Search results for: clinical decision support systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20996

Search results for: clinical decision support systems

20006 Prognostic Value in Meningioma Patients’: A Clinical-Histopathological Study

Authors: Ilham Akbar Rahman, Aflah Dhea Bariz Yasta, Iin Fadhilah Utami Tamasse, Devina Juanita

Abstract:

Meningioma is adult brain tumors originating from the meninges covering the brain and spinal cord. The females have approximately twice higher 2:1 than male in the incidence of meningioma. This study aimed to analyze the histopathological grading and clinical aspect in predicting the prognosis of meningioma patients. An observational study with cross sectional design was used on 53 meningioma patients treated at Dr. Wahidin Sudirohusodo hospital in 2016. The data then were analyzed using SPSS 20.0. Of 53 patients, mostly 41 (77,4%) were female and 12 (22,6%) were male. The distribution of histopathology patients showed the meningothelial meningioma of 18 (43,9%) as the most type found. Fibroplastic meningioma were 8 (19,5%), while atypical meningioma and psammomatous meningioma were 6 (14,6%) each. The rest were malignant meningioma and angiomatous meningioma which found in respectively 2 (4,9%) and 1 (2,4%). Our result found significant finding that mostly male were fibroblastic meningioma (50%), however meningothelial meningioma were found in the majority of female (54,8%) and also seizure comprised only in higher grade meningioma. On the outcome of meningioma patient treated operatively, histopathological grade remained insignificant (p > 0,05). This study can be used as prognostic value of meningioma patients based on gender, histopathological grade, and clinical manifestation. Overall, the outcome of the meningioma’s patients is good and promising as long as it is well managed.

Keywords: meningioma, prognostic value, histopathological grading, clinical manifestation

Procedia PDF Downloads 171
20005 Developed Text-Independent Speaker Verification System

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.

Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis

Procedia PDF Downloads 58
20004 Online Early Childhood Monitoring and Evaluation of Systems in Underprivileged Communities: Tracking Growth and Progress in Young Children's Ability Levels

Authors: Lauren Kathryn Stretch

Abstract:

A study was conducted in the underprivileged setting of Nelson Mandela Bay, South Africa in order to monitor the progress of learners whose teachers receive training through the Early Inspiration Training Programme. Through tracking children’s growth & development, the effectiveness of the practitioner-training programme, which focuses on empowering women from underprivileged communities in South Africa, was analyzed. The aim was to identify impact & reach and to assess the effectiveness of this intervention programme through identifying impact on children’s growth and development. A Pre- and Post-Test was administered on about 850 young children in Pre-Grade R and Grade R classes in order to understand children’s ability level & the growth that would be evident as a result of effective teacher training. A pre-test evaluated the level of each child’s abilities, including physical-motor development, language, and speech development, cognitive development including visual perceptual skills, social-emotional development & play development. This was followed by a random selection of the classes of children into experimental and control groups. The experimental group’s teachers (practitioners) received 8-months of training & intervention, as well as mentorship & support. After the 8-month training programme, children from the experimental & control groups underwent post-assessment. The results indicate that the impact of effective practitioner training and enhancing a deep understanding of stimulation on young children, that this understanding is implemented in the classroom, highlighting the areas of growth & development in the children whose teachers received additional training & support, as compared to those who did not receive additional training. Monitoring & Evaluation systems not only track children’s ability levels, but also have a core focus on reporting systems, mentorship and providing ongoing support. As a result of the study, an Online Application (for Apple or Android Devices) was developed which is used to track children’s growth via age-appropriate assessments. The data is then statistically analysed to provide direction for relevant & impactful intervention. The App also focuses on effective reporting strategies, structures, and implementation to support organizations working with young children & maximize on outcomes.

Keywords: early childhood development, developmental child assessments, online application, monitoring and evaluating online

Procedia PDF Downloads 195
20003 Evaluation of the Analytic for Hemodynamic Instability as a Prediction Tool for Early Identification of Patient Deterioration

Authors: Bryce Benson, Sooin Lee, Ashwin Belle

Abstract:

Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.

Keywords: clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring

Procedia PDF Downloads 190
20002 Important role of HLA-B*58:01 Allele and Distribution Among Healthy Thais: Avoid Severe Cutaneous Adverse Reactions

Authors: Jaomai Tungsiripat, Patompong Satapornpong

Abstract:

Allopurinol have been used to treat diseases that relating with the reduction of uric acid and be a treatment preventing the severity of, including gout, chronic kidney disease, chronic heart failure, and diabetes mellitus (type 2). However, allopurinol metabolites can cause a severe cutaneous adverse reaction (SCARs) consist of Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) and Stevens-Johnson Syndrome(SJS)/Toxic Epidermal Necrolysis (TEN). Previous studies, we found only HLA-B*58:01 allele has a strongly association with allopurinol-induced SCARs in many populations: Han Chinese [P value = 4.7 x 10−24], European [P value <10−6], and Thai [P value <0.001].However, there was no update the frequency of HLA-B alleles and pharmacogenetics markers distribution in healthy Thais and support for screening before the initiation of treatment. The aim of this study was to investigate the prevalence of HLA-B*58:01 allele associated with allopurinol-induced SCARs in healthy Thai population. A retrospective study of 260 individual healthy subjects who living in Thailand. HLA-B were genotyped using sequence-specific oligonucleotides (PCR-SSOs).In this study, we identified the prevalence of HLA-B alleles consist ofHLA-B*46:01 (12.69%), HLA-B*15:02 (8.85%), HLA-B*13:01 (6.35%), HLA-B*40:01 (6.35%), HLA-B*38:02 (5.00%), HLA-B*51:01 (5.00%), HLA-B*58:01 (4.81%), HLA-B*44:03 (4.62%), HLA-B*18:01 (3.85%) and HLA-B*15:25 (3.08%). Therefore, the distribution of HLA-B*58:01 will support the clinical implementation and screening usage of allopurinol in Thai population.

Keywords: allopurinol, HLA-B*58: 01, Thai population, SCARs

Procedia PDF Downloads 141
20001 Biorisk Management Education for Undergraduates Studying Clinical Microbiology at University in Japan

Authors: Shuji Fujimoto, Fumiko Kojima, Mika Shigematsu

Abstract:

Biorisk management (Biosafety/Biosecurity) is required for anyone working in a clinical laboratory (including medical/clinical research laboratories) where infectious agents and potentially hazardous biological materials are examined/stored. Proper education and training based on international standards of biorisk management should be provided not only as a part of laboratory safety program in work place but also as a part of introductory training at educational institutions for continuity and to elevate overall baseline of the biorisk management. We reported results of the pilot study of biorisk management education for graduate students majored in laboratory diagnostics previously. However, postgraduate education is still late in their profession and the participants’ interview also revealed importance and demands of earlier biorisk management education for undergraduates. The aim of this study is to identify the need for biosafety/biosecurity education and training program which is designed for undergraduate students who are entering the profession in clinical microbiology. We modified the previous program to include more basic topics and explanations (risk management, principles of safe clinical lab practices, personal protective equipment, disinfection, disposal of biological substances) and provided incorporating in the routine educational system for faculty of medical sciences in Kyushu University. The results of the pre and post examinations showed that the knowledge of the students on biorisk control had developed effectively as a proof of effectiveness of the program even in the undergraduate students. Our study indicates that administrating the basic biorisk management program in the earlier stage of learning will add positive impact to the understanding of biosafety to the health professional education.

Keywords: biorisk management, biosafety, biosecurity, clinical microbiology, education for undergraduates

Procedia PDF Downloads 213
20000 The Attentional Focus Impact on the Decision Making in Three-Game Situations in Tennis

Authors: Marina Tsetseli, Eleni Zetou, Maria Michalopoulou, Nikos Vernadakis

Abstract:

Game performance, besides the accuracy and the quality skills execution, depends heavily on where the athletes will focus their attention while performing a skill. The purpose of the present study was to examine and compare the effect of internal and external focus of attention instructions on the decision making in tennis at players 8-9 years old (M=8.4, SD=0.49). The participants (N=40) were divided into two groups and followed an intervention training program that lasted 4 weeks; first group (N=20) under internal focus of attention instructions and the second group (N=20) under external focus of attention instructions. Three measurements took place (pre-test, post-test, and retention test) in which the participants were video recorded while playing matches in real scoring conditions. GPAI (Game Performance Assessment Instrument) was used to evaluate decision making in three game situations; service, return of the service, baseline game. ANOVA repeated measures (2 groups x 3 measurements) revealed a significant interaction between groups and measurements. Specifically, the data analysis showed superiority of the group that was instructed to focus externally. The high scores of the external attention group were maintained at the same level at the third measurement as well, which indicates that the impact was concerning not only performance but also learning. Thus, cues that lead to an external focus of attention enhance the decision-making skill and therefore the game performance of the young tennis players.

Keywords: decision making, evaluation, focus of attention, game performance, tennis

Procedia PDF Downloads 352
19999 Chronic Fatigue Syndrome/Myalgic Encephalomyelitis in Younger Children: A Qualitative Analysis of Families’ Experiences of the Condition and Perspective on Treatment

Authors: Amberly Brigden, Ali Heawood, Emma C. Anderson, Richard Morris, Esther Crawley

Abstract:

Background: Paediatric chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME) is characterised by persistent, disabling fatigue. Health services see patients below the age of 12. This age group experience high levels of disability, with low levels of school attendance, high levels of fatigue, anxiety, functional disability and pain. CFS/ME interventions have been developed for adolescents, but the developmental needs of younger children suggest treatment should be tailored to this age group. Little is known about how intervention should be delivered to this age group, and further work is needed to explore this. Qualitative research aids patient-centered design of health intervention. Methods: Five to 11-year-olds and their parents were recruited from a specialist CFS/ME service. Semi-structured interviews explored the families’ experience of the condition and perspectives on treatment. Interactive and arts-based methods were used. Interviews were audio-recorded, transcribed and analysed thematically. Qualitative Results: 14 parents and 7 children were interviewed. Early analysis of the interviews revealed the importance of the social-ecological setting of the child, which led to themes being developed in the context of Systems Theory. Theme one relates to the level of the child, theme two the family system, theme three the organisational and societal systems, and theme four cuts-across all levels. Theme1: The child’s capacity to describe, understand and manage their condition. Younger children struggled to describe their internal experiences, such as physical symptoms. Parents felt younger children did not understand some concepts of CFS/ME and did not have the capabilities to monitor and self-regulate their behaviour, as required by treatment. A spectrum of abilities was described; older children (10-11-year-olds) were more involved in clinical sessions and had more responsibility for self-management. Theme2: Parents’ responsibility for managing their child’s condition. Parents took responsibility for regulating their child’s behaviour in accordance with the treatment programme. They structured their child’s environment, gave direct instructions to their child, and communicated the needs of their child to others involved in care. Parents wanted their child to experience a 'normal' childhood and took steps to shield their child from medicalization, including diagnostic labels and clinical discussions. Theme3: Parental isolation and the role of organisational and societal systems. Parents felt unsupported in their role of managing the condition and felt negative responses from primary care health services and schools were underpinned by a lack of awareness and knowledge about CFS/ME in younger children. This sometimes led to a protracted time to diagnosis. Parents felt that schools have the potential important role in managing the child’s condition. Theme4: Complexity and uncertainty. Many parents valued specialist treatment (which included activity management, physiotherapy, sleep management, dietary advice, medical management and psychological support), but felt it needed to account for the complexity of the condition in younger children. Some parents expressed uncertainty about the diagnosis and the treatment programme. Conclusions: Interventions for younger children need to consider the 'systems' (family, organisational and societal) involved in the child’s care. Future research will include interviews with clinicians and schools supporting younger children with CFS/ME.

Keywords: chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME), pediatric, qualitative, treatment

Procedia PDF Downloads 141
19998 Vulnerability Assessment of Healthcare Interdependent Critical Infrastructure Coloured Petri Net Model

Authors: N. Nivedita, S. Durbha

Abstract:

Critical Infrastructure (CI) consists of services and technological networks such as healthcare, transport, water supply, electricity supply, information technology etc. These systems are necessary for the well-being and to maintain effective functioning of society. Critical Infrastructures can be represented as nodes in a network where they are connected through a set of links depicting the logical relationship among them; these nodes are interdependent on each other and interact with each at other at various levels, such that the state of each infrastructure influences or is correlated to the state of another. Disruption in the service of one infrastructure nodes of the network during a disaster would lead to cascading and escalating disruptions across other infrastructures nodes in the network. The operation of Healthcare Infrastructure is one such Critical Infrastructure that depends upon a complex interdependent network of other Critical Infrastructure, and during disasters it is very vital for the Healthcare Infrastructure to be protected, accessible and prepared for a mass casualty. To reduce the consequences of a disaster on the Critical Infrastructure and to ensure a resilient Critical Health Infrastructure network, knowledge, understanding, modeling, and analyzing the inter-dependencies between the infrastructures is required. The paper would present inter-dependencies related to Healthcare Critical Infrastructure based on Hierarchical Coloured Petri Nets modeling approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The model properties are being analyzed for the various state changes which occur when there is a disruption or damage to any of the Critical Infrastructure. The failure probabilities for the failure risk of interconnected systems are calculated by deriving a reachability graph, which is later mapped to a Markov chain. By analytically solving and analyzing the Markov chain, the overall vulnerability of the Healthcare CI HCPN model is demonstrated. The entire model would be integrated with Geographic information-based decision support system to visualize the dynamic behavior of the interdependency of the Healthcare and related CI network in a geographically based environment.

Keywords: critical infrastructure interdependency, hierarchical coloured petrinet, healthcare critical infrastructure, Petri Nets, Markov chain

Procedia PDF Downloads 530
19997 An Investigation into the Decision-Making Process of Choosing Long-Term Care Services in Taiwan

Authors: Yu-Ching Liu

Abstract:

Background: Family numbers usually take responsibility for taking care of their elderly relatives, especially parents. Caring for a patient with chronic diseases is a stressful experience, which makes carers suffer physical and mental health stress, difficulties maintaining family relationships and issues in participating in the labor market, which may lower their quality of life (QoL). The issue of providing care to relatives with chronic illness has been widely explored in Taiwan, but most studies focus on the need for full-time caregivers. Objective: The main goal of this study was to examine the topic of working carers involved in the decision-making process of LTC services and to explore what affects working carers considering when they choose the care services for their disabled, elderly relatives. Method: A total of 7 working caregivers were enrolled in this study. A face-to-face and semi-structured in-depth qualitative interview study were conducted to explore the caregivers' perspectives. Results: Working carers have a positive experience of using LTC service because it allows them to kill two birds with one stone, continue employment, and care for an elderly disabled relative. However, working carers have still been struggling to find friendly community-based LTC services. There were no longer available community services that could be used with the illness condition of patients getting worse. As such, patients have to be cared for at home, which might increase the caregiver burden of carers. Conclusion: Working family caregivers suffer from heavy physical and psychological burdens as they not only have to maintain their employment but care for elderly disabled relatives; however, the current support provided is insufficient. The design of services should consider working carers' employment situation and need rather than the only caring situation of patients at home.

Keywords: family caregiver, Long-term care, work-life balance, decision-making

Procedia PDF Downloads 182
19996 The Role of Food Labeling on Consumers’ Buying Decision: Georgian Case

Authors: Nugzar Todua

Abstract:

The paper studies the role of food labeling in order to promote healthy eating issue in Georgia. The main focus of the research is directed to consumer attitudes regarding food labeling. The methodology of the paper is based on the focus group work, as well as online and face to face surveys. The data analysis has been provided through ANOVA. The study proves that the impact of variables such as the interest, awareness, reliability, assurance and satisfaction of consumers' on buying decision, is statistically important. The study reveals that consumers’ perception regarding to food labeling is positive, but their level of knowledge and ability is rather low. It is urgent to strengthen marketing promotions strategies in the process of implementations of food security policy in Georgia.

Keywords: food labeling, buying decision, Georgian consumers, marketing research

Procedia PDF Downloads 167
19995 Patient-Reported Adverse Drug Reactions, Medication Adherence and Clinical Outcomes among major depression disorder Patients in Ethiopia: A Prospective Hospital Based Study.

Authors: Tadesse Melaku Abegaz

Abstract:

Background: there was paucity of data on the self-reported adverse drug reactions (ADRs), level of adherence and clinical outcomes with antidepressants among major depressive disorder (MDD) patients in Ethiopia. Hence, the present study sought to determine the level of adherence for and clinical outcome with antidepressants and the magnitude of ADRs. Methods: A prospective cross-sectional study was employed on MDD patients from September 2016 to January 2017 at Gondar university hospital psychiatry clinic. All patients who were available during the study period were included under the study population. The Naranjo adverse drug reaction probability scale was employed to assess the adverse drug reaction. The rate of medication adherence was determined using morisky medication adherence measurement scale eight. Clinical Outcome of patients was measured by using patient health questionnaire. Multivariable logistic carried out to determine factors for adherence and patient outcome. Results: two hundred seventy patients were participated in the study. More than half of the respondents were males 122(56.2%). The mean age of the participants was 30.94 ± 8.853. More than one-half of the subjects had low adherence to their medications 124(57.1%). About 186(85.7%) of patients encountered ADR. The most common ADR was weight gain 29(13.2). Around 198(92.2%) ADRs were probable and 19(8.8%) were possible. Patients with long standing MDD had high risk of non-adherence COR: 2.458[4.413-4.227], AOR: 2.424[1.185-4.961]. More than one-half 125(57.6) of respondents showed improved outcome. Optimal level of medication adherence was found to be associated with reduced risk of progression of the diseases COR: 0.37[0.110-5.379] and AOR: 0.432[0.201-0.909]. Conclusion: Patient reported adverse drug reactions were more prevalent in major depressive disorder patients. Adherence to medications was very poor in the setup. However, the clinical outcome was relatively higher. Long standing depression was associated with non-adherence. In addition, clinical outcome of patients were affected by non-adherence. Therefore, adherence enhancing interventions should be provided to improve medication adherence and patient outcome.

Keywords: adverse drug reactions, clinical outcomes, Ethiopia, prospective study, medication adherence

Procedia PDF Downloads 250
19994 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time

Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen

Abstract:

Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.

Keywords: 4C/ID model, virtual patients, education, dental, instructional design

Procedia PDF Downloads 82
19993 Lamb Wave-Based Blood Coagulation Measurement System Using Citrated Plasma

Authors: Hyunjoo Choi, Jeonghun Nam, Chae Seung Lim

Abstract:

Acoustomicrofluidics has gained much attention due to the advantages, such as noninvasiveness and easy integration with other miniaturized systems, for clinical and biological applications. However, a limitation of acoustomicrofluidics is the complicated and costly fabrication process of electrodes. In this study, we propose a low-cost and lithography-free device using Lamb wave for blood analysis. Using a Lamb wave, calcium ion-removed blood plasma and coagulation reagents can be rapidly mixed for blood coagulation test. Due to the coagulation process, the viscosity of the sample increases and the viscosity change can be monitored by internal acoustic streaming of microparticles suspended in the sample droplet. When the acoustic streaming of particles stops by the viscosity increase is defined as the coagulation time. With the addition of calcium ion at 0-25 mM, the coagulation time was measured and compared with the conventional index for blood coagulation analysis, prothrombin time, which showed highly correlated with the correlation coefficient as 0.94. Therefore, our simple and cost-effective Lamb wave-based blood analysis device has the powerful potential to be utilized in clinical settings.

Keywords: acoustomicrofluidics, blood analysis, coagulation, lamb wave

Procedia PDF Downloads 342
19992 Integrating Wearable Devices in Real-Time Computer Applications of Petrochemical Systems

Authors: Paul B Stone, Subhashini Ganapathy, Mary E. Fendley, Layla Akilan

Abstract:

As notifications become more common through mobile devices, it is important to understand the impact of wearable devices on the improved user experience of man-machine interfaces. This study examined the use of a wearable device for a real-time system using a computer-simulated petrochemical system. The key research question was to determine how using the information provided by the wearable device can improve human performance through measures of situational awareness and decision making. Results indicate that there was a reduction in response time when using the watch, and there was no difference in situational awareness. Perception of using the watch was positive, with 83% of users finding value in using the watch and receiving haptic feedback.

Keywords: computer applications, haptic feedback, petrochemical systems, situational awareness, wearable technology

Procedia PDF Downloads 203
19991 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry

Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki

Abstract:

In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.

Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration

Procedia PDF Downloads 432
19990 Decision Tree Analysis of Risk Factors for Intravenous Infiltration among Hospitalized Children: A Retrospective Study

Authors: Soon-Mi Park, Ihn Sook Jeong

Abstract:

This retrospective study was aimed to identify risk factors of intravenous (IV) infiltration for hospitalized children. The participants were 1,174 children for test and 424 children for validation, who admitted to a general hospital, received peripheral intravenous injection therapy at least once and had complete records. Data were analyzed with frequency and percentage or mean and standard deviation were calculated, and decision tree analysis was used to screen for the most important risk factors for IV infiltration for hospitalized children. The decision tree analysis showed that the most important traditional risk factors for IV infiltration were the use of ampicillin/sulbactam, IV insertion site (lower extremities), and medical department (internal medicine) both in the test sample and validation sample. The correct classification was 92.2% in the test sample and 90.1% in the validation sample. More careful attention should be made to patients who are administered ampicillin/sulbactam, have IV site in lower extremities and have internal medical problems to prevent or detect infiltration occurrence.

Keywords: decision tree analysis, intravenous infiltration, child, validation

Procedia PDF Downloads 177
19989 Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants

Authors: Oscar Vega Camacho, Andrea Vargas, Ellery Ariza

Abstract:

This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its waste water treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.

Keywords: decision making, markov chain, optimization, waste water

Procedia PDF Downloads 416
19988 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter

Procedia PDF Downloads 393
19987 Teaching Young Learners How to Work Together: Pedagogical Ideas for Language Teachers

Authors: Tomas Kos

Abstract:

An increasing body of research has explored patterns of interaction and peer support among young learners. Although some studies suggest that young learners can collaborate and support each other, other studies indicate that young learners may lack the ability to work together and support one another when interacting on classroom tasks. Moreover, despite the claims that peer collaboration is conducive to learning, studies have not paid enough attention to the “how” to enhance peer collaboration on classroom tasks. To fill this gap, this “how-to” article proposes that teaching young learners how to work together is a powerful pedagogical tool that can greatly improve collaborative behavior and a sense of mutuality among young learners. This article will pay particular attention to primary schools and the context of English as a foreign language. It will first review literature related to patterns of interaction and peer support conducted in the cognitive and sociocultural framework. It will then address what it actually means to collaborate. At the heart of the article, it will discuss some practical pedagogical ideas for language teachers, which entail teaching collaborative principles and strategies that will help their students to support each other and engage in communication with each other.

Keywords: young learners, peer collaboration, peer interaction, peer support, patterns of interaction

Procedia PDF Downloads 157
19986 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems

Authors: Zahid Ullah, Atlas Khan

Abstract:

This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.

Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms

Procedia PDF Downloads 113
19985 Challenges over Two Semantic Repositories - OWLIM and AllegroGraph

Authors: Paria Tajabor, Azin Azarbani

Abstract:

The purpose of this research study is exploring two kind of semantic repositories with regards to various factors to find the best approaches that an artificial manager can use to produce ontology in a system based on their interaction, association and research. To this end, as the best way to evaluate each system and comparing with others is analysis, several benchmarking over these two repositories were examined. These two semantic repositories: OWLIM and AllegroGraph will be the main core of this study. The general objective of this study is to be able to create an efficient and cost-effective manner reports which is required to support decision making in any large enterprise.

Keywords: OWLIM, allegrograph, RDF, reasoning, semantic repository, semantic-web, SPARQL, ontology, query

Procedia PDF Downloads 264
19984 The Role of Group Interaction and Managers’ Risk-willingness for Business Model Innovation Decisions: A Thematic Analysis

Authors: Sarah Müller-Sägebrecht

Abstract:

Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. The individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) How does group interaction shape BMI decision-making from managers’ perspective? ii) What are the potential interrelations among managers’ risk-willingness, group biases, and BMI decision-making? After conducting 26 in-depth interviews with executives from the manufacturing industry, applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.

Keywords: business model innovation, cognitive biases, group-interaction effects, strategic decision-making, risk-willingness

Procedia PDF Downloads 79
19983 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 52
19982 Assessing the Quality of Clinical Photographs Taken for Orthodontic Patients at Queen’s Hospital, Romford

Authors: Maya Agarwala

Abstract:

Objectives: Audit the quality of clinical photographs taken for Orthodontic patients at Queen’s hospital, Romford. Design and setting: All Orthodontic photographs are taken in the Medical Photography Department at Queen’s Hospital. Retrospective audit with data collected between January - March 2023. Gold standard: Institute of Medical Illustrators (IMI) standard 12 photographs: 6 extraoral and 6 intraoral. 100% of patients to have the standard 12 photographs meeting a satisfactory diagnostic quality. Materials and methods: 30 patients randomly selected. All photographs analysed against the IMI gold standard. Results: A total of 360 photographs were analysed. 100% of the photographs had the 12 photographic views. Of which, 93.1% met the gold standard. Of the extraoral photos: 99.4% met the gold standard, 0.6% had incorrect head positioning. Of the intraoral photographs: 87.2% met the gold standard. The most common intraoral errors were: the presence of saliva pooling (7.2%), insufficient soft tissue retraction (3.3%), incomplete occlusal surface visibility (2.2%) and mirror fogging (1.1%). Conclusion: The gold standard was not met, however the overall standard of Orthodontic photographs is high. Further training of the Medical Photography team is needed to improve the quality of photographs. Following the training, the audit will be repeated. High-quality clinical photographs are an important part of clinical record keeping.

Keywords: orthodontics, paediatric, photography, audit

Procedia PDF Downloads 99
19981 Artificial Neural Networks and Geographic Information Systems for Coastal Erosion Prediction

Authors: Angeliki Peponi, Paulo Morgado, Jorge Trindade

Abstract:

Artificial Neural Networks (ANNs) and Geographic Information Systems (GIS) are applied as a robust tool for modeling and forecasting the erosion changes in Costa Caparica, Lisbon, Portugal, for 2021. ANNs present noteworthy advantages compared with other methods used for prediction and decision making in urban coastal areas. Multilayer perceptron type of ANNs was used. Sensitivity analysis was conducted on natural and social forces and dynamic relations in the dune-beach system of the study area. Variations in network’s parameters were performed in order to select the optimum topology of the network. The developed methodology appears fitted to reality; however further steps would make it better suited.

Keywords: artificial neural networks, backpropagation, coastal urban zones, erosion prediction

Procedia PDF Downloads 394
19980 Impact of Cultural Intelligence on Decision Making Styles of Managers: A Turkish Case

Authors: Fusun Akdag

Abstract:

Today, as business becomes increasingly global, managers/leaders of multinational companies or local companies work with employees or customers from a variety of cultural backgrounds. To do this effectively, they need to develop cultural competence. Therefore, cultural intelligence (CQ) becomes a vitally important aptitude and skill, especially for leaders. The organizational success or failure depends upon the way, the kind of leadership which has been provided to its members. The culture we are born into deeply effects our values, beliefs, and behavior. Cultural intelligence (CQ) focuses on how well individuals can relate and work across cultures. CQ helps minimize conflict and maximize performance of a diverse workforce. The term 'decision,' refers to a commitment to a course of action that is intended to serve the interests and values of particular people. One dimension of culture that has received attention is individualism-collectivism or, independence-interdependence. These dimensions are associated with different conceptualizations of the 'self.' Individualistic cultures tend to value personal goal pursuit as opposed to pursuit of others’ goals. Collectivistic cultures, by contrast, view the 'self' as part of a whole. Each person is expected to work with his or her in-group toward goals, generally pursue group harmony. These differences underlie cross-cultural variation in decision-making, such as the decision modes people use, their preferences, negotiation styles, creativity, and more. The aim of this study is determining the effect of CQ on decision making styles of male and female managers in Turkey, an emergent economy framework. The survey is distributed to gather data from managers at various companies. The questionnaire consists of three parts: demographics, The Cultural Intelligence Scale (CQS) to measure the four dimensions of cultural intelligence and General Decision Making Style (GMDS) Inventory to measure the five subscales of decision making. The results will indicate the Turkish managers’ score at metacognitive, cognitive, motivational and behavioral aspects of cultural intelligence and to what extent these scores affect their rational, avoidant, dependent, intuitive and spontaneous decision making styles since business leaders make dozens of decisions every day that influence the success of the company and also having an impact on employees, customers, shareholders and the market.

Keywords: cultural intelligence, decision making, gender differences, management styles,

Procedia PDF Downloads 371
19979 Impact of Work Experience and Gender on Decisional Conflict

Authors: Mohsin Aslam Khan

Abstract:

Decision making tendency varies in people with different socio demographics. This study was conducted to identify the impact of work experience on decisional conflict and whether there is a gender differences in decisional conflict. Convenience sampling was more appropriate for this exploratory research. AM O’ Connor decisional conflict scale, (1995) with cronbach alpha 0.900 was administered on sample size of 109 participants (62males, 47females). The responses were scored according to the AM O’ Connor decisional conflict scale manual, (1995). The results of the study indicate that work experience has no significant impact on decisional conflict, whereas gender differences in decisional conflict illustrates significant mean score differences among male and female participants.

Keywords: decision making, decisional conflict, gender decision making, work experience

Procedia PDF Downloads 614
19978 Impacts of Artificial Intelligence on the Doctor-Patient Relationship: Ethical Principles, Informed Consent and Medical Obligation

Authors: Rafaella Nogaroli

Abstract:

It is presented hypothetical cases in the context of AI algorithms to support clinical decisions, in order to discuss the importance of doctors to respect AI ethical principles. Regarding the principle of transparency and explanation, there is an impact on the new model of patient consent and on the understanding of qualified information. Besides, the human control of technology (AI as a tool) should guide the physician's activity; otherwise, he breaks the patient's legitimate expectation in a specific result, with the consequent transformation of the medical obligation nature.

Keywords: medical law, artificial intelligence, ethical principles, patient´s informed consent, medical obligations

Procedia PDF Downloads 102
19977 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 515