Search results for: accidents predictions
156 Mitigation of Cascading Power Outage Caused Power Swing Disturbance Using Real-time DLR Applications
Authors: Dejenie Birile Gemeda, Wilhelm Stork
Abstract:
The power system is one of the most important systems in modern society. The existing power system is approaching the critical operating limits as views of several power system operators. With the increase of load demand, high capacity and long transmission networks are widely used to meet the requirement. With the integration of renewable energies such as wind and solar, the uncertainty, intermittence bring bigger challenges to the operation of power systems. These dynamic uncertainties in the power system lead to power disturbances. The disturbances in a heavily stressed power system cause distance relays to mal-operation or false alarms during post fault power oscillations. This unintended operation of these relays may propagate and trigger cascaded trappings leading to total power system blackout. This is due to relays inability to take an appropriate tripping decision based on ensuing power swing. According to the N-1 criterion, electric power systems are generally designed to withstand a single failure without causing the violation of any operating limit. As a result, some overloaded components such as overhead transmission lines can still work for several hours under overload conditions. However, when a large power swing happens in the power system, the settings of the distance relay of zone 3 may trip the transmission line with a short time delay, and they will be acting so quickly that the system operator has no time to respond and stop the cascading. Misfiring of relays in absence of fault due to power swing may have a significant loss in economic performance, thus a loss in revenue for power companies. This research paper proposes a method to distinguish stable power swing from unstable using dynamic line rating (DLR) in response to power swing or disturbances. As opposed to static line rating (SLR), dynamic line rating support effective mitigation actions against propagating cascading outages in a power grid. Effective utilization of existing transmission lines capacity using machine learning DLR predictions will improve the operating point of distance relay protection, thus reducing unintended power outages due to power swing.Keywords: blackout, cascading outages, dynamic line rating, power swing, overhead transmission lines
Procedia PDF Downloads 143155 Locus of Control and Sense of Happiness: A Mediating Role of Self-Esteem
Authors: Ivanna Shubina
Abstract:
Background/Objectives and Goals: Recent interest in positive psychology is reflected in a plenty of studies conducted on its basic constructs (e.g. self-esteem and happiness) in interrelation with personality features, social rules, business and technology development. The purpose of this study is to investigate the mediating role of self-esteem, exploring the relationships between self-esteem and happiness, self-esteem and locus of control (LOC). It hypothesizes that self-esteem may be interpreted as a predictor of happiness and mediator in the locus of control establishment. A plenty of various empirical studies results have been analyzed in order to collect data for this theoretical study, and some of the analysed results can be considered as arguable or incoherent. However, the majority of results indicate a strong relationship between three considered concepts: self-esteem, happiness, the locus of control. Methods: In particular, this study addresses the following broad research questions: i) Is self-esteem just an index of global happiness? ii) May happiness be possible or realizable without a healthy self-confidence and self-acceptance? iii) To what extent does self-esteem influence on the level of happiness? iv) Is high self-esteem a sufficient condition for happiness? v) Is self-esteem is a strong predictor of internal locus of control maintenance? vi) Is high self-esteem related to internal LOC, while low self-esteem to external LOC? In order to find the answers for listed questions, 60 reliable sources have been analyzed, results of what are discussed more detailed below. Expected Results/Conclusion/Contribution:It is recognized that the relationship between self-esteem, happiness, locus of control is complex: internal LOC is contributing to happiness, but it is not directly related to it; self-esteem is a powerful and important psychological factor in mental health and well-being; the feelings of being worthy and empowered are associated with significant achievements and high self-esteem; strong and appropriate self-esteem (when the discrepancy between “ideal” and “real” self is balanced) is correlated with more internal LOC (when the individual tends to believe that personal achievements depend on possessed features, vigor, and persistence). Despite the special attention paid to happiness, the locus of control and self-esteem, independently, theoretical and empirical equivocations within each literature foreclose many obvious predictions about the nature of their empirical distinction. In terms of theoretical framework, no model has achieved consensus as an ultimate theoretical background for any of the mentioned constructs. To be able to clarify the relationship between self-esteem, happiness, and locus of control more interdisciplinary studies have to take place in order to get data on heterogeneous samples, provided from various countries, cultures, and social groups.Keywords: happiness, locus of control, self-esteem, mediation
Procedia PDF Downloads 244154 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.Keywords: fire prediction, drone, smoke toxicity, analyser, fire management
Procedia PDF Downloads 89153 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 93152 Evaluation of Commercial Back-analysis Package in Condition Assessment of Railways
Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman
Abstract:
Over the years,increased demands on railways, the emergence of high-speed trains and heavy axle loads, ageing, and deterioration of the existing tracks, is imposing costly maintenance actions on the railway sector. The need for developing a fast andcost-efficient non-destructive assessment method for the structural evaluation of railway tracksis therefore critically important. The layer modulus is the main parameter used in the structural design and evaluation of the railway track substructure (foundation). Among many recently developed NDTs, Falling Weight Deflectometer (FWD) test, widely used in pavement evaluation, has shown promising results for railway track substructure monitoring. The surface deflection data collected by FWD are used to estimate the modulus of substructure layers through the back-analysis technique. Although there are different commerciallyavailableback-analysis programs are used for pavement applications, there are onlya limited number of research-based techniques have been so far developed for railway track evaluation. In this paper, the suitability, accuracy, and reliability of the BAKFAAsoftware are investigated. The main rationale for selecting BAKFAA as it has a relatively straightforward user interfacethat is freely available and widely used in highway and airport pavement evaluation. As part of the study, a finite element (FE) model of a railway track section near Leominsterstation, Herefordshire, UK subjected to the FWD test, was developed and validated against available field data. Then, a virtual experimental database (including 218 sets of FWD testing data) was generated using theFE model and employed as the measured database for the BAKFAA software. This database was generated considering various layers’ moduli for each layer of track substructure over a predefined range. The BAKFAA predictions were compared against the cone penetration test (CPT) data (available from literature; conducted near to Leominster station same section as the FWD was performed). The results reveal that BAKFAA overestimatesthe layers’ moduli of each substructure layer. To adjust the BAKFA with the CPT data, this study introduces a correlation model to make the BAKFAA applicable in railway applications.Keywords: back-analysis, bakfaa, railway track substructure, falling weight deflectometer (FWD), cone penetration test (CPT)
Procedia PDF Downloads 129151 Behavioral Analysis of Stock Using Selective Indicators from Fundamental and Technical Analysis
Authors: Vish Putcha, Chandrasekhar Putcha, Siva Hari
Abstract:
In the current digital era of free trading and pandemic-driven remote work culture, markets worldwide gained momentum for retail investors to trade from anywhere easily. The number of retail traders rose to 24% of the market from 15% at the pre-pandemic level. Most of them are young retail traders with high-risk tolerance compared to the previous generation of retail traders. This trend boosted the growth of subscription-based market predictors and market data vendors. Young traders are betting on these predictors, assuming one of them is correct. However, 90% of retail traders are on the losing end. This paper presents multiple indicators and attempts to derive behavioral patterns from the underlying stocks. The two major indicators that traders and investors follow are technical and fundamental. The famous investor, Warren Buffett, adheres to the “Value Investing” method that is based on a stock’s fundamental Analysis. In this paper, we present multiple indicators from various methods to understand the behavior patterns of stocks. For this research, we picked five stocks with a market capitalization of more than $200M, listed on the exchange for more than 20 years, and from different industry sectors. To study the behavioral pattern over time for these five stocks, a total of 8 indicators are chosen from fundamental, technical, and financial indicators, such as Price to Earning (P/E), Price to Book Value (P/B), Debt to Equity (D/E), Beta, Volatility, Relative Strength Index (RSI), Moving Averages and Dividend yields, followed by detailed mathematical Analysis. This is an interdisciplinary paper between various disciplines of Engineering, Accounting, and Finance. The research takes a new approach to identify clear indicators affecting stocks. Statistical Analysis of the data will be performed in terms of the probabilistic distribution, then follow and then determine the probability of the stock price going over a specific target value. The Chi-square test will be used to determine the validity of the assumed distribution. Preliminary results indicate that this approach is working well. When the complete results are presented in the final paper, they will be beneficial to the community.Keywords: stock pattern, stock market analysis, stock predictions, trading, investing, fundamental analysis, technical analysis, quantitative trading, financial analysis, behavioral analysis
Procedia PDF Downloads 85150 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach
Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu
Abstract:
Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management
Procedia PDF Downloads 42149 The Covid Pandemic at a Level III Trauma Center: Challenges in the Management of the Spine Trauma.
Authors: Joana PaScoa Pinheiro, David Goncalves Ferreira, Filipe Ramos, Joaquim Soares Do Brito, Samuel Martins, Marco Sarmento
Abstract:
Introduction: The SARS-CoV-2 (COVID-19) pandemic was identified in January 2020 in China, in the city of Wuhan. The increase in the number of cases over the following months was responsible for the restructuring of hospitals and departments in order to accommodate admissions related to COVID-19. Essential services, such as trauma, had to readapt to maintain their functionality and thus guarantee quick and safe access in case of an emergency. Objectives: This study describes the impact of COVID-19 on a Level III Trauma Center and particularly on the clinical management of hospitalized patients with spine injuries. Study Design & Methods: This is a retrospective cohort study whose results were obtained through the medical records of patients with spine injuries who underwent surgical intervention in the years 2019 and 2020 (period from March 1st to December 31st). A comparison between the two groups was made. In the study patients with injuries in the context of trauma were included who underwent surgery in the periods previously described. Patients hospitalized with a spine injury in a non-traumatic context and/or were not surgically treated were excluded. Results: In total, 137 patients underwent trauma spine surgery of which 71 in 2019 (51.8%) were without significant differences in intergroup comparisons. The most frequent injury mechanism in 2019 was motor vehicle crash (47.9%) compared to 2020 which was of a person falling from a height between 2-4 meters (37.9%). Cervical trauma was reported to be the most frequent spine injury in both years. There was a significant decrease in the need for intensive care in 2020, 51.4% vs 30.3%, p = .015 and the number of complications was also lower in 2020 (1.35% vs 0.98%), including the number of deaths, being the difference marginally significant. There were no significant differences regarding time for presentation to surgery or in the total days of hospitalization. Conclusions: The restructuring made in the trauma unit at a Level III Trauma Center in the context of the current COVID-19 pandemic was effective, with no significant differences between the years of 2019 vs 2020 when compared with the time for presentation to surgery or the number of days of hospitalization. It was also found that lockdown rules in 2020 were probably responsible for the decrease in the number of road traffic accidents, which justifies a significant decrease in the need for intensive care as well as in the number of complications in patients hospitalized in the context of spine trauma.Keywords: trauma, spine, impact, covid-19
Procedia PDF Downloads 256148 AI Predictive Modeling of Excited State Dynamics in OPV Materials
Authors: Pranav Gunhal., Krish Jhurani
Abstract:
This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling
Procedia PDF Downloads 117147 Management in the Transport of Pigs to Slaughterhouses in the Valle De Aburrá, Antioquia
Authors: Natalia Uribe Corrales, María Fernanda Benavides Erazo, Santiago Henao Villegas
Abstract:
Introduction: Transport is a crucial link in the porcine chain because it is considered a stressful event in the animal, due to it is a new environment, which generates new interactions, together with factors such as speed, noise, temperature changes, vibrations, deprivation of food and water. Therefore, inadequate handling at this stage can lead to bruises, musculoskeletal injuries, fatigue, and mortality, resulting in canal seizures and economic losses. Objective: To characterize the transport and driving practices for the mobilization of standing pigs directed to slaughter plants in the Valle de Aburrá, Antioquia, Colombia in 2017. Methods: A descriptive cross-sectional study was carried out with the transporters arriving at the slaughterhouses approved by National Institute for Food and Medicine Surveillance (INVIMA) during 2017 in the Valle de Aburrá. The process of obtaining the samples was made from probabilistic sampling. Variables such as journey time, mechanical technical certificate, training in animal welfare, driving speed, material, and condition of floors and separators, supervision of animals during the trip, load density and mortality were analyzed. It was approved by the ethics committee for the use and care of animals CICUA of CES University, Act number 14 of 2015. Results: 190 trucks were analyzed, finding that 12.4% did not have updated mechanical technical certificate; the transporters experience in pig’s transportation was an average of 9.4 years (d.e.7.5). The 85.8% reported not having received training in animal welfare. Other results were that the average speed was 63.04km/hr (d.e 13.46) and the 62% had floors in good condition; nevertheless, the 48% had bad conditions on separators. On the other hand, the 88% did not supervise their animals during the journey, although the 62.2% had an adequate loading density, in relation to the average mortality was 0.2 deaths/travel (d.e. 0.5). Conclusions: Trainers should be encouraged on issues such as proper maintenance of vehicles, animal welfare, obligatory review of animals during mobilization and speed of driving, as these poorly managed indicators generate stress in animals, increasing generation of injuries as well as possible accidents; also, it is necessary to continue to improve aspects such as aluminum floors and separators that favor easy cleaning and maintenance, as well as the appropriate handling in the density of load that generates animal welfare.Keywords: animal welfare, driving practices, pigs, truck infrastructure
Procedia PDF Downloads 208146 Interactive Lecture Demonstration and Inquiry-Based Instruction in Addressing Students' Misconceptions in Electric Circuits
Authors: Mark Anthony Casimiro, Ivan Culaba, Cornelia Soto
Abstract:
Misconceptions are the wrong concepts understood by the students which may come up based on what they experience and observe around their environment. This seemed to hinder students’ learning. In this study, six different misconceptions were determined by the researcher from the previous researches. Teachers play a vital role in the classroom. The use of appropriate strategies can contribute a lot in the success of teaching and learning Physics. The current study aimed to compare two strategies- Interactive Lecture Demonstration (ILD) and Inquiry-Based Instruction (IBI) in addressing students’ misconceptions in electric circuits. These two strategies are both interactive learning activities and student-centered. In ILD, the teacher demonstrates the activity and the students have their predictions while in IBI, students perform the experiments. The study used the mixed method in which quantitative and qualitative researches were combined. The main data of this study were the test scores of the students from the pretest and posttest. Likewise, an interview with the teacher, observer and students was done before, during and after the execution of the activities. Determining and Interpreting Resistive Electric Circuits Test version 2 (DIRECT v.2) was the instrument used in the study. Two sections of Grade 9 students from Kalumpang National High School were the respondents of the study. The two strategies were executed to each section; one class was assigned as the ILD group and the other class was the IBI group. The Physics teacher of the said school was the one who taught and executed the activities. The researcher taught the teacher the steps in doing the two strategies. The Department of Education level of proficiency in the Philippines was adopted in scoring and interpretation. The students’ level of proficiency was used in assessing students’ knowledge on electric circuits. The pretest result of the two groups had a p-value of 0.493 which was greater than the level of significance 0.05 (p >0.05) and it implied that the students’ level of understanding in the topic was the same before the execution of the strategies. The posttest results showed that the p-value (0.228) obtained was greater than the level of significance which is 0.05 (p> 0.05). This implied that the students from the ILD and IBI groups had the same level of understanding after the execution of the two strategies. This could be inferred that either of the two strategies- Interactive Lecture Demonstration and Inquiry-Based Instruction could be used in addressing students’ misconception in electric circuit as both had similar effect on the students’ level of understanding in the topic. The result of this study may greatly help teachers, administration, school heads think of appropriate strategies that can address misconceptions depending on the availability of their materials of their school.Keywords: inquiry- based instruction, interactive lecture demonstration, misconceptions, mixed method
Procedia PDF Downloads 220145 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments
Authors: Manjinder Singh, Jasvinder Singh
Abstract:
Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite
Procedia PDF Downloads 526144 Preliminary WRF SFIRE Simulations over Croatia during the Split Wildfire in July 2017
Authors: Ivana Čavlina Tomašević, Višnjica Vučetić, Maja Telišman Prtenjak, Barbara Malečić
Abstract:
The Split wildfire on the mid-Adriatic Coast in July 2017 is one of the most severe wildfires in Croatian history, given the size and unexpected fire behavior, and it is used in this research as a case study to run the Weather Research and Forecasting Spread Fire (WRF SFIRE) model. This coupled fire-atmosphere model was successfully run for the first time ever for one Croatian wildfire case. Verification of coupled simulations was possible by using the detailed reconstruction of the Split wildfire. Specifically, precise information on ignition time and location, together with mapped fire progressions and spotting within the first 30 hours of the wildfire, was used for both – to initialize simulations and to evaluate the model’s ability to simulate fire’s propagation and final fire scar. The preliminary simulations were obtained using high-resolution vegetation and topography data for the fire area, additionally interpolated to fire grid spacing at 33.3 m. The results demonstrated that the WRF SFIRE model has the ability to work with real data from Croatia and produce adequate results for forecasting fire spread. As the model in its setup has the ability to include and exclude the energy fluxes between the fire and the atmosphere, this was used to investigate possible fire-atmosphere interactions during the Split wildfire. Finally, successfully coupled simulations provided the first numerical evidence that a wildfire from the Adriatic coast region can modify the dynamical structure of the surrounding atmosphere, which agrees with observations from fire grounds. This study has demonstrated that the WRF SFIRE model has the potential for operational application in Croatia with more accurate fire predictions in the future, which could be accomplished by inserting the higher-resolution input data into the model without interpolation. Possible uses for fire management in Croatia include prediction of fire spread and intensity that may vary under changing weather conditions, available fuels and topography, planning effective and safe deployment of ground and aerial firefighting forces, preventing wildland-urban interface fires, effective planning of evacuation routes etc. In addition, the WRF SFIRE model results from this research demonstrated that the model is important for fire weather research and education purposes in order to better understand this hazardous phenomenon that occurs in Croatia.Keywords: meteorology, agrometeorology, fire weather, wildfires, couple fire-atmosphere model
Procedia PDF Downloads 89143 Multi-Objective Optimization of the Thermal-Hydraulic Behavior for a Sodium Fast Reactor with a Gas Power Conversion System and a Loss of off-Site Power Simulation
Authors: Avent Grange, Frederic Bertrand, Jean-Baptiste Droin, Amandine Marrel, Jean-Henry Ferrasse, Olivier Boutin
Abstract:
CEA and its industrial partners are designing a gas Power Conversion System (PCS) based on a Brayton cycle for the ASTRID Sodium-cooled Fast Reactor. Investigations of control and regulation requirements to operate this PCS during operating, incidental and accidental transients are necessary to adapt core heat removal. To this aim, we developed a methodology to optimize the thermal-hydraulic behavior of the reactor during normal operations, incidents and accidents. This methodology consists of a multi-objective optimization for a specific sequence, whose aim is to increase component lifetime by reducing simultaneously several thermal stresses and to bring the reactor into a stable state. Furthermore, the multi-objective optimization complies with safety and operating constraints. Operating, incidental and accidental sequences use specific regulations to control the thermal-hydraulic reactor behavior, each of them is defined by a setpoint, a controller and an actuator. In the multi-objective problem, the parameters used to solve the optimization are the setpoints and the settings of the controllers associated with the regulations included in the sequence. In this way, the methodology allows designers to define an optimized and specific control strategy of the plant for the studied sequence and hence to adapt PCS piloting at its best. The multi-objective optimization is performed by evolutionary algorithms coupled to surrogate models built on variables computed by the thermal-hydraulic system code, CATHARE2. The methodology is applied to a loss of off-site power sequence. Three variables are controlled: the sodium outlet temperature of the sodium-gas heat exchanger, turbomachine rotational speed and water flow through the heat sink. These regulations are chosen in order to minimize thermal stresses on the gas-gas heat exchanger, on the sodium-gas heat exchanger and on the vessel. The main results of this work are optimal setpoints for the three regulations. Moreover, Proportional-Integral-Derivative (PID) control setting is considered and efficient actuators used in controls are chosen through sensitivity analysis results. Finally, the optimized regulation system and the reactor control procedure, provided by the optimization process, are verified through a direct CATHARE2 calculation.Keywords: gas power conversion system, loss of off-site power, multi-objective optimization, regulation, sodium fast reactor, surrogate model
Procedia PDF Downloads 308142 Perceived Competence toward Helping an Accident Victim in Pre-Hospital Setting among Medical Graduates: A Cross Sectional Study from Jodhpur, Rajasthan
Authors: Neeti Rustagi, Naveen Dutt, Arvind Sinha, Mahaveer S. Rhodha, Pankaja R. Raghav
Abstract:
Background: Pre-hospital trauma care services are in developing stage in fast-urbanizing cities of India including Jodhpur. Training of health professionals in providing necessary pre-hospital trauma care is an essential step in decreasing accident related morbidity and mortality. The current study explores the response of a medical graduate toward helping an accident victim in a pre-hospital setting before patient can be transferred to definitive trauma facility. Methodology: This study examines the perceived competence in predicting response to an accident victim by medical graduates in Jodhpur, Rajasthan. Participants completed measures of attitude, normative influence and perceived behavior control toward providing pre-hospital care to an accident victim. Likert scale was used to measure the participant responses. Preliminary and descriptive analysis were used using SPSS 21.0. Internal consistency of the responses received was measured using Cronbach’s alpha. Results: Almost all medical graduates agreed that road accidents are common in their area (male: 92%; female: 78%). More male medical graduates (28%) reported helping an accident victim as compared to female physicians (9%) in the previous three months. Majority of study participants (96%) reported that providing immediate care to an accident victim is essential to save the life of an individual. Experience of helping an accident victim was considered unpleasant by the majority of female participants (70%) as compared to male participants (36%). A large number of participants believed that their friends (80%) and colleagues (96%) would appreciate them helping an accident victim in a pre-hospital setting. A large number of participants also believed that they possess the necessary skills and competencies (80%) towards helping a roadside accident victim in the pre-hospital care environment. Perceived competence of helping a roadside accident victim until they are transferred to a health facility was reported by less than half of the participants (male: 56%; female: 43%). Conclusion: Medical graduates have necessary attitude, competencies, and intention of helping a roadside accident victim. The societal response towards helping a road side accident victim is also supportive. In spite of positive determinants, a large proportion of medical graduates have perceived lack of competence in helping a roadside accident victim. This is essential to explore further as providing pre-hospital care to a roadside accident victim is an essential step in establishing the continuum of care to an accident victim especially in countries where pre-hospital services are in developing phase.Keywords: prehospital care, perceived behavior, perceived competence, medical graduates
Procedia PDF Downloads 130141 Measuring Human Perception and Negative Elements of Public Space Quality Using Deep Learning: A Case Study of Area within the Inner Road of Tianjin City
Authors: Jiaxin Shi, Kaifeng Hao, Qingfan An, Zeng Peng
Abstract:
Due to a lack of data sources and data processing techniques, it has always been difficult to quantify public space quality, which includes urban construction quality and how it is perceived by people, especially in large urban areas. This study proposes a quantitative research method based on the consideration of emotional health and physical health of the built environment. It highlights the low quality of public areas in Tianjin, China, where there are many negative elements. Deep learning technology is then used to measure how effectively people perceive urban areas. First, this work suggests a deep learning model that might simulate how people can perceive the quality of urban construction. Second, we perform semantic segmentation on street images to identify visual elements influencing scene perception. Finally, this study correlated the scene perception score with the proportion of visual elements to determine the surrounding environmental elements that influence scene perception. Using a small-scale labeled Tianjin street view data set based on transfer learning, this study trains five negative spatial discriminant models in order to explore the negative space distribution and quality improvement of urban streets. Then it uses all Tianjin street-level imagery to make predictions and calculate the proportion of negative space. Visualizing the spatial distribution of negative space along the Tianjin Inner Ring Road reveals that the negative elements are mainly found close to the five key districts. The map of Tianjin was combined with the experimental data to perform the visual analysis. Based on the emotional assessment, the distribution of negative materials, and the direction of street guidelines, we suggest guidance content and design strategy points of the negative phenomena in Tianjin street space in the two dimensions of perception and substance. This work demonstrates the utilization of deep learning techniques to understand how people appreciate high-quality urban construction, and it complements both theory and practice in urban planning. It illustrates the connection between human perception and the actual physical public space environment, allowing researchers to make urban interventions.Keywords: human perception, public space quality, deep learning, negative elements, street images
Procedia PDF Downloads 114140 Impact of Rapid Urbanization on Health Sector in India
Authors: Madhvi Bhayani
Abstract:
Introduction: Due to the rapid pace of urbanization, the urban health issues have become one of the significant threats to future development in India. It also poses serious repercussions on the citizen’s health. As urbanization in India is increasing at an unprecedented rate and it has generated the urban health crisis among the city dwellers especially the urban poor. The increasing proportion of the urban poor and vulnerable to the health indicators worse than the rural counterparts, they face social and financial barriers in accessing healthcare services and these conditions make human health at risk. The Local as well as the State and National governments are alike tackling with the challenges of urbanization as it has become very essential for the government to provide the basic necessities and better infrastructure that make life in cities safe and healthy. Thus, the paper argues that if no major realistic steps are taken with immediate effect, the citizens will face a huge burden of health hazards. Aim: This paper attempts to analyze the current infrastructure, government planning, and its future policy, it also discusses the challenges and outcomes of urbanization on health and its impact on it and it will also predict the future trend with regard to disease burden in the urban areas. Methods: The paper analyzes on the basis of the secondary data by taking into consideration the connection between the Rapid Urbanization and Public Health Challenges, health and health care system and its services delivery to the citizens especially to the urban poor. Extensive analyses of government census reports, health information and policy, the government health-related schemes, urban development and based on the past trends, the future status of urban infrastructure and health outcomes are predicted. The social-economic and political dimensions are also taken into consideration from regional, national and global perspectives, which are incorporated in the paper to make realistic predictions for the future. Findings and Conclusion: The findings of the paper show that India suffers a lot due to the double burden of rapidly increasing in diseases and also growing health inequalities and disparities in health outcomes. Existing tools of governance of urban health are falling short to provide the better health care services. They need to strengthen the collaboration and communication among the state, national and local governments and also with the non-governmental partners. Based on the findings the policy implications are then described and areas for future research are defined.Keywords: health care, urbanization, urban health, service delivery
Procedia PDF Downloads 209139 A Simulation-Based Investigation of the Smooth-Wall, Radial Gravity Problem of Granular Flow through a Wedge-Shaped Hopper
Authors: A. F. Momin, D. V. Khakhar
Abstract:
Granular materials consist of particulate particles found in nature and various industries that, due to gravity flow, behave macroscopically like liquids. A fundamental industrial unit operation is a hopper with inclined walls or a converging channel in which material flows downward under gravity and exits the storage bin through the bottom outlet. The simplest form of the flow corresponds to a wedge-shaped, quasi-two-dimensional geometry with smooth walls and radially directed gravitational force toward the apex of the wedge. These flows were examined using the Mohr-Coulomb criterion in the classic work of Savage (1965), while Ravi Prakash and Rao used the critical state theory (1988). The smooth-wall radial gravity (SWRG) wedge-shaped hopper is simulated using the discrete element method (DEM) to test existing theories. DEM simulations involve the solution of Newton's equations, taking particle-particle interactions into account to compute stress and velocity fields for the flow in the SWRG system. Our computational results are consistent with the predictions of Savage (1965) and Ravi Prakash and Rao (1988), except for the region near the exit, where both viscous and frictional effects are present. To further comprehend this behaviour, a parametric analysis is carried out to analyze the rheology of wedge-shaped hoppers by varying the orifice diameter, wedge angle, friction coefficient, and stiffness. The conclusion is that velocity increases as the flow rate increases but decreases as the wedge angle and friction coefficient increase. We observed no substantial changes in velocity due to varying stiffness. It is anticipated that stresses at the exit result from the transfer of momentum during particle collisions; for this reason, relationships between viscosity and shear rate are shown, and all data are collapsed into a single curve. In addition, it is demonstrated that viscosity and volume fraction exhibit power law correlations with the inertial number and that all the data collapse into a single curve. A continuum model for determining granular flows is presented using empirical correlations.Keywords: discrete element method, gravity flow, smooth-wall, wedge-shaped hoppers
Procedia PDF Downloads 87138 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis
Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli
Abstract:
Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.Keywords: cluster analysis, construction management, earned value, schedule
Procedia PDF Downloads 265137 Ergonomic Assessment of Workplace Environment of Flour Mill Workers
Authors: Jayshree P. Zend, Ashatai B. Pawar
Abstract:
The study was carried out in Parbhani district of Maharashtra state, India with the objectives to study environmental problems faced by flour mill workers, prevalence of work-related health hazards and the physiological cost of workers while performing work in flour mill in traditional method as well as improved method. The use of flour presser, dust controlling bag and noise and dust controlling mask developed by AICRP College of Home Science, VNMKV, Parbhani was considered as an improved method. This investigation consisted survey and experiment which was conducted in the respective locations of flour mills. Healthy, non-smoking 30 flour mill workers ranged between the age group of 20-50 yrs comprising 16 female and 14 male working at flour mill for 4-8 hrs/ day and 6 days/ week and had minimum five years experience of work in flour mill were selected for the study. Pulmonary function test of flour mill workers was carried out by trained technician at Dr. ShankarraoChavan Government Medical College, Nanded by using Electronic Spirometer. The data regarding heart rate (resting, working and recovery), energy expenditure, musculoskeletal problems and occupational health hazards and accidents were recorded by using pretested questionnaire. Scientific equipment used in the experiment were polar sport test heart rate monitor, Hygrometer, Goniometer, Dialed Thermometer, Sound Level Meter, Lux Meter, Ambient Air Sampler and Air Quality Monitor. The collected data were subjected to appropriate statistical analysis such as 't' test and correlation coefficient test. Results indicated that improved method i.e. use of noise and dust controlling mask, flour presser and dust controlling bag were effective in reducing physiological cost of work of flour mill workers. Lung function test of flour mill workers showed decreased values of all parameters, hence the results of present study support paying attention to use of personal protective noise and dust controlling mask by flour mill workers and also to the working conditions in flour mill especially ventilation and illumination level needs to be enhanced in flour mill. The study also emphasizes the need to develop some mechanism for lifting load of grains and unloading in the hopper. It is also suggested that the flour mill workers should use flour presser suitable to their height to avoid frequent bending and should use dust controlling bag to flour outlet of machine to reduce inhalable flour dust level in the flour mill.Keywords: physiological cost, energy expenditure, musculoskeletal problems
Procedia PDF Downloads 401136 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction
Authors: Mohammad Ghahramani, Fahimeh Saei Manesh
Abstract:
Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.Keywords: soccer, analytics, machine learning, database
Procedia PDF Downloads 238135 Emotion Expression of the Leader and Collective Efficacy: Pride and Guilt
Authors: Hsiu-Tsu Cho
Abstract:
Collective efficacy refers to a group’s sense of its capacity to complete a task successfully or to reach objectives. Little effort has been expended on investigating the relationship between the emotion expression of a leader and collective efficacy. In this study, we examined the impact of the different emotions and emotion expression of a group leader on collective efficacy and explored whether the emotion–expressive effects differed under conditions of negative and positive emotions. A total of 240 undergraduate and graduate students recruited using Facebook and posters at a university participated in this research. The participants were separated randomly into 80 groups of four persons consisting of three participants and a confederate. They were randomly assigned to one of five conditions in a 2 (pride vs. guilt) × 2 (emotion expression of group leader vs. no emotion expression of group leader) factorial design and a control condition. Each four-person group was instructed to get the reward in a group competition of solving the five-disk Tower of Hanoi puzzle and making decisions on an investment case. We surveyed the participants by employing the emotional measure revised from previous researchers and collective efficacy questionnaire on a 5-point scale. To induce an emotion of pride (or guilt), the experimenter announced whether the group performance was good enough to have a chance of getting the reward (ranking the top or bottom 20% among all groups) after group task. The leader (confederate) could either express or not express a feeling of pride (or guilt) following the instruction according to the assigned condition. To check manipulation of emotion, we added a control condition under which the experimenter revealed no results regarding group performance in maintaining a neutral emotion. One-way ANOVAs and post hoc pairwise comparisons among the three emotion conditions (pride, guilt, and control condition) involved assigning pride and guilt scores (pride: F(1,75) = 32.41, p < .001; guilt: F(1,75) = 6.75, p < .05). The results indicated that manipulations of emotion were successful. A two-way between-measures ANOVA was conducted to examine the predictions of the main effects of emotion types and emotion expression as well as the interaction effect of these two variables on collective efficacy. The experimental findings suggest that pride did not affect collective efficacy (F(1,60) = 1.90, ns.) more than guilt did and that the group leader did not motivate collective efficacy regardless of whether he or she expressed emotion (F(1,60) = .89, ns.). However, the interaction effect of emotion types and emotion expression was statistically significant (F(1,60) = 4.27, p < .05, ω2 = .066); the effects accounted for 6.6% of the variance. Additional results revealed that, under the pride condition, the leader enhanced group efficacy when expressing emotion, whereas, under the guilt condition, an expression of emotion could reduce collective efficacy. Overall, these findings challenge the assumption that the effect of expression emotion are the same on all emotions and suggest that a leader should be cautious when expressing negative emotions toward a group to avoid reducing group effectiveness.Keywords: collective efficacy, group leader, emotion expression, pride, guilty
Procedia PDF Downloads 330134 Instruction Program for Human Factors in Maintenance, Addressed to the People Working in Colombian Air Force Aeronautical Maintenance Area to Strengthen Operational Safety
Authors: Rafael Andres Rincon Barrera
Abstract:
Safety in global aviation plays a preponderant role in organizations that seek to avoid accidents in an attempt to preserve their most precious assets (the people and the machines). Human factors-based programs have shown to be effective in managing human-generated risks. The importance of training on human factors in maintenance has not been indifferent to the Colombian Air Force (COLAF). This research, which has a mixed quantitative, qualitative and descriptive approach, deals with its absence of structuring an instruction program in Human Factors in Aeronautical Maintenance, which serves as a tool to improve Operational Safety in the military air units of the COLAF. Research shows the trends and evolution of human factors programs in aeronautical maintenance through the analysis of a data matrix with 33 sources taken from different databases that are about the incorporation of these types of programs in the aeronautical industry in the last 20 years; as well as the improvements in the operational safety process that are presented after the implementation of these ones. Likewise, it compiles different normative guides in force from world aeronautical authorities for training in these programs, establishing a matrix of methodologies that may be applicable to develop a training program in human factors in maintenance. Subsequently, it illustrates the design, validation, and development of a human factors knowledge measurement instrument for maintenance at the COLAF that includes topics on Human Factors (HF), Safety Management System (SMS), and aeronautical maintenance regulations at the COLAF. With the information obtained, it performs the statistical analysis showing the aspects of knowledge and strengthening the staff for the preparation of the instruction program. Performing data triangulation based on the applicable methods and the weakest aspects found in the maintenance people shows a variable crossing from color coding, thus indicating the contents according to a training program for human factors in aeronautical maintenance, which are adjusted according to the competencies that are expected to be developed with the staff in a curricular format established by the COLAF. Among the most important findings are the determination that different authors are dealing with human factors in maintenance agrees that there is no standard model for its instruction and implementation, but that it must be adapted to the needs of the organization, that the Safety Culture in the Companies which incorporated programs on human factors in maintenance increased, that from the data obtained with the instrument for knowledge measurement of human factors in maintenance, the level of knowledge is MEDIUM-LOW with a score of 61.79%. And finally that there is an opportunity to improve Operational Safety for the COLAF through the implementation of the training program of human factors in maintenance for the technicians working in this area.Keywords: Colombian air force, human factors, safety culture, safety management system, triangulation
Procedia PDF Downloads 134133 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada
Authors: Bilel Chalghaf, Mathieu Varin
Abstract:
Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR
Procedia PDF Downloads 133132 Surface Elevation Dynamics Assessment Using Digital Elevation Models, Light Detection and Ranging, GPS and Geospatial Information Science Analysis: Ecosystem Modelling Approach
Authors: Ali K. M. Al-Nasrawi, Uday A. Al-Hamdany, Sarah M. Hamylton, Brian G. Jones, Yasir M. Alyazichi
Abstract:
Surface elevation dynamics have always responded to disturbance regimes. Creating Digital Elevation Models (DEMs) to detect surface dynamics has led to the development of several methods, devices and data clouds. DEMs can provide accurate and quick results with cost efficiency, in comparison to the inherited geomatics survey techniques. Nowadays, remote sensing datasets have become a primary source to create DEMs, including LiDAR point clouds with GIS analytic tools. However, these data need to be tested for error detection and correction. This paper evaluates various DEMs from different data sources over time for Apple Orchard Island, a coastal site in southeastern Australia, in order to detect surface dynamics. Subsequently, 30 chosen locations were examined in the field to test the error of the DEMs surface detection using high resolution global positioning systems (GPSs). Results show significant surface elevation changes on Apple Orchard Island. Accretion occurred on most of the island while surface elevation loss due to erosion is limited to the northern and southern parts. Concurrently, the projected differential correction and validation method aimed to identify errors in the dataset. The resultant DEMs demonstrated a small error ratio (≤ 3%) from the gathered datasets when compared with the fieldwork survey using RTK-GPS. As modern modelling approaches need to become more effective and accurate, applying several tools to create different DEMs on a multi-temporal scale would allow easy predictions in time-cost-frames with more comprehensive coverage and greater accuracy. With a DEM technique for the eco-geomorphic context, such insights about the ecosystem dynamic detection, at such a coastal intertidal system, would be valuable to assess the accuracy of the predicted eco-geomorphic risk for the conservation management sustainability. Demonstrating this framework to evaluate the historical and current anthropogenic and environmental stressors on coastal surface elevation dynamism could be profitably applied worldwide.Keywords: DEMs, eco-geomorphic-dynamic processes, geospatial Information Science, remote sensing, surface elevation changes,
Procedia PDF Downloads 267131 Spatial Architecture Impact in Mediation Open Circuit Voltage Control of Quantum Solar Cell Recovery Systems
Authors: Moustafa Osman Mohammed
Abstract:
The photocurrent generations are influencing ultra-high efficiency solar cells based on self-assembled quantum dot (QD) nanostructures. Nanocrystal quantum dots (QD) provide a great enhancement toward solar cell efficiencies through the use of quantum confinement to tune absorbance across the solar spectrum enabled multi-exciton generation. Based on theoretical predictions, QDs have potential to improve systems efficiency in approximate regular electrons excitation intensity greater than 50%. In solar cell devices, an intermediate band formed by the electron levels in quantum dot systems. The spatial architecture is exploring how can solar cell integrate and produce not only high open circuit voltage (> 1.7 eV) but also large short-circuit currents due to the efficient absorption of sub-bandgap photons. In the proposed QD system, the structure allows barrier material to absorb wavelengths below 700 nm while multi-photon processes in the used quantum dots to absorb wavelengths up to 2 µm. The assembly of the electronic model is flexible to demonstrate the atoms and molecules structure and material properties to tune control energy bandgap of the barrier quantum dot to their respective optimum values. In terms of energy virtual conversion, the efficiency and cost of the electronic structure are unified outperform a pair of multi-junction solar cell that obtained in the rigorous test to quantify the errors. The milestone toward achieving the claimed high-efficiency solar cell device is controlling the edge causes of energy bandgap between the barrier material and quantum dot systems according to the media design limits. Despite this remarkable potential for high photocurrent generation, the achievable open-circuit voltage (Voc) is fundamentally limited due to non-radiative recombination processes in QD solar cells. The orientation of voltage recovery system is compared theoretically with experimental Voc variation in mediation upper–limit obtained one diode modeling form at the cells with different bandgap (Eg) as classified in the proposed spatial architecture. The opportunity for improvement Voc is valued approximately greater than 1V by using smaller QDs through QD solar cell recovery systems as confined to other micro and nano operations states.Keywords: nanotechnology, photovoltaic solar cell, quantum systems, renewable energy, environmental modeling
Procedia PDF Downloads 156130 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 62129 Economic Impact of Drought on Agricultural Society: Evidence Based on a Village Study in Maharashtra, India
Authors: Harshan Tee Pee
Abstract:
Climate elements include surface temperatures, rainfall patterns, humidity, type and amount of cloudiness, air pressure and wind speed and direction. Change in one element can have an impact on the regional climate. The scientific predictions indicate that global climate change will increase the number of extreme events, leading to more frequent natural hazards. Global warming is likely to intensify the risk of drought in certain parts and also leading to increased rainfall in some other parts. Drought is a slow advancing disaster and creeping phenomenon– which accumulate slowly over a long period of time. Droughts are naturally linked with aridity. But droughts occur over most parts of the world (both wet and humid regions) and create severe impacts on agriculture, basic household welfare and ecosystems. Drought condition occurs at least every three years in India. India is one among the most vulnerable drought prone countries in the world. The economic impacts resulting from extreme environmental events and disasters are huge as a result of disruption in many economic activities. The focus of this paper is to develop a comprehensive understanding about the distributional impacts of disaster, especially impact of drought on agricultural production and income through a panel study (drought year and one year after the drought) in Raikhel village, Maharashtra, India. The major findings of the study indicate that cultivating area as well as the number of cultivating households reduced after the drought, indicating a shift in the livelihood- households moved from agriculture to non-agriculture. Decline in the gross cropped area and production of various crops depended on the negative income from these crops in the previous agriculture season. All the landholding categories of households except landlords had negative income in the drought year and also the income disparities between the households were higher in that year. In the drought year, the cost of cultivation was higher for all the landholding categories due to the increased cost for irrigation and input cost. In the drought year, agriculture products (50 per cent of the total products) were used for household consumption rather than selling in the market. It is evident from the study that livelihood which was based on natural resources became less attractive to the people to due to the risk involved in it and people were moving to less risk livelihood for their sustenance.Keywords: climate change, drought, agriculture economics, disaster impact
Procedia PDF Downloads 118128 Radar on Bike: Coarse Classification based on Multi-Level Clustering for Cyclist Safety Enhancement
Authors: Asma Omri, Noureddine Benothman, Sofiane Sayahi, Fethi Tlili, Hichem Besbes
Abstract:
Cycling, a popular mode of transportation, can also be perilous due to cyclists' vulnerability to collisions with vehicles and obstacles. This paper presents an innovative cyclist safety system based on radar technology designed to offer real-time collision risk warnings to cyclists. The system incorporates a low-power radar sensor affixed to the bicycle and connected to a microcontroller. It leverages radar point cloud detections, a clustering algorithm, and a supervised classifier. These algorithms are optimized for efficiency to run on the TI’s AWR 1843 BOOST radar, utilizing a coarse classification approach distinguishing between cars, trucks, two-wheeled vehicles, and other objects. To enhance the performance of clustering techniques, we propose a 2-Level clustering approach. This approach builds on the state-of-the-art Density-based spatial clustering of applications with noise (DBSCAN). The objective is to first cluster objects based on their velocity, then refine the analysis by clustering based on position. The initial level identifies groups of objects with similar velocities and movement patterns. The subsequent level refines the analysis by considering the spatial distribution of these objects. The clusters obtained from the first level serve as input for the second level of clustering. Our proposed technique surpasses the classical DBSCAN algorithm in terms of geometrical metrics, including homogeneity, completeness, and V-score. Relevant cluster features are extracted and utilized to classify objects using an SVM classifier. Potential obstacles are identified based on their velocity and proximity to the cyclist. To optimize the system, we used the View of Delft dataset for hyperparameter selection and SVM classifier training. The system's performance was assessed using our collected dataset of radar point clouds synchronized with a camera on an Nvidia Jetson Nano board. The radar-based cyclist safety system is a practical solution that can be easily installed on any bicycle and connected to smartphones or other devices, offering real-time feedback and navigation assistance to cyclists. We conducted experiments to validate the system's feasibility, achieving an impressive 85% accuracy in the classification task. This system has the potential to significantly reduce the number of accidents involving cyclists and enhance their safety on the road.Keywords: 2-level clustering, coarse classification, cyclist safety, warning system based on radar technology
Procedia PDF Downloads 79127 Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation
Authors: M. J. Baum, B. Gibbes, A. Grinham, S. Albert, D. Gale, P. Fisher
Abstract:
Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s-1, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg-1 were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future.Keywords: brine disposal, desalination, field study, negatively buoyant discharge
Procedia PDF Downloads 239