Search results for: adaptive neck supporter
375 The Effectiveness of Exercise Therapy on Decreasing Pain in Women with Temporomandibular Disorders and How Their Brains Respond: A Pilot Randomized Controlled Trial
Authors: Zenah Gheblawi, Susan Armijo-Olivo, Elisa B. Pelai, Vaishali Sharma, Musa Tashfeen, Angela Fung, Francisca Claveria
Abstract:
Due to physiological differences between men and women, pain is experienced differently between the two sexes. Chronic pain disorders, notably temporomandibular disorders (TMDs), disproportionately affect women in diagnosis, and pain severity in opposition of their male counterparts. TMDs are a type of musculoskeletal disorder that target the masticatory muscles, temporalis muscle, and temporomandibular joints, causing considerable orofacial pain which can usually be referred to the neck and back. Therapeutic methods are scarce, and are not TMD-centered, with the latest research suggesting that subjects with chronic musculoskeletal pain disorders have abnormal alterations in the grey matter of their brains which can be remedied with exercise, and thus, decreasing the pain experienced. The aim of the study is to investigate the effects of exercise therapy in TMD female patients experiencing chronic jaw pain and to assess the consequential effects on brain activity. In a randomized controlled trial, the effectiveness of an exercise program to improve brain alterations and clinical outcomes in women with TMD pain will be tested. Women with chronic TMD pain will be randomized to either an intervention arm or a placebo control group. Women in the intervention arm will receive 8 weeks of progressive exercise of motor control training using visual feedback (MCTF) of the cervical muscles, twice per week. Women in the placebo arm will receive innocuous transcutaneous electrical nerve stimulation during 8 weeks as well. The primary outcomes will be changes in 1) pain, measured with the Visual Analogue Scale, 2) brain structure and networks, measured by fractional anisotropy (brain structure) and the blood-oxygen level dependent signal (brain networks). Outcomes will be measured at baseline, after 8 weeks of treatment, and 4 months after treatment ends and will determine effectiveness of MCTF in managing TMD, through improved clinical outcomes. Results will directly inform and guide clinicians in prescribing more effective interventions for women with TMD. This study is underway, and no results are available at this point. The results of this study will have substantial implications on the advancement in understanding the scope of plasticity the brain has in regards with pain, and how it can be used to improve the treatment and pain of women with TMD, and more generally, other musculoskeletal disorders.Keywords: exercise therapy, musculoskeletal disorders, physical therapy, rehabilitation, tempomandibular disorders
Procedia PDF Downloads 292374 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 113373 Anatomical Adaptations and Mineral Elements Allocation Associated with the Zn Phytostabilization Capability of Acanthus ilicifolius L.
Authors: Shackira Am, Jos T. Puthur
Abstract:
The phytostabilization potential of a halophyte Acanthus ilicifolius L. has been evaluated with special attention to the nutritional as well as anatomical adaptations developed by the plant. Distribution of essential elements influenced by the excess Zn²⁺ ions in the root tissue was studied by FEG-SEM EDX microanalysis. Significant variations were observed in the uptake and allocation of mineral elements like Mg, P, K, S, Na, Si and Al in the root of A. ilicifolius. The increase in S is in correlation with the increased synthesis of glutathione which might be involved in the biosynthesis of phytochelatins. This in turn might be aiding the plant to tolerate the adverse environmental conditions by stabilizing the excess Zn in the root tissue itself. Moreover it is revealed that most of the Zn were accumulated towards the central region near the vascular tissue. Treatment with ZnSO₄ in A. ilicifolius caused significant increase in the number of glandular trichomes on the adaxial leaf surface as compared to the leaves of control plants. In addition to this, A. ilicifolius when treated with ZnSO₄, exhibited a deeply stained layer of cells immediate to the endodermis, forming more or less a ring like structure around the xylem vessels. Phloem cells in these plants were crushed/reduced in numbers. There were no such deeply stained cells forming a ring around the xylem vessels in the control plants. These adaptive responses make the plant a suitable candidate for the phytostabilization of Zn. In addition the nutritional adjustment of the plant equips them for a better survival under increased concentration of Zn²⁺.Keywords: Acanthus ilicifolius, mineral elements, phytostabilization, zinc
Procedia PDF Downloads 168372 Developing Alternative Recovery Technology of Waste Heat in Automobile Factory
Authors: Kun-Ping Cheng, Dong-Shang Chang, Rou-Wen Wang
Abstract:
Pre-treatment of automobile paint-shop procedures are the preparation of warm water rinsing tank, hot water rinsing tank, degreasing tank, phosphate tank. The conventional boiler steam fuel is natural gas, producing steam to supply the heat exchange of each tank sink. In this study, the high-frequency soldering economizer is developed for recovering waste heat in the automotive paint-shop (RTO, Regenerative Thermal Oxidation). The heat recovery rate of the new economizer is 20% to 30% higher than the conventional embedded heat pipe. The adaptive control system responded to both RTO furnace exhaust gas and heat demands. In order to maintain the temperature range of the tanks, pre-treatment tanks are directly heated by waste heat recovery device (gas-to-water heat exchanger) through the hot water cycle of heat transfer. The performance of developed waste heat recovery system shows the annual recovery achieved to 1,226,411,483 Kcal of heat (137.8 thousand cubic meters of natural gas). Boiler can reduce fuel consumption by 20 to 30 percent compared to without waste heat recovery. In order to alleviate environmental impacts, the temperature at the end of the flue is further reduced from 160 to 110°C. The innovative waste heat recovery is helpful to energy savings and sustainable environment.Keywords: waste heat recovery system, sustainability, RTO (Regenerative Thermal Oxidation), economizer, automotive industry
Procedia PDF Downloads 262371 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization
Authors: M. Dhana Lakshmi, S. Sakthivel Murugan
Abstract:
As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter
Procedia PDF Downloads 194370 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations
Authors: Gebreegziabher Hailu
Abstract:
This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods
Procedia PDF Downloads 22369 Atherosclerotic Plagues and Immune Microenvironment: From Lipid-Lowering to Anti-inflammatory and Immunomodulatory Drug Approaches in Cardiovascular Diseases
Authors: Husham Bayazed
Abstract:
A growing number of studies indicate that atherosclerotic coronary artery disease (CAD) has a complex pathogenesis that extends beyond cholesterol intimal infiltration. The atherosclerosis process may involve an immune micro-environmental condition driven by local activation of the adaptive and innate immunity arrays, resulting in the formation of atherosclerotic plaques. Therefore, despite the wide usage of lipid-lowering agents, these devastating coronary diseases are not averted either at primary or secondary prevention levels. Many trials have recently shown an interest in the immune targeting of the inflammatory process of atherosclerotic plaques, with the promised improvement in atherosclerotic cardiovascular disease outcomes. This recently includes the immune-modulatory drug “Canakinumab” as an anti-interleukin-1 beta monoclonal antibody in addition to "Colchicine,” which's established as a broad-effect drug in the management of other inflammatory conditions. Recent trials and studies highlight the importance of inflammation and immune reactions in the pathogenesis of atherosclerosis and plaque formation. This provides an insight to discuss and extend the therapies from old lipid-lowering drugs (statins) to anti-inflammatory drugs (colchicine) and new targeted immune-modulatory therapies like inhibitors of IL-1 beta (canakinumab) currently under investigation.Keywords: atherosclerotic plagues, immune microenvironment, lipid-lowering agents, and immunomodulatory drugs
Procedia PDF Downloads 69368 Work Related Musculoskeletal Disorder: A Case Study of Office Computer Users in Nigerian Content Development and Monitoring Board, Yenagoa, Bayelsa State, Nigeria
Authors: Tamadu Perry Egedegu
Abstract:
Rapid growth in the use of electronic data has affected both the employee and work place. Our experience shows that jobs that have multiple risk factors have a greater likelihood of causing Work Related Musculoskeletal Disorder (WRMSDs), depending on the duration, frequency and/or magnitude of exposure to each. The study investigated musculoskeletal disorder among office workers. Thus, it is important that ergonomic risk factors be considered in light of their combined effect in causing or contributing to WRMSDs. Fast technological growth in the use of electronic system; have affected both workers and the work environment. Awkward posture and long hours in front of these visual display terminals can result in work-related musculoskeletal disorders (WRMSD). The study shall contribute to the awareness creation on the causes and consequences of WRMSDs due to lack of ergonomics training. The study was conducted using an observational cross-sectional design. A sample of 109 respondents was drawn from the target population through purposive sampling method. The sources of data were both primary and secondary. Primary data were collected through questionnaires and secondary data were sourced from journals, textbooks, and internet materials. Questionnaires were the main instrument for data collection and were designed in a YES or NO format according to the study objectives. Content validity approval was used to ensure that the variables were adequately covered. The reliability of the instrument was done through test-retest method, yielding a reliability index at 0.84. The data collected from the field were analyzed with a descriptive statistics of chart, percentage and mean. The study found that the most affected body regions were the upper back, followed by the lower back, neck, wrist, shoulder and eyes, while the least affected body parts were the knee calf and the ankle. Furthermore, the prevalence of work-related 'musculoskeletal' malfunctioning was linked with long working hours (6 - 8 hrs.) per day, lack of back support on their seats, glare on the monitor, inadequate regular break, repetitive motion of the upper limbs, and wrist when using the computer. Finally, based on these findings some recommendations were made to reduce the prevalent of WRMSDs among office workers.Keywords: work related musculoskeletal disorder, Nigeria, office computer users, ergonomic risk factor
Procedia PDF Downloads 241367 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections
Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor
Abstract:
Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.Keywords: climate change, ecosystem modeling, marine protected areas, management
Procedia PDF Downloads 100366 Educational Leadership and Artificial Intelligence
Authors: Sultan Ghaleb Aldaihani
Abstract:
- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.Keywords: Education, Leadership, Technology, Artificial Intelligence
Procedia PDF Downloads 42365 A Study of the Effect of Early and Late Meal Time on Anthropometric and Biochemical Parameters in Patients of Type 2 Diabetes
Authors: Smriti Rastogi, Narsingh Verma
Abstract:
Background: A vast body of research exists on the use of oral hypoglycaemic drugs, insulin injections and the like in managing diabetes but no such research exists that has taken into consideration the parameter of time restricted meal intake and its positive effects in managing diabetes. The utility of this project is immense as it offers a solution to the woes of diabetics based on circadian rhythm and normal physiology of the human body. Method: 80 Diabetics, enrolled from the Out Patient Department of Endocrinology, KGMU (King George's Medical University) were randomly divided based on consent to early dinner TRM(time restricted meal) group or not (control group). Follow up was done at six months and 12 months for anthropometric measurement, height, weight, waist-hip ratio, neck size, fasting, postprandial blood sugar, HbA1c, serum urea, serum creatinine, and lipid profile. The patient was given a clear understanding of chronomedicine and how it affects their health. A single intervention was done - the timing of dinner was at or around 7 pm for TRM group. Result: 65% of TRM group and 40 %(non- TRM) had normal HbA1c after 12 months. HbA1c in TRM Group (first visit to second follow up) had a significant p value=0.017. A p value of <0.0001 was observed on comparing the values of blood sugar (fasting) in TRM Group from the first visit and second follow up. The values of blood sugar (postprandial) in TRM Group (first visit and second follow up) showed a p-value <0.0001 (highly significant). Values of the three parameters were non- significant in the control group. Hip size(First Visit to Second Follow Up) TRM Group showed a p-value = 0.0344 (Significant) (Difference between means=2.762 ± 1.261)Detailed results of the above parameters and a few newer ones will be presented at the conference. Conclusion: Time restricted meal intake in diabetics shows promise and is worth exploring further. Time Restricted Meal intake in Type 2 diabetics has a significant effect in controlling and maintaining HbA1c as the reduction in HbA1c value was very significant in the TRM group vs. the control group. Similar highly significant results were obtained in the case of fasting and postprandial values of blood sugar in the TRM group when compared to the control group. The effects of time restricted meal intake in diabetics show promise and are worth exploring further. It is one of the first studies which have been undertaken in Indian diabetics, although the initial data obtained is encouraging yet further research and study are required to corroborate results.Keywords: chronomedicine, diabetes, endocrinology, time restricted meal intake
Procedia PDF Downloads 126364 Adaptive Strategies of Maize in Leaf Traits to N Deficiency
Authors: Panpan Fan, Bo Ming, Niels Anten, Jochem Evers, Yaoyao Li, Shaokun Li, Ruizhi xie
Abstract:
Nitrogen (N) utilization for crop production under N deficiency conditions is subject to a trade-off between maintaining specific leaf N content (SLN), important for radiation-use efficiency (RUE), versus maintaining leaf area (LA) development, important for light capture. This paper aims to explore how maize deals with this trade-off through responses in SLN, LA and their underlying traits during the vegetative and reproductive growth stages. In a ten-year N fertilization trial in Jilin province, Northeast China, three N fertilizer levels have been maintained: N-deficiency (N0), low N supply (N1), and high N supply (N2). We analyzed data from years 8 and 10 of this experiment for two common hybrids. Under N deficiency, maize plants maintained LA and decreased SLN during vegetative stages, while both LA and SLN decreased comparably during reproductive stages. Canopy-average specific leaf area (SLA) decreased sharply during vegetative stages and slightly during reproductive stages, mainly because senesced leaves in the lower canopy had a higher SLA. In the vegetative stage, maize maintained leaf area at low N by maintaining leaf biomass (albeit hence having N content/mass) and slightly increasing SLA. These responses to N deficiency were stronger in maize hybrid XY335 than in ZD958. We conclude the main strategy of maize to cope with low N is to maintain plant growth, mainly by increasing SLA throughout the plant during early growth. N was too limiting for either strategy to be followed during later growth stages.Keywords: leaf N content per unit leaf area, N deficiency, specific leaf area, maize strateg
Procedia PDF Downloads 92363 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection
Authors: Masahiro Miyaji
Abstract:
When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety
Procedia PDF Downloads 359362 Achieving Sustainable Lifestyles Based on the Spiritual Teaching and Values of Buddhism from Lumbini, Nepal
Authors: Purna Prasad Acharya, Madhav Karki, Sunta B. Tamang, Uttam Basnet, Chhatra Katwal
Abstract:
The paper outlines the idea behind achieving sustainable lifestyles based on the spiritual values and teachings of Lord Buddha. This objective is to be achieved by spreading the tenets and teachings of Buddhism throughout the Asia Pacific region and the world from the sacred birth place of Buddha - Lumbini, Nepal. There is an urgent need to advance the relevance of Buddhist philosophy in tackling the triple planetary crisis of climate change, nature’s decline, and pollution. Today, the world is facing an existential crisis due to the above crises, exasperated by hunger, poverty and armed conflict. To address multi-dimensional impacts, the global communities have to adopt simple life styles that respect nature and universal human values. These were the basic teachings of Gautam Buddha. Lumbini, Nepal has the moral obligation to widely disseminate Buddha’s teaching to the world and receive constant feedback and learning to develop human and ecosystem resilience by molding the lifestyles of current and future generations through adaptive learning and simplicity across the geography and nationality based on spirituality and environmental stewardship. By promoting Buddhism, Nepal has developed a pro-nature tourism industry that focuses on both its spiritual and bio-cultural heritage. Nepal is a country rich in ancient wisdom, where sages have sought knowledge, practiced meditation, and followed spiritual paths for thousands of years. It can spread the teachings of Buddha in a way people can search for and adopt ways to live, creating harmony with nature. Using tools of natural sciences and social sciences, the team will package knowledge and share the idea of community well-being within the framework of environmental sustainability, social harmony and universal respect for nature and people in a more holistic manner. This notion takes into account key elements of sustainable development such as food-energy-water-biodiversity interconnections, environmental conservation, ecological integrity, ecosystem health, community resiliency, adaptation capacity, and indigenous culture, knowledge and values. This inclusive concept has garnered a strong network of supporters locally, regionally, and internationally. The key objectives behind this concept are: a) to leverage expertise and passion of a network of global collaborators to advance research, education, and policy outreach in the areas of human sustainability based on lifestyle change using the power of spirituality and Buddha’s teaching, resilient lifestyles, and adaptive living; b) help develop creative short courses for multi-disciplinary teaching in educational institutions worldwide in collaboration with Lumbini Buddha University and other relevant partners in Nepal; c) help build local and regional intellectual and cultural teaching and learning capacity by improving professional collaborations to promote nature based and Buddhist value-based lifestyles by connecting Lumbini to Nepal’s rich nature; d) promote research avenues to provide policy relevant knowledge that is creative, innovative, as well as practical and locally viable; and e) connect local research and outreach work with academic and cultural partners in South Korea so as to open up Lumbini based Buddhist heritage and Nepal’s Karnali River basin’s unique natural landscape to Korean scholars and students to promote sustainable lifestyles leading to human living in harmony with nature.Keywords: triple planetary crisis, spirituality, sustainable lifestyles, living in harmony with nature, resilience
Procedia PDF Downloads 34361 Color-Based Emotion Regulation Model: An Affective E-Learning Environment
Authors: Sabahat Nadeem, Farman Ali Khan
Abstract:
Emotions are considered as a vital factor affecting the process of information handling, level of attention, memory capacity and decision making. Latest e-Learning systems are therefore taking into consideration the effective state of learners to make the learning process more effective and enjoyable. One such use of user’s affective information is in the systems that tend to regulate users’ emotions to a state optimally desirable for learning. So for, this objective has been tried to be achieved with the help of teaching strategies, background music, guided imagery, video clips and odors. Nevertheless, we know that colors can affect human emotions. Relationship between color and emotions has a strong influence on how we perceive our environment. Similarly, the colors of the interface can also affect the user positively as well as negatively. This affective behavior of color and its use as emotion regulation agent is not yet exploited. Therefore, this research proposes a Color-based Emotion Regulation Model (CERM), a new framework that can automatically adapt its colors according to user’s emotional state and her personality type and can help in producing a desirable emotional effect, aiming at providing an unobtrusive emotional support to the users of e-learning environment. The evaluation of CERM is carried out by comparing it with classical non-adaptive, static colored learning management system. Results indicate that colors of the interface, when carefully selected has significant positive impact on learner’s emotions.Keywords: effective learning, e-learning, emotion regulation, emotional design
Procedia PDF Downloads 305360 Online Foreign Language Learning Motivation for Tunisian Students of English
Authors: Leila Najeh
Abstract:
This study investigates the motivational factors influencing Tunisian university students learning English through online platforms. Using a mixed-methods approach, data were collected from 112 undergraduate students of English across universities in Tunisia. The study employed an online questionnaire to measure intrinsic and extrinsic motivation, incorporating the Learning Motivation Questionnaire (FFLLM-Q) developed by Gonzales in 2001 and semi-structured interviews to explore students’ perspectives on their online learning experiences. Quantitative analysis revealed a significant correlation between intrinsic motivation and interactive features such as gamification and adaptive content delivery, while extrinsic motivation was strongly linked to career aspirations and academic requirements. Qualitative findings highlighted challenges such as limited interaction with peers and teachers, technical constraints, and a lack of immediate feedback as demotivating factors. Participants expressed a preference for blended learning models, combining the flexibility of online education with the collaborative environment of traditional classrooms. This study underscores the need for tailored online learning solutions to enhance the motivational landscape for Tunisian students, emphasizing the importance of culturally relevant content, accessible platforms, and supportive learning communities. Further research is recommended to evaluate the long-term impact of these interventions on language proficiency and learner autonomy.Keywords: motivational factor, online foreign language learnig, tunsian students of english, online learning platforms
Procedia PDF Downloads 6359 Sub-Pixel Mapping Based on New Mixed Interpolation
Authors: Zeyu Zhou, Xiaojun Bi
Abstract:
Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation
Procedia PDF Downloads 229358 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices
Authors: Mirvat Shamseddine, Issam Lakkis
Abstract:
We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows
Procedia PDF Downloads 299357 Autoantibodies against Central Nervous System Antigens and the Serum Levels of IL-32 in Patients with Schizophrenia
Authors: Fatemeh Keshavarz
Abstract:
Background: Schizophrenia is a disease of the nervous system, and immune system disorders can affect its pathogenesis. Activation of microglia, proinflammatory cytokines, disruption of the blood-brain barrier (BBB) due to inflammation, activation of autoreactive B cells, and consequently the production of autoantibodies against system antigens are among the immune processes involved in neurological diseases. interleukin 32 (IL-32) a proinflammatory cytokine that important player in the activation of the innate and adaptive immune responses. This study aimed to measure the serum level of IL-32 as well as the frequency of autoantibody positivity against several nervous system antigens in patients with schizophrenia. Material and Methods: This study was conducted on 40 patients with schizophrenia and 40 healthy individuals in the control group. Serum IL-32 levels were measured by ELISA. The frequency of autoantibodies against Hu, Ri, Yo, Tr, CV2, Amphiphysin, SOX1, Zic4, ITPR1, CARP, GAD, Recoverin, Titin, and Ganglioside antigens were measured by indirect immunofluorescence method. Results: Serum IL-32 levels in patients with schizophrenia were significantly higher compared to the control group. Autoantibodies were positive in 8 patients for GAD antigen and 5 patients for Ri antigen, which showed a significant relationship compared to the control group. Autoantibodies were also positive in 2 patients for CV2, in 1 patient for Hu, and in 1 patient for CARP. Negative results were reported for other antigens. Conclusion: Our findings suggest that elevated the serum IL-32 level and autoantibody positivity against several nervous system antigens may be involved in the pathogenesis of schizophrenia.Keywords: schizophrenia, microglia, autoantibodies, IL-32
Procedia PDF Downloads 126356 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking
Authors: Jonas Colin
Abstract:
Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.Keywords: chatbot, GPT 3.5, metacognition, symbiose
Procedia PDF Downloads 70355 Development of Fault Diagnosis Technology for Power System Based on Smart Meter
Authors: Chih-Chieh Yang, Chung-Neng Huang
Abstract:
In power system, how to improve the fault diagnosis technology of transmission line has always been the primary goal of power grid operators. In recent years, due to the rise of green energy, the addition of all kinds of distributed power also has an impact on the stability of the power system. Because the smart meters are with the function of data recording and bidirectional transmission, the adaptive Fuzzy Neural inference system, ANFIS, as well as the artificial intelligence that has the characteristics of learning and estimation in artificial intelligence. For transmission network, in order to avoid misjudgment of the fault type and location due to the input of these unstable power sources, combined with the above advantages of smart meter and ANFIS, a method for identifying fault types and location of faults is proposed in this study. In ANFIS training, the bus voltage and current information collected by smart meters can be trained through the ANFIS tool in MATLAB to generate fault codes to identify different types of faults and the location of faults. In addition, due to the uncertainty of distributed generation, a wind power system is added to the transmission network to verify the diagnosis correctness of the study. Simulation results show that the method proposed in this study can correctly identify the fault type and location of fault with more efficiency, and can deal with the interference caused by the addition of unstable power sources.Keywords: ANFIS, fault diagnosis, power system, smart meter
Procedia PDF Downloads 138354 Distributed Real-Time Range Query Approximation in a Streaming Environment
Authors: Simon Keller, Rainer Mueller
Abstract:
Continuous range queries are a common means to handle mobile clients in high-density areas. Most existing approaches focus on settings in which the range queries for location-based services are more or less static, whereas the mobile clients in the ranges move. We focus on a category called dynamic real-time range queries (DRRQ), assuming that both, clients requested by the query and the inquirers, are mobile. In consequence, the query parameters and the query results continuously change. This leads to two requirements: the ability to deal with an arbitrarily high number of mobile nodes (scalability) and the real-time delivery of range query results. In this paper, we present the highly decentralized solution adaptive quad streaming (AQS) for the requirements of DRRQs. AQS approximates the query results in favor of a controlled real-time delivery and guaranteed scalability. While prior works commonly optimize data structures on the involved servers, we use AQS to focus on a highly distributed cell structure without data structures automatically adapting to changing client distributions. Instead of the commonly used request-response approach, we apply a lightweight streaming method in which no bidirectional communication and no storage or maintenance of queries are required at all.Keywords: approximation of client distributions, continuous spatial range queries, mobile objects, streaming-based decentralization in spatial mobile environments
Procedia PDF Downloads 144353 The Effects of Self-Efficacy on Challenge and Threat States
Authors: Nadine Sammy, Mark Wilson, Samuel Vine
Abstract:
The Theory of Challenge and Threat States in Athletes (TCTSA) states that self-efficacy is an antecedent of challenge and threat. These states result from conscious and unconscious evaluations of situational demands and personal resources and are represented by both cognitive and physiological markers. Challenge is considered a more adaptive stress response as it is associated with a more efficient cardiovascular profile, as well as better performance and attention effects compared with threat. Self-efficacy is proposed to influence challenge/threat because an individual’s belief that they have the skills necessary to execute the courses of action required to succeed contributes to a perception that they can cope with the demands of the situation. This study experimentally examined the effects of self-efficacy on cardiovascular responses (challenge and threat), demand and resource evaluations, performance and attention under pressurised conditions. Forty-five university students were randomly assigned to either a control (n=15), low self-efficacy (n=15) or high self-efficacy (n=15) group and completed baseline and pressurised golf putting tasks. Self-efficacy was manipulated using false feedback adapted from previous studies. Measures of self-efficacy, cardiovascular reactivity, demand and resource evaluations, task performance and attention were recorded. The high self-efficacy group displayed more favourable cardiovascular reactivity, indicative of a challenge state, compared with the low self-efficacy group. The former group also reported high resource evaluations, but no task performance or attention effects were detected. These findings demonstrate that levels of self-efficacy influence cardiovascular reactivity and perceptions of resources under pressurised conditions.Keywords: cardiovascular, challenge, performance, threat
Procedia PDF Downloads 232352 Investigating the Socio-ecological Impacts of Sea Level Rise on Coastal Rural Communities in Ghana
Authors: Benjamin Ankomah-Asare, Richard Adade
Abstract:
Sea level rise (SLR) poses a significant threat to coastal communities globally. Ghana has over the years implemented protective measures such as the construction of groynes and revetment to serve as barriers to sea waves in major cities and towns to prevent sea erosion and flooding. For vulnerable rural coastal communities, the planned retreat is often proposed; however, relocation costs are often underestimated as losses of future social and cultural value are not always adequately taken into account. Through a mixed-methods approach combining qualitative interviews, surveys, and spatial analysis, the study examined the experiences of coastal rural communities in Ghana and assess the effectiveness of relocation strategies in addressing the socio-economic and environmental challenges posed by sea level rise. The study revealed the devastating consequences of sea level rise on these communities, including increased flooding, erosion, and saltwater intrusion into freshwater sources. Moreover, it highlights the adaptive capacities within these communities and how factors such as infrastructure, economic activities, cultural heritage, and governance structures shape their resilience in the face of environmental change. While relocation can be an effective strategy in reducing the risks associated with sea level rise, the study recommends that proper implementation of this adaptation strategy can be achieved when coupled with community-led planning, participatory decision-making, and targeted support for vulnerable groups.Keywords: sea level rise, relocation, socio-ecological impacts, rural communities
Procedia PDF Downloads 48351 Reflections of Nocturnal Librarian: Attaining a Work-Life Balance in a Mega-City of Lagos State Nigeria
Authors: Oluwole Durodolu
Abstract:
The rationale for this study is to explore the adaptive strategy that librarians adopt in performing night shifts in a mega-city like Lagos state. Maslach Burnout Theory would be used to measure the three proportions of burnout in understanding emotional exhaustion, depersonalisation, and individual accomplishment to scrutinise job-related burnout syndrome allied with longstanding, unsolved stress. The qualitative methodology guided by a phenomenological research paradigm, which is an approach that focuses on the commonality of real-life experience in a particular group, would be used, focus group discussion adopted as a method of data collection from library staff who are involved in night-shift. The participant for the focus group discussion would be selected using a convenience sampling technique in which staff at the cataloguing unit would be included in the sample because of the representative characteristics of the unit. This would be done to enable readers to understand phenomena as it is reasonable than from a remote perspective. The exploratory interviews which will be in focus group method to shed light on issues relating to security, housing, transportation, budgeting, energy supply, employee duties, time management, information access, and sustaining professional levels of service and how all these variables affect the productivity of all the 149 library staff and their work-life balance.Keywords: nightshift, work-life balance, mega-city, academic library, Maslach Burnout Theory, Lagos State, University of Lagos
Procedia PDF Downloads 131350 Classification of EEG Signals Based on Dynamic Connectivity Analysis
Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović
Abstract:
In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients
Procedia PDF Downloads 214349 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation
Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi
Abstract:
For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)
Procedia PDF Downloads 260348 Effects of Screen Time on Children from a Systems Engineering Perspective
Authors: Misagh Faezipour
Abstract:
This paper explores the effects of screen time on children from a systems engineering perspective. We reviewed literature from several related works on the effects of screen time on children to explore all factors and interrelationships that would impact children that are subjected to using long screen times. Factors such as kids' age, parent attitudes, parent screen time influence, amount of time kids spend with technology, psychosocial and physical health outcomes, reduced mental imagery, problem-solving and adaptive thinking skills, obesity, unhealthy diet, depressive symptoms, health problems, disruption in sleep behavior, decrease in physical activities, problematic relationship with mothers, language, social, emotional delays, are examples of some factors that could be either a cause or effect of screen time. A systems engineering perspective is used to explore all the factors and factor relationships that were discovered through literature. A causal model is used to illustrate a graphical representation of these factors and their relationships. Through the causal model, the factors with the highest impacts can be realized. Future work would be to develop a system dynamics model to view the dynamic behavior of the relationships and observe the impact of changes in different factors in the model. The different changes on the input of the model, such as a healthier diet or obesity rate, would depict the effect of the screen time in the model and portray the effect on the children’s health and other factors that are important, which also works as a decision support tool.Keywords: children, causal model, screen time, systems engineering, system dynamics
Procedia PDF Downloads 144347 USTTB (UCRC) Financial Management, Strengths and Weaknesses
Authors: Samba Lamine Cisse, Cheick Oumar Tangara, Seynabou Sissoko, Mahamadou Diakite, Seydou Doumbia
Abstract:
Background: Financial management of a scientific research center is a crucial element in achieving ambitious scientific goals. It can be a driving force for research success, but it also has shortcomings that are important to understand. This study focuses on the crucial aspects of financial management in the context of scientific research centers, more specifically the USTTB (UCRC) in Mali in terms of strengths and weaknesses. Methodology: This study concerns the case of the UCRC, one of the USTTB's research centers. It is a qualitative study based on years of experience in project management at the USTTB, and on analyses and interpretations of everyday activities. Result: It offers practical recommendations for improving the financial stability of research institutions, thereby contributing to their mission of promoting scientific research and innovation. Scientific research centers play a crucial role in the development of knowledge, and their effective operation largely depends on the appropriate management of their financial resources. It begins with an in-depth analysis of UCRC's typical financial structure, highlighting its types and sources of funding, followed by an analysis of the strengths and weaknesses of its current financial management system. Conclusion: Financial management of a scientific research center is essential to ensure the continuity of research activities, the development of innovative projects and the achievement of scientific objectives. Adaptive financial management focused on efficiency, diversification of funding and risk control. They are essential to meeting these challenges and fostering excellence in scientific research.Keywords: financial, management, strengths, weaknesses, recommendations
Procedia PDF Downloads 14346 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform
Authors: S. Hutasavi, D. Chen
Abstract:
The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping
Procedia PDF Downloads 125