreme for deviations in flow above the BEP than below, but not dissimilar to the reaction of efficiency of other turbines. •PAT alone is not sufficient to regulate pressure, yet the relationship of pressure across the PAT is foundational in exploring ways which PAT energy recovery systems can maintain required pressure level within the WDN. Efficiencies of systems of PAT energy recovery systems operating conditions of pressure regulation, which have been conceptualise in current literature, need to be established. Initial results guide the focus of forthcoming testing and exploration of PAT technology towards how PATs can form part of an efficiency energy recovery system.Keywords: energy recovery, pump-as-turbine, water distribution network, water distribution network
Procedia PDF Downloads 26011682 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 6311681 The Effects of Advisor Status and Time Pressure on Decision-Making in a Luggage Screening Task
Authors: Rachel Goh, Alexander McNab, Brent Alsop, David O'Hare
Abstract:
In a busy airport, the decision whether to take passengers aside and search their luggage for dangerous items can have important consequences. If an officer fails to search and stop a bag containing a dangerous object, a life-threatening incident might occur. But stopping a bag unnecessarily means that the officer might lose time searching the bag and face an angry passenger. Passengers’ bags, however, are often cluttered with personal belongings of varying shapes and sizes. It can be difficult to determine what is dangerous or not, especially if the decisions must be made quickly in cases of busy flight schedules. Additionally, the decision to search bags is often made with input from the surrounding officers on duty. This scenario raises several questions: 1) Past findings suggest that humans are more reliant on an automated aid when under time pressure in a visual search task, but does this translate to human-human reliance? 2) Are humans more likely to agree with another person if the person is assumed to be an expert or a novice in these ambiguous situations? In the present study, forty-one participants performed a simulated luggage-screening task. They were partnered with an advisor of two different statuses (expert vs. novice), but of equal accuracy (90% correct). Participants made two choices each trial: their first choice with no advisor input, and their second choice after advisor input. The second choice was made within either 2 seconds or 8 seconds; failure to do so resulted in a long time-out period. Under the 2-second time pressure, participants were more likely to disagree with their own first choice and agree with the expert advisor, regardless of whether the expert was right or wrong, but especially when the expert suggested that the bag was safe. The findings indicate a tendency for people to assume less responsibility for their decisions and defer to their partner, especially when a quick decision is required. This over-reliance on others’ opinions might have negative consequences in real life, particularly when relying on fallible human judgments. More awareness is needed regarding how a stressful environment may influence reliance on other’s opinions, and how better techniques are needed to make the best decisions under high stress and time pressure.Keywords: advisors, decision-making, time pressure, trust
Procedia PDF Downloads 17211680 Noninvasive Neurally Adjusted Ventilation versus Nasal Continuous or Intermittent Positive Airway Pressure for Preterm Infants: A Systematic Review and Meta-Analysis
Authors: Mohammed S. Bhader, Abdullah A. Ghaddaf, Anas Alamoudi, Amal Abualola, Renad Kalantan, Noura Alkhulaifi, Ibrahim Halawani, Mohammed Alhindi
Abstract:
Background: Noninvasive neurally adjusted ventilatory assist (NAVA) is a relatively new mode of noninvasive ventilation with promising clinical and patient-ventilator outcomes for preterm infants. The aim of this systematic review was to compare NAVA to nasal continuous or positive airway pressure (NCPAP) or intermittent positive airway pressure (NIPP) for preterm infants. Methods: We searched the online databases Medline, Embase, and CENTRAL. We included randomized controlled trials (RCTs) that compared NAVA to NCPAP or NIPP for preterm infants < 37 weeks gestational age. We sought to evaluate the following outcomes: noninvasive intubation failure rate, desaturation rate, the fraction of inspired oxygen (FiO2), and length of stay in the neonatal intensive care unit (NICU). We used the mean difference (MD) to represent continuous outcomes, while the odds ratio (OR) was used to represent dichotomous outcomes. Results: A total of 11 RCTs that enrolled 429 preterm infants were deemed eligible. NAVA showed similar clinical outcomes to NCPAP or NIPP with respect to noninvasive intubation failure (RR for NAVA versus NCPAP: 0.82, 95% confidence interval (CI): 0.49 to 1.37), desaturation rate (RR for NAVA versus NCPAP: 0.69, 95%CI: 0.36 to 1.29; RR for NAVA versus NIPP: 0.58, 95%CI: 0.08 to 4.25), FiO2 (MD for NAVA versus NCPAP: –0.01, 95%CI: –0.04 to 0.02; MD for NAVA versus NIPP: –7.16, 95%CI: –22.63 to 8.31), and length of stay in the NICU (MD for NAVA versus NCPAP: 1.34, 95%CI: –4.17 to 6.85). Conclusion: NAVA showed similar clinical and ventilator-related outcomes compared to the usual care noninvasive respiratory support measures NCPAP or NIPP for preterm infants.Keywords: preterm infants, noninvasive neurally adjusted ventilatory assist, NIV-NAVA, non-invasive ventilation, nasal continuous or positive airway pressure, NCPAP, intermittent positive airway pressure ventilation, NIPP, respiratory distress syndrome, RDS
Procedia PDF Downloads 10711679 Virtual Assessment of Measurement Error in the Fractional Flow Reserve
Authors: Keltoum Chahour, Mickael Binois
Abstract:
Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift
Procedia PDF Downloads 13211678 Core Stability Index for Healthy Young Sri Lankan Population
Authors: V. M. B. K. T. Malwanage, S. Samita
Abstract:
Core stability is one of the major determinants that contribute to preventing injuries, enhance performance, and improve quality of life of the human. Endurance of the four major muscle groups of the central ‘core’ of the human body is identified as the most reliable determinant of core stability amongst the other numerous causes which contribute to readily make one’s core stability. This study aimed to develop a ‘Core Stability Index’ to confer a single value for an individual’s core stability based on the four endurance test scores. Since it is possible that at least some of the test scores are not independent, possibility of constructing a single index using the multivariate method exploratory factor analysis was investigated in the study. The study sample was consisted of 400 healthy young individuals with the mean age of 23.74 ± 1.51 years and mean BMI (Body Mass Index) of 21.1 ± 4.18. The correlation analysis revealed highly significant (P < 0.0001) correlations between test scores and thus construction an index using these highly inter related test scores using the technique factor analysis was justified. The mean values of all test scores were significantly different between males and females (P < 0.0001), and therefore two separate core stability indices were constructed for the two gender groups. Moreover, having eigen values 3.103 and 2.305 for males and females respectively, indicated one factor exists for all four test scores and thus a single factor based index was constructed. The 95% reference intervals constructed using the index scores were -1.64 to 2.00 and -1.56 to 2.29 for males and females respectively. These intervals can effectively be used to diagnose those who need improvement in core stability. The practitioners should find that with a single value measure, they could be more consistent among themselves.Keywords: construction of indices, endurance test scores, muscle endurance, quality of life
Procedia PDF Downloads 16111677 Methodology for Various Sand Cone Testing
Authors: Abel S. Huaynacho, Yoni D. Huaynacho
Abstract:
The improvement of procedure test ASTM D1556, plays an important role in the developing of testing in field to obtain a higher quality of data QA/QC. The traditional process takes a considerable amount of time for only one test. Even making various testing are tasks repeating and it takes a long time to obtain better results. Moreover, if the adequate tools the help these testing are not properly managed, the improvement in the development for various testing could be stooped. This paper presents an optimized process for various testing ASTM D1556 which uses an initial standard process to another one the uses a simpler and improved management tools.Keywords: cone sand test, density bulk, ASTM D1556, QA/QC
Procedia PDF Downloads 13411676 Fault Prognostic and Prediction Based on the Importance Degree of Test Point
Authors: Junfeng Yan, Wenkui Hou
Abstract:
Prognostics and Health Management (PHM) is a technology to monitor the equipment status and predict impending faults. It is used to predict the potential fault and provide fault information and track trends of system degradation by capturing characteristics signals. So how to detect characteristics signals is very important. The select of test point plays a very important role in detecting characteristics signal. Traditionally, we use dependency model to select the test point containing the most detecting information. But, facing the large complicated system, the dependency model is not built so easily sometimes and the greater trouble is how to calculate the matrix. Rely on this premise, the paper provide a highly effective method to select test point without dependency model. Because signal flow model is a diagnosis model based on failure mode, which focuses on system’s failure mode and the dependency relationship between the test points and faults. In the signal flow model, a fault information can flow from the beginning to the end. According to the signal flow model, we can find out location and structure information of every test point and module. We break the signal flow model up into serial and parallel parts to obtain the final relationship function between the system’s testability or prediction metrics and test points. Further, through the partial derivatives operation, we can obtain every test point’s importance degree in determining the testability metrics, such as undetected rate, false alarm rate, untrusted rate. This contributes to installing the test point according to the real requirement and also provides a solid foundation for the Prognostics and Health Management. According to the real effect of the practical engineering application, the method is very efficient.Keywords: false alarm rate, importance degree, signal flow model, undetected rate, untrusted rate
Procedia PDF Downloads 37711675 Experimental Study on the Molecular Spring Isolator
Authors: Muchun Yu, Xue Gao, Qian Chen
Abstract:
As a novel passive vibration isolation technology, molecular spring isolator (MSI) is investigated in this paper. An MSI consists of water and hydrophobic zeolites as working medium. Under periodic excitation, water molecules intrude into hydrophobic pores of zeolites when the pressure rises and water molecules extrude from hydrophobic pores when pressure drops. At the same time, energy is stored, released and dissipated. An MSI of piston-cylinder structure was designed in this work. Experiments were conducted to investigate the stiffness properties of MSI. The results show that MSI exhibits high-static-low dynamic (HSLD) stiffness. Furthermore, factors such as the quantity of zeolites, temperature, and ions in water are proved to have an influence on the stiffness properties of MSI.Keywords: hydrophobic zeolites, molecular spring, stiffness, vibration isolation
Procedia PDF Downloads 47511674 Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance
Authors: Farzad Yavari, Hamid Chegini, Saeed Lotfi
Abstract:
This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.Keywords: VPI, resin rich, insulation, stator bar, dissipation factor, voltage endurance
Procedia PDF Downloads 19511673 Melting and Making Zn-Based Alloys and Examine Their Biodegradable and Biocompatible Properties
Authors: Abdulrahman Sumayli
Abstract:
Natural Zinc has many significant biological functions, including developments and sustainable of bones and wound healing. Metallic zinc has recently been explored as potential biomaterials that have preferable biodegradable, biocompatible, and mechanical properties. Pure metal zinc has a preferable physical and mechanical properties for biodegradable and biocompatible applications such as density and modulus of elasticity. The aim of the research is to make different Zn-based metallic alloys and test them effectively to be used as biocompatible and biodegradable materials in the field biomedical application. Microstructure study of the as-cast alloys will be examined using SEM (scanning electron microscope) followed by X-ray diffraction investigated so as to evaluate phase constitution of the designed alloys. After that, immersion test and electrochemical test will be applied to the designed alloys so as to study bio corrosion behaviour of the proposed alloys. Finally, in vitro cytocompatibility well conducted to study biocompatibility of the made alloys.Keywords: Zn-based alloys, biodegradable and biocompatible materials, cytotoxicity test, neutron synchrotron imaging
Procedia PDF Downloads 13811672 Effect of Pressure and Dissolved Oxygen on Stress Corrosion Cracking Susceptibility of Inconel 617 in Steam and Supercritical Water
Authors: Hasan Izhar Khan, Naiqiang Zhang, Hong Xu, Zhongliang Zhu, Dongfang Jiang
Abstract:
Inconel 617, a nickel-based alloy designed for high-temperature applications, got an excellent amalgamation of strength and oxidation resistance at high temperatures. For a better understanding of its suitability to be used in superheater and reheater tubes in ultra-supercritical power plants, stress corrosion cracking (SCC) susceptibility must be evaluated. In the present study, the effect of medium environment on SCC behavior of Inconel 617, in the form of a round bar tensile specimen, was tested via slow strain rate tensile tests in steam and supercritical water (SCW) at 650 °C. The results showed that SCC susceptibility has a linear relationship with exposed pressure and increases monotonically with an increase in pressure. A severe SCC susceptibility was observed in SCW followed by that in a steam environment. Fracture and gage surface showed apparent characteristics of brittle fracture. Intergranular cracks initiated from the edge region and propagated into the matrix through cross section until ductile rupture. When dissolved oxygen contents were decreased in SCW environment, it showed no noticeable effect on mechanical properties but SCC susceptibility slightly decreased. The research revealed the influence of environment on SCC susceptibility of Inconel 617 in steam and SCW.Keywords: Inconel 617, steam, supercritical water, stress corrosion cracking
Procedia PDF Downloads 15511671 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.Keywords: electric propulsion, mass gauging, propellant, PVT, xenon
Procedia PDF Downloads 34411670 Pistachio Supplementation Ameliorates the Motor and Cognitive Deficits in Rotenone-Induced Rat Model of Parkinson’s Disease
Authors: Saida Haider, Syeda Madiha
Abstract:
Parkinson’s disease (PD) is a common neurological disorder characterized by motor deficits and loss of dopaminergic neurons. Oxidative stress is said to play a pivotal role in the pathophysiology of the disease. In the present study, PD was induced by injection of rotenone (1.5 mg/kg/day, s.c.) for eight days. Pistachio (800 mg/kg/day, p.o.) was given for two weeks. At the end of treatment brains were dissected out and striatum was isolated for biochemical and neurochemical analysis. Morris water maze (MWM) test and novel object recognition (NOR) task was used to test the memory function while motor behavior was determined by open field test (OFT), Kondziela inverted screen test (KIST), pole test (PT), beam walking test (BWT), inclined plane test (IPT) and footprint (FP) test. Several dietary components have been evaluated as potential therapeutic compounds in many neurodegenerative diseases. Increasing evidence shows that nuts have protective effects against various diseases by improving the oxidative status and reducing lipid peroxidation. Pistachio is the only nut that contains anthocyanin, a potent antioxidant having neuroprotective properties. Results showed that pistachio supplementation significantly restored the rotenone-induced motor deficits and improved the memory performance. Moreover, rats treated with pistachio also exhibited enhanced oxidative status and increased dopamine (DA) and 5-hydroxytryptamine (5-HT) concentration in striatum. In conclusion, to our best knowledge, we have for the first time shown that pistachio nut possesses neuroprotective effects against rotenone-induced motor and cognitive deficits. These beneficial effects of pistachio may be attributed to its high content of natural antioxidant and phenolic compounds. Hence, consumption of pistachio regularly as part of a daily diet can be beneficial in the prevention and treatment of PD.Keywords: rotenone, pistachio, oxidative stress, Parkinson’s disease
Procedia PDF Downloads 10511669 Knowledge of Pap Smear Test and Visual Inspection with Acetic Acid in Cervical Cancer Patients in Manado
Authors: Eric Ng, Freddy W. Wagey, Frank M. M. Wagey
Abstract:
Background: Cervical cancer is the fourth most common cancer in women worldwide and the most common cancer in many low- and middle-income countries. The main causes are the lack of prevention programs and effective therapy, as well as the lack of knowledge about cervical cancer and awareness for early detection. The Pap smear test and visual inspection with acetic acid (VIA) allow the cervical lesion to be detected so that progression to cervical cancer can be avoided. Objective: The purpose of this study was to evaluate the knowledge of Pap smear test and VIA in cervical cancer patients. Methodology: A total of 67 cervical cancer patients in Manado who volunteered to participate in the research were identified as the sample. The data were collected during the month of November 2019-January 2020 with a questionnaire about the respondents' knowledge relating to Pap smear test and VIA. Questionnaire data were analysed using descriptive statistics. Results: Knowledge of pap smear among cervical cancer patients were good in 9 respondents (13.4%), moderate in 20 respondents (29.9%), and bad in 38 respondents (56.7%), whereas the knowledge of VIA was good in 13 respondents (19.4%), moderate in 15 respondents (22.4%), and bad in 39 respondents (58.2%). Conclusion: Majority of cervical cancer patients in Manado still had bad knowledge about Pap smear tests and VIA.Keywords: cervical cancer, knowledge, pap smear test, visual inspection with acetic acid
Procedia PDF Downloads 17011668 The Impact of Basic TRIZ Training on Psychological Flexibility among University Students
Authors: Bakr M. Saeid
Abstract:
Psychological flexibility is a basic ability that allows people to adapt to a changing, difficult world. TRIZ is a Theory of Solving Inventive Problems that has many applications in both science & technology and creativity development; this research aimed to investigate the impact of basic TRIZ training on psychological flexibility among university students. The research sample included (30) university students divided into two groups: experimental group (n=15) and control group (n=15). The Psychological Flexibility Questionnaire (PFQ) was conducted in the pre-test and post-test on the experimental and control group, as the study treatment was applied to the experimental group only. Data were analyzed statistically by the Mann-Whitney test and Wilcoxon z test; results showed the effectiveness of the TRIZ training program on the development of psychological flexibility and its five factors. Results were interpreted, recommendations were presented.Keywords: psychological flexibility, TRIZ, positive perception of change, self as flexible and innovative, perception of reality
Procedia PDF Downloads 15811667 In the Face of Brokenness: Finding Meaning and Purpose in a Shattered World
Authors: Le Khanh Huyen
Abstract:
This dissertation focuses on the psychological study of children, particularly those who lack parental affection or face family pressures. It will analyze the severe consequences of insufficient parental love and familial pressure on children's psychology, including emotional and behavioral disorders, learning difficulties in academics and daily life, loss of faith, and low self-esteem. Additionally, this dissertation will propose solutions to support children in challenging circumstances, contributing to the protection of children's mental health.Keywords: child psychology, lack of parental love, family pressure, emotional and behavioral disorders, learning difficulties, loss of faith, self-esteem, mental health
Procedia PDF Downloads 3511666 Effect of Plastic Fines on Liquefaction Resistance of Sandy Soil Using Resonant Column Test
Authors: S. A. Naeini, M. Ghorbani Tochaee
Abstract:
The aim of this study is to assess the influence of plastic fines content on sand-clay mixtures on maximum shear modulus and liquefaction resistance using a series of resonant column tests. A high plasticity clay called bentonite was added to 161 Firoozkooh sand at the percentages of 10, 15, 20, 25, 30 and 35 by dry weight. The resonant column tests were performed on the remolded specimens at constant confining pressure of 100 KPa and then the values of Gmax and liquefaction resistance were investigated. The maximum shear modulus and cyclic resistance ratio (CRR) are examined in terms of fines content. Based on the results, the maximum shear modulus and liquefaction resistance tend to decrease within the increment of fine contents.Keywords: Gmax, liquefaction, plastic fines, resonant column, sand-clay mixtures, bentonite
Procedia PDF Downloads 14511665 Effect of Core Stability Exercises on Trunk Proprioception in Healthy Adult Individuals
Authors: Omaima E. S. Mohammed, Amira A. A. Abdallah, Amal A. M. El Borady
Abstract:
Background: Core stability training has recently attracted attention for improving muscle performance. Purpose: This study investigated the effect of beginners' core stability exercises on trunk active repositioning error at 30° and 60° trunk flexion. Methods: Forty healthy males participated in the study. They were divided into two equal groups; experimental “group I” and control “group II”. Their mean age, weight and height were 19.35±1.11 vs 20.45±1.64 years, 70.15±6.44 vs 72.45±6.91 kg and 174.7±7.02 vs 176.3±7.24 cm for group I vs group II. Data were collected using the Biodex Isokinetic system at an angular velocity of 60º/s. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The Mixed 3-way ANOVA revealed significant increases (p<0.05) in the absolute error (AE) at 30˚ compared with 60˚ flexion in the pre-test condition of group I and II and the post-test condition of group II. Moreover, there were significant decreases (p<0.05) in the AE in the post-test condition compared with the pre-test in group I at both 30˚ and 60˚ flexion with no significant differences for group II. Finally, there were significant decreases (p<0.05) in the AE in group I compared with group II in the post-test condition at 30˚ and 60˚ flexion with no significant differences for the pre-test condition Interpretation/Conclusion: The improvement in trunk proprioception indicated by the decrease in the active repositioning error in the experimental group recommends including core stability training in the exercise programs that aim to improve trunk proprioception.Keywords: core stability, isokinetic, trunk proprioception, biomechanics
Procedia PDF Downloads 474