Search results for: heating element
3015 Finite Element Simulation of Embankment Bumps at Bridge Approaches, Comparison Study
Authors: F. A. Hassona, M. D. Hashem, R. I. Melek, B. M. Hakeem
Abstract:
A differential settlement at the end of a bridge near the interface between the abutment and the embankment is a persistent problem for highway agencies. The differential settlement produces the common ‘bump at the end of the bridge’. Reduction in steering response, distraction to the driver, added risk and expense to maintenance operation, and reduction in a transportation agency’s public image are all undesirable effects of these uneven and irregular transitions. This paper attempts to simulate the bump at the end of the bridge using PLAXIS finite element 2D program. PLAXIS was used to simulate a laboratory model called Bridge to Embankment Simulator of Transition (B.E.S.T.) device which was built by others to investigate this problem. A total of six numerical simulations were conducted using hardening- soil model with rational assumptions of missing soil parameters to estimate the bump at the end of the bridge. The results show good agreements between the numerical and the laboratory models. Important factors influencing bumps at bridge ends were also addressed in light of the model results.Keywords: bridge approach slabs, bridge bump, hardening-soil, PLAXIS 2D, settlement
Procedia PDF Downloads 3483014 Mechanical Characterization of Brain Tissue in Compression
Authors: Abbas Shafiee, Mohammad Taghi Ahmadian, Maryam Hoviattalab
Abstract:
The biomechanical behavior of brain tissue is needed for predicting the traumatic brain injury (TBI). Each year over 1.5 million people sustain a TBI in the USA. The appropriate coefficients for injury prediction can be evaluated using experimental data. In this study, an experimental setup on brain soft tissue was developed to perform unconfined compression tests at quasistatic strain rates ∈0.0004 s-1 and 0.008 s-1 and 0.4 stress relaxation test under unconfined uniaxial compression with ∈ 0.67 s-1 ramp rate. The fitted visco-hyperelastic parameters were utilized by using obtained stress-strain curves. The experimental data was validated using finite element analysis (FEA) and previous findings. Also, influence of friction coefficient on unconfined compression and relaxation test and effect of ramp rate in relaxation test is investigated. Results of the findings are implemented on the analysis of a human brain under high acceleration due to impact.Keywords: brain soft tissue, visco-hyperelastic, finite element analysis (FEA), friction, quasistatic strain rate
Procedia PDF Downloads 6563013 In vivo Mechanical Characterization of Facial Skin Combining Digital Image Correlation and Finite Element
Authors: Huixin Wei, Shibin Wang, Linan Li, Lei Zhou, Xinhao Tu
Abstract:
Facial skin is a biomedical material with complex mechanical properties of anisotropy, viscoelasticity, and hyperelasticity. The mechanical properties of facial skin are crucial for a number of applications including facial plastic surgery, animation, dermatology, cosmetic industry, and impact biomechanics. Skin is a complex multi-layered material which can be broadly divided into three main layers, the epidermis, the dermis, and the hypodermis. Collagen fibers account for 75% of the dry weight of dermal tissue, and it is these fibers which are responsible for the mechanical properties of skin. Many research on the anisotropic mechanical properties are mainly concentrated on in vitro, but there is a great difference between in vivo and in vitro for mechanical properties of the skin. In this study, we presented a method to measure the mechanical properties of facial skin in vivo. Digital image correlation (DIC) and indentation tests were used to obtain the experiment data, including the deformation of facial surface and indentation force-displacement curve. Then, the experiment was simulated using a finite element (FE) model. Application of Computed Tomography (CT) and reconstruction techniques obtained the real tissue geometry. A three-dimensional FE model of facial skin, including a bi-layer system, was obtained. As the epidermis is relatively thin, the epidermis and dermis were regarded as one layer and below it was hypodermis in this study. The upper layer was modeled as a Gasser-Ogden-Holzapfel (GOH) model to describe hyperelastic and anisotropic behaviors of the dermis. The under layer was modeled as a linear elastic model. In conclusion, the material properties of two-layer were determined by minimizing the error between the FE data and experimental data.Keywords: facial skin, indentation test, finite element, digital image correlation, computed tomography
Procedia PDF Downloads 1123012 Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow
Authors: Shu-Yang Zhang, Shun-Qi Zhang, Zhan-Xi Wang, Xian-Sheng Qin
Abstract:
Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely.Keywords: piezoelectric smart structures, aerodynamic, geometric nonlinearity, finite element analysis
Procedia PDF Downloads 3893011 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames
Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan
Abstract:
The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.Keywords: seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design
Procedia PDF Downloads 983010 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.Keywords: finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations
Procedia PDF Downloads 1473009 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading
Authors: Reza E. Sedgh, Rajesh P. Dhakal
Abstract:
Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.Keywords: analytical model, nonlinear shell element, structural wall, shear behavior
Procedia PDF Downloads 4043008 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method
Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi
Abstract:
This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure
Procedia PDF Downloads 4913007 Renovate to nZEB of an Existing Building in the Mediterranean Area: Analysis of the Use of Renewable Energy Sources for the HVAC System
Authors: M. Baratieri, M. Beccali, S. Corradino, B. Di Pietra, C. La Grassa, F. Monteleone, G. Morosinotto, G. Puglisi
Abstract:
The energy renovation of existing buildings represents an important opportunity to increase the decarbonization and the sustainability of urban environments. In this context, the work carried out has the objective of demonstrating the technical and economic feasibility of an energy renovate of a public building destined for offices located on the island of Lampedusa in the Mediterranean Sea. By applying the Italian transpositions of European Directives 2010/31/EU and 2009/28/EC, the building has been renovated from the current energy requirements of 111.7 kWh/m² to 16.4 kWh/m². The result achieved classifies the building as nZEB (nearly Zero Energy Building) according to the Italian national definition. The analysis was carried out using in parallel a quasi-stationary software, normally used in the professional field, and a dynamic simulation model often used in the academic world. The proposed interventions cover the components of the building’s envelope, the heating-cooling system and the supply of energy from renewable sources. In these latter points, the analysis has focused more on assessing two aspects that affect the supply of renewable energy. The first concerns the use of advanced logic control systems for air conditioning units in order to increase photovoltaic self-consumption. With these adjustments, a considerable increase in photovoltaic self-consumption and a decrease in the electricity exported to the Island's electricity grid have been obtained. The second point concerned the evaluation of the building's energy classification considering the real efficiency of the heating-cooling plant. Normally the energy plants have lower operational efficiency than the designed one due to multiple reasons; the decrease in the energy classification of the building for this factor has been quantified. This study represents an important example for the evaluation of the best interventions for the energy renovation of buildings in the Mediterranean Climate and a good description of the correct methodology to evaluate the resulting improvements.Keywords: heat pumps, HVAC systems, nZEB renovation, renewable energy sources
Procedia PDF Downloads 4513006 Production and Characterization of Biochars from Torrefaction of Biomass
Authors: Serdar Yaman, Hanzade Haykiri-Acma
Abstract:
Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.Keywords: biochar, biomass, fuel upgrade, torrefaction
Procedia PDF Downloads 3733005 Experimental and Numerical Investigation of “Machining Induced Residual Stresses” during Orthogonal Machining of Alloy Steel AISI 4340
Authors: Theena Thayalan, K. N. Ramesh Babu
Abstract:
Machining induced residual stress (RS) is one of the most important surface integrity parameters that characterize the near surface layer of a mechanical component, which plays a crucial role in controlling the performance, especially its fatigue life. Since experimental determination of RS is expensive and time consuming, it would be of great benefit if they could be predicted. In such case, it would be possible to select the cutting parameters required to produce a favorable RS profile. In the present study, an effort has been made to develop a 'two dimensional finite element model (FEM)' to simulate orthogonal cutting process and to predict surface and sub-surface RS using the commercial FEA software DEFORM-2D. The developed finite element model has been validated through experimental investigation of RS. In the experimentation, the orthogonal cutting tests were carried out on AISI 4340 by varying the cutting speed (VC) and uncut chip thickness (f) at three levels and the surface & sub-surface RS has been measured using XRD and Electro polishing techniques. The comparison showed that the RS obtained using developed numerical model is in reasonable agreement with that of experimental data.Keywords: FEM, machining, residual stress, XRF
Procedia PDF Downloads 3483004 DGA Data Interpretation Using Extension Theory for Power Transformer Diagnostics
Authors: O. P. Rahi, Manoj Kumar
Abstract:
Power transformers are essential and expensive equipments in electrical power system. Dissolved gas analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. However, the identification of the faulted location by conventional method is not always an easy task due to variability of gas data and operational variables. In this paper, an extension theory based power transformer fault diagnosis method is presented. Extension theory tries to solve contradictions and incompatibility problems. This paper first briefly introduces the basic concept of matter element theory, establishes the matter element models for three-ratio method, and then briefly discusses extension set theory. Detailed analysis is carried out on the extended relation function (ERF) adopted in this paper for transformer fault diagnosis. The detailed diagnosing steps are offered. Simulation proves that the proposed method can overcome the drawbacks of the conventional three-ratio method, such as no matching and failure to diagnose multi-fault. It enhances diagnosing accuracy.Keywords: DGA, extension theory, ERF, fault diagnosis power transformers, fault diagnosis, fuzzy logic
Procedia PDF Downloads 4123003 Incorporation of Hibah as a Catalyst for Channelling Profits and Compensations in Islamic Transactions
Authors: Ameen Alshugaa, Farrukh Habib
Abstract:
Shariah (the Islamic law) sanctions a plethora of profit-sharing arrangements for financial transactions. However, when it comes to the practice of Islamic banking, it is felt by the scholars and practitioners that many of these arrangements often fail to compensate different parties of a financial transaction compared to conventional banking, due to the Riba (interest / usury) element. This issue is caused by the parties inability to codify these compensations in any contract so as to avoid Riba. Here, hibah (gift) may be regarded as one of the solutions. In essence, hibah is a unilateral charity contract where a party voluntarily gives away something to another party without any counter value. This paper attempts to analyse theoretical and practical aspects of hibah from the perspective of Islamic law, enunciating its legality and detailing its allowance in Islamic banking. It also discusses several practices evaluating the role of hibah in resolving issues related to Riba. In particular, these practices demonstrate the validity of hibah as a way to distribute revenues and compensate parties in Islamic financial transactions, while achieving competitive advantage over conventional banking, and avoiding the element of Riba.Keywords: hibah (gift), Islamic Finance, Islamic Law of Contract, profit distribution, Shariah
Procedia PDF Downloads 3013002 Numerical Investigation for External Strengthening of Dapped-End Beams
Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah
Abstract:
The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.Keywords: dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation
Procedia PDF Downloads 1173001 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss
Authors: Azin Zargham, Gholamreza Rouhi, Allahyar Geramy
Abstract:
One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL.Keywords: bone remodeling, finite element method, horizontal bone loss, orthodontic tooth movement.
Procedia PDF Downloads 3423000 Pollution Associated with Combustion in Stove to Firewood (Eucalyptus) and Pellet (Radiate Pine): Effect of UVA Irradiation
Authors: Y. Vásquez, F. Reyes, P. Oyola, M. Rubio, J. Muñoz, E. Lissi
Abstract:
In several cities in Chile, there is significant urban pollution, particularly in Santiago and in cities in the south where biomass is used as fuel in heating and cooking in a large proportion of homes. This has generated interest in knowing what factors can be modulated to control the level of pollution. In this project was conditioned and set up a photochemical chamber (14m3) equipped with gas monitors e.g. CO, NOX, O3, others and PM monitors e.g. dustrack, DMPS, Harvard impactors, etc. This volume could be exposed to UVA lamps, producing a spectrum similar to that generated by the sun. In this chamber, PM and gas emissions associated with biomass burning were studied in the presence and absence of radiation. From the comparative analysis of wood stove (eucalyptus globulus) and pellet (radiata pine), it can be concluded that, in the first approximation, 9-nitroanthracene, 4-nitropyrene, levoglucosan, water soluble potassium and CO present characteristics of the tracers. However, some of them show properties that interfere with this possibility. For example, levoglucosan is decomposed by radiation. The 9-nitroanthracene, 4-nitropyrene are emitted and formed under radiation. The 9-nitroanthracene has a vapor pressure that involves a partition involving the gas phase and particulate matter. From this analysis, it can be concluded that K+ is compound that meets the properties known to be tracer. The PM2.5 emission measured in the automatic pellet stove that was used in this thesis project was two orders of magnitude smaller than that registered by the manual wood stove. This has led to encouraging the use of pellet stoves in indoor heating, particularly in south-central Chile. However, it should be considered, while the use of pellet is not without problems, due to pellet stove generate high concentrations of Nitro-HAP's (secondary organic contaminants). In particular, 4-nitropyrene, compound of high toxicity, also primary and secondary particulate matter, associated with pellet burning produce a decrease in the size distribution of the PM, which leads to a depth penetration of the particles and their toxic components in the respiratory system.Keywords: biomass burning, photochemical chamber, particulate matter, tracers
Procedia PDF Downloads 1942999 Low-Voltage Multiphase Brushless DC Motor for Electric Vehicle Application
Authors: Mengesha Mamo Wogari
Abstract:
In this paper, low voltage multiphase brushless DC motor with square wave air-gap flux distribution for electric vehicle application is proposed. Ten-phase, 5 kW motor, has been designed and simulated by finite element methods demonstrating the desired high torque capability at low speed and flux weakening operation for high-speed operations. The motor torque is proportional to number of phases for a constant phase current and air-gap flux. The concept of vector control and simple space vector modulation technique is used on MATLAB to control the motor demonstrating simple switching pattern for selected number of phases. The low voltage DC and inverter output AC are desired characteristics to avoid any electric shock in the vehicle, accidentally and during abnormal conditions. The switching devices for inverter are of low-voltage rating and cost effective though their number is equal to twice the number of phases.Keywords: brushless DC motors, electric Vehicle, finite element methods, Low-voltage inverter, multiphase
Procedia PDF Downloads 1532998 Finite Element Analysis of Dental Implant for Prosthesis
Authors: Mayur Chaudhari, Ashutosh Gaikwad, Shubham Kavathale, Aditya Mule, Dilip Panchal, Puja Verma
Abstract:
The purpose of this investigation was to locate restorative bio-materials for the manufacture of implants and crowns. A three-dimensional (3D) finite element analysis (FEA) was carried out to evaluate the stress distribution in the implant and abutment with several types of bio-materials and various prosthetic crowns. While the dental implant, abutment, and screw were subjected to a vertical impact force, the effects of mechanical characteristics such as Young's modulus and Poisson's ratio were evaluated and contrasted. Crowns are made from zirconia, cobalt, ceramic, acrylic resin, and porcelain materials. Implants are made from materials such as titanium, zirconia, PEEK, and CFR-PEEK. SolidWorks was used to create the 3D geometry, and Ansys Software was used to analyze it. The results show that using CFR-PEEK implants and an acrylic resin crown resulted in less bone stress than using alternative materials. In order to reduce the amount of stress on the bone and possibly prevent implant failure, the study's findings support the use of a CFR PEEK implant, abutment, and crown in bruxism patients.Keywords: biomaterials, implant, crown, abutment
Procedia PDF Downloads 602997 Finite Element Modelling for the Development of a Planar Ultrasonic Dental Scaler for Prophylactic and Periodontal Care
Authors: Martin Hofmann, Diego Stutzer, Thomas Niederhauser, Juergen Burger
Abstract:
Dental biofilm is the main etiologic factor for caries, periodontal and peri-implant infections. In addition to the risk of tooth loss, periodontitis is also associated with an increased risk of systemic diseases such as atherosclerotic cardiovascular disease and diabetes. For this reason, dental hygienists use ultrasonic scalers for prophylactic and periodontal care of the teeth. However, the current instruments are limited to their dimensions and operating frequencies. The innovative design of a planar ultrasonic transducer introduces a new type of dental scalers. The flat titanium-based design allows the mass to be significantly reduced compared to a conventional screw-mounted Langevin transducer, resulting in a more efficient and controllable scaler. For the development of the novel device, multi-physics finite element analysis was used to simulate and optimise various design concepts. This process was supported by prototyping and electromechanical characterisation. The feasibility and potential of a planar ultrasonic transducer have already been confirmed by our current prototypes, which achieve higher performance compared to commercial devices. Operating at the desired resonance frequency of 28 kHz with a driving voltage of 40 Vrms results in an in-plane tip oscillation with a displacement amplitude of up to 75 μm by having less than 8 % out-of-plane movement and an energy transformation factor of 1.07 μm/mA. In a further step, we will adapt the design to two additional resonance frequencies (20 and 40 kHz) to obtain information about the most suitable mode of operation. In addition to the already integrated characterization methods, we will evaluate the clinical efficiency of the different devices in an in vitro setup with an artificial biofilm pocket model.Keywords: ultrasonic instrumentation, ultrasonic scaling, piezoelectric transducer, finite element simulation, dental biofilm, dental calculus
Procedia PDF Downloads 1222996 A Stokes Optimal Control Model of Determining Cellular Interaction Forces during Gastrulation
Authors: Yuanhao Gao, Ping Lin, Kees Weijer
Abstract:
An optimal control system model is proposed for the cell flow in the process of chick embryo gastrulation in this paper. The target is to determine the cellular interaction forces which are hard to measure. This paper will take an approach to investigate the forces with the idea of the inverse problem. By choosing the forces as the control variable and regarding the cell flow as Stokes fluid, an objective functional will be established to match the numerical result of cell velocity with the experimental data. So that the forces could be determined by minimizing the objective functional. The Lagrange multiplier method is utilized to derive the state and adjoint equations consisting the optimal control system, which specifies the first-order necessary conditions. Finite element method is used to discretize and approximate equations. A conjugate gradient algorithm is given for solving the minimum solution of the system and determine the forces.Keywords: optimal control model, Stokes equation, conjugate gradient method, finite element method, chick embryo gastrulation
Procedia PDF Downloads 2592995 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing
Authors: T. Bensana, S. Mekhilef
Abstract:
The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising
Procedia PDF Downloads 3792994 Behavior of Common Philippine-Made Concrete Hollow Block Structures Subjected to Seismic Load Using Rigid Body Spring-Discrete Element Method
Authors: Arwin Malabanan, Carl Chester Ragudo, Jerome Tadiosa, John Dee Mangoba, Eric Augustus Tingatinga, Romeo Eliezer Longalong
Abstract:
Concrete hollow blocks (CHB) are the most commonly used masonry block for walls in residential houses, school buildings and public buildings in the Philippines. During the recent 2013 Bohol earthquake (Mw 7.2), it has been proven that CHB walls are very vulnerable to severe external action like strong ground motion. In this paper, a numerical model of CHB structures is proposed, and seismic behavior of CHB houses is presented. In modeling, the Rigid Body Spring-Discrete Element method (RBS-DEM)) is used wherein masonry blocks are discretized into rigid elements and connected by nonlinear springs at preselected contact points. The shear and normal stiffness of springs are derived from the material properties of CHB unit incorporating the grout and mortar fillings through the volumetric transformation of the dimension using material ratio. Numerical models of reinforced and unreinforced walls are first subjected to linearly-increasing in plane loading to observe the different failure mechanisms. These wall models are then assembled to form typical model masonry houses and then subjected to the El Centro and Pacoima earthquake records. Numerical simulations show that the elastic, failure and collapse behavior of the model houses agree well with shaking table tests results. The effectiveness of the method in replicating failure patterns will serve as a basis for the improvement of the design and provides a good basis of strengthening the structure.Keywords: concrete hollow blocks, discrete element method, earthquake, rigid body spring model
Procedia PDF Downloads 3722993 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.Keywords: multi objective optimization, pareto front, composite patch, cracked pipe
Procedia PDF Downloads 3122992 Analysis of the Environmental Impact of Selected Small Heat and Power Plants Operating in Poland
Authors: M. Stelmachowski, M. Wojtczak
Abstract:
The aim of the work was to assess the environmental impact of the selected small and medium-sized companies supplying heat and electricity to the cities with a population of about 50,000 inhabitants. Evaluation and comparison of the impact on the environment have been carried out for the three plants producing heat and two CHP plants with particular attention to emissions into the atmosphere and the impact of introducing a system of trading carbon emissions of these companies.Keywords: CO2 emission, district heating, heat and power plant, impact on environment
Procedia PDF Downloads 4792991 Finite Element Modeling of a Lower Limb Based on the East Asian Body Characteristics for Pedestrian Protection
Authors: Xianping Du, Runlu Miao, Guanjun Zhang, Libo Cao, Feng Zhu
Abstract:
Current vehicle safety standards and human body injury criteria were established based on the biomechanical response of Euro-American human body, without considering the difference in the body anthropometry and injury characteristics among different races, particularly the East Asian people with smaller body size. Absence of such race specific design considerations will negatively influence the protective performance of safety products for these populations, and weaken the accuracy of injury thresholds derived. To resolve these issues, in this study, we aim to develop a race specific finite element model to simulate the impact response of the lower extremity of a 50th percentile East Asian (Chinese) male. The model was built based on medical images for the leg of an average size Chinese male and slightly adjusted based on the statistical data. The model includes detailed anatomic features and is able to simulate the muscle active force. Thirteen biomechanical tests available in the literature were used to validate its biofidelity. Using the validated model, a pedestrian-car impact accident taking place in China was re-constructed computationally. The results show that the newly developed lower leg model has a good performance in predicting dynamic response and tibia fracture pattern. An additional comparison on the fracture tolerance of the East Asian and Euro-American lower limb suggests that the current injury criterion underestimates the degree of injury of East Asian human body.Keywords: lower limb, East Asian body characteristics, traffic accident reconstruction, finite element analysis, injury tolerance
Procedia PDF Downloads 2892990 Modeling of Transformer Winding for Transients: Frequency-Dependent Proximity and Skin Analysis
Authors: Yazid Alkraimeen
Abstract:
Precise prediction of dielectric stresses and high voltages of power transformers require the accurate calculation of frequency-dependent parameters. A lack of accuracy can result in severe damages to transformer windings. Transient conditions is stuided by digital computers, which require the implementation of accurate models. This paper analyzes the computation of frequency-dependent skin and proximity losses included in the transformer winding model, using analytical equations and Finite Element Method (FEM). A modified formula to calculate the proximity and the skin losses is presented. The results of the frequency-dependent parameter calculations are verified using the Finite Element Method. The time-domain transient voltages are obtained using Numerical Inverse Laplace Transform. The results show that the classical formula for proximity losses is overestimating the transient voltages when compared with the results obtained from the modified method on a simple transformer geometry.Keywords: fast front transients, proximity losses, transformer winding modeling, skin losses
Procedia PDF Downloads 1392989 Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters
Authors: Aihong Zhao, Priya Sastry, Mark L Field, Mohamad Bashir, Arvind Singh, David Richens
Abstract:
Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma.Keywords: intramural haematoma, acute aortic syndrome, finite element analysis,
Procedia PDF Downloads 4312988 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology
Authors: Edison A. Bonifaz
Abstract:
In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler
Procedia PDF Downloads 692987 On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns
Abstract:
Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design.Keywords: lateral-torsional buckling, stability, beam-column, monosymmetric section
Procedia PDF Downloads 3242986 Comparison of the Effects of Rod Types of Rigid Fixation Devices on the Loads in the Lumbar Spine: A Finite Element Analysis
Authors: Bokku Kang, Changsoo Chon, Han Sung Kim
Abstract:
We developed new design of rod of pedicle screw system that is beneficial in maintaining the spacing between the vertebrae and assessed the performance of the posterior fixation screw systems by numerical analysis according to the range of motion (flexion, extension, lateral bending, and axial rotation) of the vertebral column after inserting the pedicle screws. The simulation results showed that the conventional rod was the most low equivalent stress value among implant units in the case of flexion, extension and lateral bending of the vertebrae. In all cases except the torsional rotation, the results showed that the stress level of the single and double rounded rod exceeded about 30% to 70% compare to the conventional rod. Therefore, this product is not suitable for actual application in the field yet and it seems that product design optimization is necessary. Acknowledgement: This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region.Keywords: lumber spine, internal fixation device, finite element method, biomechanics
Procedia PDF Downloads 378