Search results for: negative effects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13984

Search results for: negative effects

3904 Deciphering the Gut Microbiome's Role in Early-Life Immune Development

Authors: Xia Huo

Abstract:

Children are more vulnerable to environmental toxicants compared to adults, and their developing immune system is among the most sensitive targets regarding toxicity of environmental toxicants. Studies have found that exposure to environmental toxicants is associated with impaired immune function in children, but only a few studies have focused on the relationship between environmental toxicant exposure and vaccine antibody potency and immunoglobulin (Ig) levels in children. These studies investigated the associations of exposure to polychlorinated biphenyls (PCBs), perfluorinated compounds (PFCs), heavy metals (Pb, Cd, As, Hg) and PM2.5 with the serum-specific antibody concentrations and Ig levels against different vaccines, such as anti-Hib, tetanus, diphtheria toxoid, and analyze the possible mechanisms underlying exposure-related alterations of antibody titers and Ig levels against different vaccines. Results suggest that exposure to these toxicants is generally associated with decreased potency of antibodies produced from childhood immunizations and an overall deficiency in the protection the vaccines provide. Toxicant exposure is associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Age, sex, nutritional status, and co-exposure may influence the effects of toxicants on the immune function in children. Epidemiological evidence suggests that exposure-induced changes to humoral immunerelated tissue/cells/molecules response to vaccines may have predominant roles in the inverse associations between antibody responsiveness to vaccines and environmental toxicants. These results help us to conduct better immunization policies for children under environmental toxicant burden.

Keywords: environmental toxicants, immunotoxicity, vaccination, antibodies, children's health

Procedia PDF Downloads 39
3903 Effects of Surface Insulation of Silicone Rubber Composites in HVDC

Authors: Min-Hae Park, Ju-Na Hwang, Cheong-won Seo, Ji-Ho Kim, Kee-Joe Lim

Abstract:

Polymeric insulators are high hardness, corrosion resistant, lightweight and also good dielectric strength in electric equipment. For such reasons, the amount of polymeric insulators is increased consistently abroad. The current outdoor insulators are replaced by polymeric insulators. Silicone rubber of polymeric insulators is widely used in insulation materials for outdoor application since it has excellent electrical characteristics and high surface hydrophobic. However, it can be evade exposure to pollutant on surface using at outdoor. It also improve the pollution for dust and smoke due to the large are increasing, because most of the industrial area in which the electric power loads are concentrated are located at the coastal area with salt attack. Thus it is important to detect the main cause of the deterioration for outdoor insulation materials. But there has no standards for valuation to apply reliably and determine accurately deterioration under DC, still lacks DC characteristic researches in proportion to AC. In addition, a lot of ATH was added to improve tracking resistivity of silicone rubber, although the problem has been brought up about falling sharply mechanical properties. Therefore, we might compare surface resistivities of silicone rubber compounding of three kinds of filler. In this paper, specimens of silicone rubber composite usable as outdoor insulators were prepared. Micro-silica (SiO2), nano- alumina (Al2O3) and nano-ATH (Al(OH)3) were used in additives. The study aims to investigate properties of DC surface insulation on silicone rubber composite which were filled with various fillers from surface resistivity measurement and salt-fog test.

Keywords: composite, silicone rubber, surface insulation, HVDC

Procedia PDF Downloads 399
3902 A Review on Microbial Enhanced Oil Recovery and Controlling Its Produced Hydrogen Sulfide Effects on Reservoir and Transporting Pipelines

Authors: Ali Haratian, Soroosh Emami Meybodi

Abstract:

Using viable microbial cultures within hydrocarbon reservoirs so as to the enhancement of oil recovery through metabolic activities is exactly what we recognize as microbial enhanced oil recovery (MEOR). In similar to many other processes in industries, there are some cons and pros following with MEOR. The creation of sulfides such as hydrogen sulfide as a result of injecting the sulfate-containing seawater into hydrocarbon reservoirs in order to maintain the required reservoir pressure leads to production and growth of sulfate reducing bacteria (SRB) approximately near the injection wells, turning the reservoir into sour; however, SRB is not considered as the only microbial process stimulating the formation of sulfides. Along with SRB, thermochemical sulfate reduction or thermal redox reaction (TSR) is also known to be highly effective at resulting in having extremely concentrated zones of ?2S in the reservoir fluids eligible to cause corrosion. Owing to extent of the topic, more information on the formation of ?₂S is going to be put finger on. Besides, confronting the undesirable production of sulfide species in the reservoirs can lead to serious operational, environmental, and financial problems, in particular the transporting pipelines. Consequently, conjuring up reservoir souring control strategies on the way production of oil and gas is the only way to prevent possible damages in terms of environment, finance, and manpower which requires determining the compound’s reactivity, origin, and partitioning behavior. This article is going to provide a comprehensive review of progress made in this field and the possible advent of new strategies in this technologically advanced world of the petroleum industry.

Keywords: corrosion, hydrogen sulfide, NRB, reservoir souring, SRB

Procedia PDF Downloads 205
3901 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model

Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas

Abstract:

Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.

Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior

Procedia PDF Downloads 295
3900 Family Living with Adolescent Mother: The Consequential Effects of Adolescent Pregnancy

Authors: Somsakhool Neelasmith, Darunee Jongudomkarn, Rutja Phuphaibul

Abstract:

Adolescent pregnancy is a major global concern including Thailand, which has long adopted policies and solutions to prevent such problem. Family is one of the key strategies to drive policy achievement whereas the various families and regional differences will be challenges. This article reports a preliminary study finding using qualitative case study methods, aiming to explore the situation of families living with adolescent mother in the North Eastern of Thailand or ISAN. Data were collected by in-depth interview with six key informants; five adolescent mothers age 14- 19 years and one mother in law of adolescent mother during November to December of 2017. The preliminary suggests that firstly, the adolescent pregnancy was found to be one of the significant issues among most of the families and that adolescent mothers and their family perceived other families were also faced with this problem with despite different conditions. Secondly, the parents assumed simultaneous roles as both parents and grandparents when one of their adolescent girls became an adolescent mother. Lastly, when perceiving that their adolescent daughter became pregnant, families addressed this issue by compromise with the related parties to maintain family and social relationship. This situation can be a potential intractable problem to adolescents and their families. Families may suffer from adolescent pregnancy with respect to health, economy and other family burdens. Moreover, the national development may be affected or delayed since this group of people is considered promising human resource. It is therefore required to further conduct in-depth research to cope with this issue particularly about the policies related to adolescent pregnancy.

Keywords: adolescent mother, adolescent pregnancy, consequential effect, family living with adolescent mother

Procedia PDF Downloads 272
3899 The Igbo People's Dual Religion Identity on Rite of Marriage in Imo State

Authors: Henry Okechukwu Onyeiwu, Arfah Ab. Majid

Abstract:

To fully understand the critical role of marriage in society, it is important to view it as a social institution that provides some basic social needs for society. A ‘social institution’ is the network of shared meanings, norms, definitions, expectations, and understandings held by the members of society. It is what guides and governs how the members of the society are expected to act and interact, what is socially desirable and legitimate, what they should be striving for, and so on. One of the major social institutions is marriage. Marriage is and has often focused on children and what is best for them because the rising generation literally is the future of every society. However, according to the aforementioned definition, which notes that marriage may also be a union between two persons of the same sex with legal support, this study stands with the definitions that are based on marriage being a union between a man and woman that is the most appropriate in Igbo land and not the other way round. The issue to be evaluated concerns marriage as it associates with Igbo Catholic Christians in Nigeria. Pasts of Igbo culture should be better organized into the Christian faith. Igbo Christians actually convey a significant number of their customary thoughts, customs, and social qualities, particularly regarding marriage, in the aftermath of switching to Christianity. The analyst agrees that marriage among Igbo Christians warrants adequate evolution. This study, therefore, concentrates on the Igbo community’s interpretation of the concept of culture and religion and the religious implications of traditional marriage and Christian marriage ceremonies in Igbo. The research design of this study is a qualitative design that provides in-depth information on the dual religious identity of the Igbo people on the rite of marriage in Imo state. The study population was composed of both male and female members from each selected local government area in Imo State. Thematic analysis was used to elaborate on the result from the respondents. This survey found that reputation is a major concern for Ibo people. Parental discomfort can lead to the use of coping strategies such as displacement, in which parents pass on their own vulnerable sentiments to their children. Those who participate in marriage negotiations feel the pain of their parents because they are unable to communicate their own feelings. As a result, participants experience increased stress and a range of negative emotions related to their marriage, including worry, dissatisfaction, and ambivalence. It was concluded that when it comes to Igbo culture, marriage is seen as a need for the continuation of the family’s lineage of descent, according to the outcome. The Task at hand was to discover how the locals preparing to get married define the impending transition. Imo State is home to the practice of Igba-nkwu, where the woman is either inherited or taken in the place of another.

Keywords: Igbo, culture, Christianity, traditional marriage, Christian wedding

Procedia PDF Downloads 144
3898 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application

Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay

Abstract:

Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.

Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery

Procedia PDF Downloads 118
3897 A Randomized Comparative Evaluation of Efficacy of Ultrasound Guided Costoclavicular and Supraclavicular Approaches of Brachial Plexus Block for Upper Limb Surgeries

Authors: Anshul, Rajni Kalia, Sachin Kumar

Abstract:

Introduction: The costoclavicular approach, a modification to the infraclavicular approach, has been described for anesthesia for upper limb surgeries. Material And Methods: In this randomized and single-blind study, fourty patients undergoing emergency/elective upper limb surgery were allocated to two groups. Group C and S received ultrasound-guided Costoclavicular block and Supraclavicular block, respectively, with 20 ml 0.5 % ropivacaine with 8 mg dexamethasone under strict asepsis. The primary outcome assessed was the total duration of sensory and motor block in the postoperative period. Secondary outcomes were to compare the time taken to perform the procedure, block characteristics in terms of onset of motor and sensory blockade, the efficacy of analgesia with respect to the time of administration of the first rescue analgesic dose with both the blocks and note the side effects pertaining to either of the blocks. Results: The mean total duration of sensory and motor blockade was longer in group C vs. group S (p=0.002 and 0.024, respectively). The mean duration to perform a block in group S was more than in group C (p=0.012). The mean onset of sensory and motor Blockade Time in group S was more than in group C (p<0.001 and <0.001, respectively). The mean duration to perform a block in group S was more than in group C (p=0.012). Conclusion: The costoclavicular approach is better than supraclavicular in terms of rapid execution, faster onset of sensory-motor blockade, prolonged postoperative analgesia and similar PONV and safety profile.

Keywords: costoclavicular, supraclavicular, ropivacaine, dexamethasone

Procedia PDF Downloads 56
3896 Implication of Taliban’s Recent Relationship with Neighboring Countries and Its Impact on the Current Peace Process

Authors: Lutfurrahman Aftab

Abstract:

The Taliban’s relationships with the neighboring countries are a complex political issue that local people interpret one way, and politicians have different perceptions; therefore, it is a current issue that needs to be analyzed broadly and impartially. In this article, the writer investigates the Taliban’s current relationships with the neighboring countries, as well as looking at the effects these relationships have on the current peace negotiations in Doha, which began on September 12, 2020. The issue of Taliban and the current peace process has turned to be the center-of-attention for most of the neighboring countries, and every country has opened new pages in their foreign policies because after the Taliban-US peace agreement, the neighboring countries are meticulously and closely observing the situation and they believe that the Taliban are on the verge to tighten their grips on the future political power of Afghanistan. Every neighboring country of Afghanistan has political, economic, and social interests in this land-locked country. The Taliban’s current role within the peace talks and anticipated future position within the Afghan government will have great political, economic, and social implications on countries in the region as they assess their foreign policies. As these countries move to form closer ties with the Taliban, the government of Afghanistan is worried that this may hinder the peace process. Afghanistan has long blamed Pakistan for sheltering the Taliban and providing safe havens for the terrorist groups, including Al Qaeda, and the recent visits of Taliban’s delegations to Islamabad, Pakistan, have raised concern among government officials in Afghanistan who believe that the Taliban are not independent in their decisions, and for every step they take, are consulting with Pakistan’s political leadership.

Keywords: peace process, USA, Afghanistan, Taliban

Procedia PDF Downloads 108
3895 Biosorption of Nickel by Penicillium simplicissimum SAU203 Isolated from Indian Metalliferous Mining Overburden

Authors: Suchhanda Ghosh, A. K. Paul

Abstract:

Nickel, an industrially important metal is not mined in India, due to the lack of its primary mining resources. But, the chromite deposits occurring in the Sukinda and Baula-Nuasahi region of Odhisa, India, is reported to contain around 0.99% of nickel entrapped in the goethite matrix of the lateritic iron rich ore. Weathering of the dumped chromite mining overburden often leads to the contamination of the ground as well as the surface water with toxic nickel. Microbes inherent to this metal contaminated environment are reported to be capable of removal as well as detoxification of various metals including nickel. Nickel resistant fungal isolates obtained in pure form from the metal rich overburden were evaluated for their potential to biosorb nickel by using their dried biomass. Penicillium simplicissimum SAU203 was the best nickel biosorbant among the 20 fungi tested and was capable to sorbing 16.85 mg Ni/g biomass from a solution containing 50 mg/l of Ni. The identity of the isolate was confirmed using 18S rRNA gene analysis. The sorption capacity of the isolate was further standardized following Langmuir and Freundlich adsorption isotherm models and the results reflected energy efficient sorption. Fourier-transform infrared spectroscopy studies of the nickel loaded and control biomass in a comparative basis revealed the involvement of hydroxyl, amine and carboxylic groups in Ni binding. The sorption process was also optimized for several standard parameters like initial metal ion concentration, initial sorbet concentration, incubation temperature and pH, presence of additional cations and pre-treatment of the biomass by different chemicals. Optimisation leads to significant improvements in the process of nickel biosorption on to the fungal biomass. P. simplicissimum SAU203 could sorb 54.73 mg Ni/g biomass with an initial Ni concentration of 200 mg/l in solution and 21.8 mg Ni/g biomass with an initial biomass concentration of 1g/l solution. Optimum temperature and pH for biosorption was recorded to be 30°C and pH 6.5 respectively. Presence of Zn and Fe ions improved the sorption of Ni(II), whereas, cobalt had a negative impact. Pre-treatment of biomass with various chemical and physical agents has affected the proficiency of Ni sorption by P. simplicissimum SAU203 biomass, autoclaving as well as treatment of biomass with 0.5 M sulfuric acid and acetic acid reduced the sorption as compared to the untreated biomass, whereas, NaOH and Na₂CO₃ and Twin 80 (0.5 M) treated biomass resulted in augmented metal sorption. Hence, on the basis of the present study, it can be concluded that P. simplicissimum SAU203 has the potential for the removal as well as detoxification of nickel from contaminated environments in general and particularly from the chromite mining areas of Odhisa, India.

Keywords: nickel, fungal biosorption, Penicillium simplicissimum SAU203, Indian chromite mines, mining overburden

Procedia PDF Downloads 182
3894 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 75
3893 Microbiological Profile of UTI along with Their Antibiotic Sensitivity Pattern with Special Reference to Nitrofurantoin

Authors: Rupinder Bakshi, Geeta Walia, Anita Gupta

Abstract:

Introduction: Urinary tract infections (UTI) are considered to be one of the most common bacterial infections with an estimated annual global incidence of 150 million. Antimicrobial drug resistance is one of the major threats due to widespread usage of uncontrolled antibiotics. Materials and Methods: A total number of 9149 urine samples were collected from R.H Patiala and processed in the Department of Microbiology G.M.C Patiala. Urine samples were inoculated on MacConkey’s and blood agar plates by using calibrated loop delivering 0.001 ml of sample and incubated at 37 °C for 24 hrs. The organisms were identified by colony characters, gram’s staining and biochemical reactions. Antimicrobial susceptibility of the isolates was determined against various antimicrobial agents (Hi – Media Mumbai India) by Kirby-Bauer disk diffusion method on Muller Hinton agar plates. Results: Maximum patients were in the age group of 21-30 yrs followed by 31-40 yrs. Males (34%) are less prone to urinary tract infections than females (66%). Out of 9149 urine sample, the culture was positive in 25% (2290) samples. Esch. coli was the most common isolate 60.3% (n = 1378) followed by Klebsiella pneumoniae 13.5% (n = 310), Proteus spp. 9% (n = 209), Staphylococcus aureus 7.6 % (n = 173), Pseudomonas aeruginosa 3.7% (n = 84), Citrobacter spp. 3.1 % (70), Staphylococcus saprophyticus 1.8 % (n = 142), Enterococcus faecalis 0.8%(n=19) and Acinetobacter spp. 0.2%(n=5). Gram negative isolates showed higher sensitivity towards, Piperacillin +Tazobactum (67%), Amikacin (80%), Nitrofurantoin (82%), Aztreonam (100%), Imipenem (100%) and Meropenam (100%) while gram positive showed good response towards Netilmicin (69%), Nitrofurantoin (79%), Linezolid (98%), Vancomycin (100%) and Teicoplanin (100%). 465 (23%) isolates were resistant to Penicillins, 1st generation and 2nd generation Cehalosporins which were further tested by double disk approximation test and combined disk method for ESBL production. Out of 465 isolates, 375 were ESBLs consisting of n 264 (70.6%) Esch.coli and 111 (29.4%) Klebsiella pneumoniae. Susceptibility of ESBL producers to Imipenem, Nitrofurantoin and Amikacin were found to be 100%, 76%, and 75% respectively. Conclusion: Uropathogens are increasingly showing resistance to many antibiotics making empiric management of outpatients UTIs challenging. Ampicillin, Cotrimoxazole, and Ciprofloxacin should not be used in empiric treatment. Nitrofurantoin could be used in lower urinary tract infection. Knowledge of uropathogens and their antimicrobial susceptibility pattern in a geographical region will help inappropriate and judicious antibiotic usage in a health care setup.

Keywords: Urinary Tract Infection, UTI, antibiotic susceptibility pattern, ESBL

Procedia PDF Downloads 332
3892 The Effect of Alkaline Treatment on Tensile Strength and Morphological Properties of Kenaf Fibres for Yarn Production

Authors: A. Khalina, K. Shaharuddin, M. S. Wahab, M. P. Saiman, H. A. Aisyah

Abstract:

This paper investigates the effect of alkali treatment and mechanical properties of kenaf (Hibiscus cannabinus) fibre for the development of yarn. Two different fibre sources are used for the yarn production. Kenaf fibres were treated with sodium hydroxide (NaOH) in the concentration of 3, 6, 9, and 12% prior to fibre opening process and tested for their tensile strength and Young’s modulus. Then, the selected fibres were introduced to fibre opener at three different opening processing parameters; namely, speed of roller feeder, small drum, and big drum. The diameter size, surface morphology, and fibre durability towards machine of the fibres were characterized. The results show that concentrations of NaOH used have greater effects on fibre mechanical properties. From this study, the tensile and modulus properties of the treated fibres for both types have improved significantly as compared to untreated fibres, especially at the optimum level of 6% NaOH. It is also interesting to highlight that 6% NaOH is the optimum concentration for the alkaline treatment. The untreated and treated fibres at 6% NaOH were then introduced to fibre opener, and it was found that the treated fibre produced higher fibre diameter with better surface morphology compared to the untreated fibre. Higher speed parameter during opening was found to produce higher yield of opened-kenaf fibres.

Keywords: alkaline treatment, kenaf fibre, tensile strength, yarn production

Procedia PDF Downloads 235
3891 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: nanofluids, wedge shaped wick, heat pipe, numerical modeling, particle swarm optimization, nanofluid applications, Heat transfer

Procedia PDF Downloads 373
3890 Unveiling the Potential of PANI@MnO2@rGO Ternary Nanocomposite in Energy Storage and Gas Sensing

Authors: Ahmad Umar, Sheikh Akbar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

The development of advanced materials for energy storage and gas sensing applications has gained significant attention in recent years. In this study, we synthesized and characterized PANI@MnO2@rGO ternary nanocomposites (NCs) to explore their potential in supercapacitors and gas sensing devices. The ternary NCs were synthesized through a multi-step process involving the hydrothermal synthesis of MnO2 nanoparticles, preparation of PANI@rGO composites and the assembly to the ternary PANI@MnO2@rGO ternary NCs. The structural, morphological, and compositional characteristics of the materials were thoroughly analyzed using techniques such as XRD, FESEM, TEM, FTIR, and Raman spectroscopy. In the realm of gas sensing, the ternary NCs exhibited excellent performance as NH3 gas sensors. The optimized operating temperature of 100 °C yielded a peak response of 15.56 towards 50 ppm NH3. The nanocomposites demonstrated fast response and recovery times of 6 s and 10 s, respectively, and displayed remarkable selectivity for NH3 gas over other tested gases. For supercapacitor applications, the electrochemical performance of the ternary NCs was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The composites exhibited pseudocapacitive behavior, with the capacitance reaching up to 185 F/g at 1 A/g and excellent capacitance retention of approximately 88.54% over 4000 charge-discharge cycles. The unique combination of rGO, PANI, and MnO2 nanoparticles in these ternary NCs offer synergistic advantages, showcasing their potential to address challenges in energy storage and gas sensing technologies.

Keywords: paniI@mnO2@rGO ternary NCs, synergistic effects, supercapacitors, gas sensing, energy storage

Procedia PDF Downloads 60
3889 Conservative and Surgical Treatment of Antiresorptive Drug-Related Osteonecrosis of the Jaw with Ultrasonic Piezoelectric Bone Surgery under Polyvinylpyrrolidone Iodine Irrigation: A Case Series of 13 Treated Sites

Authors: Esra Yuce, Isil D. S. Yamaner, Murude Yazan

Abstract:

Aims and objective: Antiresorptive agents including bisphosphonates and denosumab as strong suppressors of osteoclasts are the most commonly used antiresorptive medications for the treatment of osteoporosis which counteract the negative quantitative alteration of trabecular and cortical bone by inhibition of bone turnover. Oral bisphosphonate therapy for the treatment of osteopenia, osteoporosis or Paget's disease is associated with the low-grade risk of osteonecrosis of the jaw, while higher-grade risk is associated with receiving intravenous bisphosphonates therapy in the treatment of multiple myeloma and bone metastases. On the other hand, there has been a remarkable increase in incidences of antiresorptive related osteonecrosis of the jaw (ARONJ) in oral bisphosphonate users. This clinical presentation will evaluate the healing outcomes via piezoelectric bone surgery under the irrigation of PVP-I solution irrigation in patients received bisphosphonate therapy. Material-Method: The study involved 8 female and 5 male patients that have been treated for ARONJ. Among 13 necrotic sites, 9 were in the mandible and 4 were in the maxilla. All of these 13 patients treated with surgical debridement via piezoelectric bone surgery under irrigation by solution with 3% PVP-I concentration in combination with long-term antibiotic therapy and 5 also underwent removal of mobile segments of bony sequestrum. All removable prosthesis in 8 patients were relined with soft liners during the healing periods in order to eliminate chronic minor traumas. Results: All patients were on oral bisphosphonate therapy for at least 2 years and 5 of which had received intravenous bisphosphonates up to 1 year before therapy with oral bisphosphonates was started. According to the AAOMS staging system, four cases were stage II, eight cases were stage I, and one case was stage III. The majority of lesions were identified at sites of dental prostheses (38%) and dental extractions (62%). All patients diagnosed with ARONJ stage I had used unadjusted removable prostheses. No recurrence of the symptoms was observed during the present follow-up (9–37 months). Conclusion: Despite their confirmed effectiveness, the prevention and treatment of osteonecrosis of the jaw secondary to oral bisphosphonate therapy remain major medical challenges. Treatment with piezoelectric bone surgery with irrigation of povidone-iodine solution was effective for management of bisphosphonate-related osteonecrosis of the jaw. Taking precautions for patients treated with oral bisphosphonates, especially also denture users, may allow for a reduction in the rate of developing osteonecrosis of the maxillofacial region.

Keywords: antiresorptive drug related osteonecrosis, bisphosphonate therapy, piezoelectric bone surgery, povidone iodine

Procedia PDF Downloads 252
3888 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet

Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci

Abstract:

The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.

Keywords: insulator, pollution flashover, high impulse voltage, water jet model

Procedia PDF Downloads 96
3887 Impact of Farm Settlements' Facilities on Farm Patronage in Oyo State

Authors: Simon Ayorinde Okanlawon

Abstract:

The youths’ prevalent negative attitude to farming is partly due to amenities and facilities found in the urban centers at the expense of the rural areas. Hence, there is the need to create a befitting and conducive farm environment to retain farm employees and attract the youth to farming. This can be achieved through the provision of services and amenities that will ensure a comfortable standard of living higher than that obtained by a person of equal status in other forms of employment in urban centers, thereby eliminating the psychological feeling of lowered self-esteem associated with farming. This study assessed farm settlements’ facilities and patronage in Oyo State with a view to using the information to encourage sustainable agriculture in Nigeria. The study becomes necessary because of the dearth of information on the state of facilities in the farm settlements as it affects patronage of farm settlements for sustainable agriculture in the developing countries like Nigeria. The study utilized three purposely selected farm settlements- Ogbomoso, Fasola and Ilora out of the seven existing ones n Oyo State. One hundred percent (100%) of the 262 residential buildings in the three settlements were sampled, from where a household head from each of the buildings was randomly chosen. This translates to 262 household heads served with questionnaire out of which 47.7% of the questionnaires were recovered. Information obtained included respondents’ residency categories, residents’ status, residency years, housing types, types of holding and number of acres/holding. Others include the socio-economic attributes such as age, gender, income, educational status of respondents, assessment of existing facilities in the selected sites, the level of patronage of the farm settlements including perceived pull factors that can enhance farm settlements patronage. The study revealed that the residents were not satisfied with the adequacy and quality of all the facilities available in their settlements. Residents’ satisfaction with infrastructural facilities cannot be statistically linked with location across the study area. Findings suggested that residents of Ogbomoso farm settlements were not enjoying adequate provision of water supply and road as much as those from Ilora and Fasola. Patronage of the farm settlements were largely driven by farming activities and sale of farm produce. The respondents agreed that provision of farm resort centers, standard recreational and tourism facilities, vacation employment opportunities for youths, functional internet and communication networks among others are likely to boost the level of patronage of the farm settlements. The study concluded that improvement of the facilities both in quality and quantity will encourage the youths in going back to farming. It then recommends that maintenance of existing facilities and provision of more facilities such as resort centers be ensured.

Keywords: encourage, farm settlements' facilities, Oyo state, patronage

Procedia PDF Downloads 202
3886 Factor Affecting Decision Making for Tourism in Thailand by ASEAN Tourists

Authors: Sakul Jariyachansit

Abstract:

The purposes of this research were to investigate and to compare the factors affecting the decision for Tourism in Thailand by ASEAN Tourists and among ASEAN community tourists. Samples in this research were 400 ASEAN Community Tourists who travel in Thailand at Suvarnabhumi Airport during November 2016 - February 2016. The researchers determined the sample size by using the formula Taro Yamane at 95% confidence level tolerances 0.05. The English questionnaire, research instrument, was distributed by convenience sampling, for gathering data. Descriptive statistics was applied to analyze percentages, mean and standard deviation and used for hypothesis testing. The statistical analysis by multiple regression analysis (Multiple Regression) was employed to prove the relationship hypotheses at the significant level of 0.01. The results showed that majority of the respondents indicated the factors affecting the decision for Tourism in Thailand by ASEAN Tourists, in general there were a moderate effects and the mean of each side is moderate. Transportation was the most influential factor for tourism in Thailand. Therefore, the mode of transport, information, infrastructure and personnel are very important to factor affecting decision making for tourism in Thailand by ASEAN tourists. From the hypothesis testing, it can be predicted that the decision for choosing Tourism in Thailand is at R2 = 0.449. The predictive equation is decision for choosing Tourism in Thailand = 1.195 (constant value) + 0.425 (tourist attraction) +0.217 (information received) and transportation factors, tourist attraction, information, human resource and infrastructure at the significant level of 0.01.

Keywords: factor, decision making, ASEAN tourists, tourism in Thailand

Procedia PDF Downloads 196
3885 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects

Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta

Abstract:

Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.

Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect

Procedia PDF Downloads 207
3884 Direct and Indirect Impacts of Predator Conflict in Kanha National Park, India

Authors: Diane H. Dotson, Shari L. Rodriguez

Abstract:

Habitat for predators is on the decline worldwide, which often brings humans and predators into conflict over remaining shared space and common resources. While the direct impacts of human predator conflict on humans (i.e., attacks on livestock or humans resulting in injury or death) are well documented, the indirect impacts of conflict on humans (i.e., downstream effects such as fear, stress, opportunity costs, PTSD) have not been addressed. We interviewed 437 people living in 54 villages on the periphery of Kanha National Park, India, to assess the amount and severity of direct and indirect impacts of predator conflict. ​While 58% of livestock owners believed that predator attacks on livestock guards occurred frequently and 62% of those who collect forest products believed that predator attacks on those collecting occurred frequently, less than 20% of all participants knew of someone who had experienced an attack. Data related to indirect impacts suggest that such impacts are common; 76% of participants indicated they were afraid a predator will physically injure them. Livestock owners reported that livestock guarding took time away from their primary job (61%) and getting enough sleep (73%), and believed that it increased their vulnerability to illnesses (80%). These results suggest that the perceptions of risk of predator attack are likely inflated, yet the costs of human predator impacts may be substantially higher than previously estimated, particularly related to human well-being, making the implementation of appropriate and effective conservation and conflict mitigation strategies and policies increasingly urgent.

Keywords: direct impacts, indirect impacts, human-predator conflict, India

Procedia PDF Downloads 145
3883 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures

Authors: T. Gomes, J. Manzi

Abstract:

The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.

Keywords: stirring systems, entropy, reactive system, optimization

Procedia PDF Downloads 237
3882 The Effect of Compound Exercises Emphasizing Local and Global Stability on the Dynamic Balance in Elite Taekwondo Athletes

Authors: Elnaz Sabzehparvar, Pouya Rabiei, Houman Rezaei

Abstract:

Few studies have been conducted about the effects of compound exercises emphasizing local stability and global stabilization subsystems on the performance of athletes. The present research aimed to study the effect of 6 weeks of compound exercises emphasizing local and global stability on the dynamic balance of elite male Taekwondo athletes. Twenty-seven elite male Taekwondo athletes (with a mean age, mass, and height of 24.4 ± 4.9 years, 75.7 ± 15.1kg, and 181.4 ± 7.8 cm, respectively) were assigned to two groups of control (n=12) and exercise (n=15). 6 weeks of compound exercises in 2 local and global phases. The first phase included activation exercises which were done separately and locally for 3 weeks. Then, integrative exercises specific to the global stabilization subsystems (longitudinal-depth, posterior oblique and anterior, and lateral) was carried out for next 3 weeks. The dynamic balance of subjects was measured in the pre-test and post-test using the Y Balance Test (YBT). After 6 weeks of compound exercises, scores of the YBT in the exercise group showed a significant improvement in all three anterior (p=0.035), posterolateral (p=0.017) and medial (p=0.001) directions in the post-test compared to the control group (p ≤ 0.05 for all comparisons). The findings of the present study suggested that compound exercises focusing on muscle as separate units and then as interdependent chains (muscular subsystems) can significantly increase YBT on elite male Taekwondo athletes in all three directions.

Keywords: Taekwondo, compound exercises, local and global stability, muscular subsystems

Procedia PDF Downloads 211
3881 Prediction of Slaughter Body Weight in Rabbits: Multivariate Approach through Path Coefficient and Principal Component Analysis

Authors: K. A. Bindu, T. V. Raja, P. M. Rojan, A. Siby

Abstract:

The multivariate path coefficient approach was employed to study the effects of various production and reproduction traits on the slaughter body weight of rabbits. Information on 562 rabbits maintained at the university rabbit farm attached to the Centre for Advanced Studies in Animal Genetics, and Breeding, Kerala Veterinary and Animal Sciences University, Kerala State, India was utilized. The manifest variables used in the study were age and weight of dam, birth weight, litter size at birth and weaning, weight at first, second and third months. The linear multiple regression analysis was performed by keeping the slaughter weight as the dependent variable and the remaining as independent variables. The model explained 48.60 percentage of the total variation present in the market weight of the rabbits. Even though the model used was significant, the standardized beta coefficients for the independent variables viz., age and weight of the dam, birth weight and litter sizes at birth and weaning were less than one indicating their negligible influence on the slaughter weight. However, the standardized beta coefficient of the second-month body weight was maximum followed by the first-month weight indicating their major role on the market weight. All the other factors influence indirectly only through these two variables. Hence it was concluded that the slaughter body weight can be predicted using the first and second-month body weights. The principal components were also developed so as to achieve more accuracy in the prediction of market weight of rabbits.

Keywords: component analysis, multivariate, slaughter, regression

Procedia PDF Downloads 154
3880 Effects of Concentrator and Encapsulated Phase Change Material for Desalination: An Experimental Study

Authors: Arunkumar Thirugnanasambantham, Velraj Ramalingam

Abstract:

An experimental attempt has been made to study the effect of system integration by two different concentrator assisted desalting systems. The compound parabolic concentrator (CPC) and compound conical concentrator (CCC) are used in this research work. Two solar desalination systems, the single slope solar still (SSSS) and pyramid solar still (PSS), have been integrated with a CCC and compound parabolic concentrator-concentric circular tubular solar still (CPC-CCTSS). To study the effect of system integration, a thick cloth prevents the entry of sunlight into the solar still top. Additionally, the concentrator assisted desalting systems are equipped with phase change material (PCM) for enhancement. In CCC-SSSS, PCM has been filled inside copper balls and placed on the SSSS basin. The PCM is loaded in the specially designed circular trough of the tubular solar still. Here, the used concentrators and distillers are not the same. Two methodologies are followed here to produce the fresh water even while the distillers are blocked from the sunlight. They are (1) thermosyphon effect in CCC-SSSS and (2) waste heat recovery from CPC-CCTSS. The results showed that the productivity of CCC-SSSS, CCC-SSSS with PCM and CCC-SSSS (PCM) top cover shaded were found as 2680 ml / m² / day, 3240 ml / m² / day, and 1646 ml / m² / day. Similarly, the productivity of the CPC-CCTSS-PSS, CPC-CCTSS (PCM)-PSS and CPC-CCTSS (PCM)-PSS top cover shaded were found as 7160 ml / m² / day, 7346 ml / m² / day, and ml / m² / day. The productivity of the CCC-SSSS and CPC-CCTSS-PSS is examined, and conclusions are drawn such as the solar radiation blocked distillers productivity did not drop to zero.

Keywords: compound conical concentrator, compound parabolic concentrator, desalination, system integration

Procedia PDF Downloads 251
3879 Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design

Authors: S. J. M. Mohd Saleh, S. Guo

Abstract:

Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage.

Keywords: aircraft design, aircraft structures, classical lamination theory, composite structures, laminate theory, structural design, thin-walled beam theory, wing box design

Procedia PDF Downloads 216
3878 Ab-initio Calculations on the Mechanism of Action of Platinum and Ruthenium Complexes in Phototherapy

Authors: Eslam Dabbish, Fortuna Ponte, Stefano Scoditti, Emilia Sicilia, Gloria Mazzone

Abstract:

The medical techniques based on the use of light for activating the drug are occupying a prominent place in the cancer treatment due to their selectivity that contributes to reduce undesirable side effects of conventional chemotherapy. Among these therapeutic treatments, photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are emerging as complementary approaches for selective destruction of neoplastic tissue through direct cellular damage. Both techniques rely on the employment of a molecule, photosensitizer (PS), able to absorb within the so-called therapeutic window. Thus, the exposure to light of otherwise inert molecules promotes the population of excited states of the drug, that in PDT are able to produce the cytotoxic species, such as 1O2 and other ROS, in PACT can be responsible of the active species release or formation. Following the success of cisplatin in conventional treatments, many other transition metal complexes were explored as anticancer agents for applications in different medical approaches, including PDT and PACT, in order to improve their chemical, biological and photophysical properties. In this field, several crucial characteristics of candidate PSs can be accurately predicted from first principle calculations, especially in the framework of density functional theory and its time-dependent formulation, contributing to the understanding of the entire photochemical pathways involved which can ultimately help in improving the efficiency of a drug. A brief overview of the outcomes on some platinum and ruthenium-based PSs proposed for the application in the two phototherapies will be provided.

Keywords: TDDFT, metal complexes, PACT, PDT

Procedia PDF Downloads 86
3877 Analysis of Two-Phase Flow Instabilities in Conventional Channel of Nuclear Power Reactor

Authors: M. Abdur Rashid Sarkar, Riffat Mahmud

Abstract:

Boiling heat transfer plays a crucial role in cooling nuclear reactor for safe electricity generation. A two phase flow is susceptible to thermal-hydrodynamic instabilities, which may cause flow oscillations of constant amplitude or diverging amplitude. These oscillations may induce boiling crisis, disturb control systems, or cause mechanical damage. Based on their mechanisms, various types of instabilities can be classified for a nuclear reactor. From a practical engineering point of view one of the major design difficulties in dealing with multiphase flow is that the mass, momentum, and energy transfer rates and processes may be quite sensitive to the geometric configuration of the heat transfer surface. Moreover, the flow within each phase or component will clearly depend on that geometric configuration. The complexity of this two-way coupling presents a major challenge in the study of multiphase flows and there is much that remains to be done. Yet, the parametric effects on flow instability such as the effect of aspect ratio, pressure drop, channel length, its orientation inlet subcooling and surface roughness etc. have been analyzed. Another frequently occurring instability, known as the Kelvin–Helmholtz instability has been briefly reviewed. Various analytical techniques for predicting parametric effect on the instability are analyzed in terms of their applicability and accuracy.

Keywords: two phase flows, boiling crisis, thermal-hydrodynamic instabilities, water cooled nuclear reactors, kelvin–helmholtz instability

Procedia PDF Downloads 386
3876 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 339
3875 Soil Penetration Resistance and Water Content Spatial Distribution Following Different Tillage and Crop Rotation in a Chinese Mollisol

Authors: Xuewen Chen, Aizhen Liang, Xiaoping Zhang

Abstract:

To better understand the spatial variability of soil penetration resistance (SPR) and soil water content (SWC) induced by different tillage and crop rotation in a Mollisol of Northeast China, the soil was sampled from the tillage experiment which was established in Dehui County, Jilin Province, Northeast China, in 2001. Effect of no-tillage (NT), moldboard plow (MP) and ridge tillage (RT) under corn-soybean rotation (C-S) and continuous corn (C-C) system on SPR and SWC were compared with horizontal and vertical variations. The results showed that SPR and SWC spatially varied across the ridge. SPR in the rows was higher than inter-rows, especially in topsoil (2.5-15 cm) of NT and RT plots. SPR of MP changed in the trend with the curve-shaped ridge. In contrast to MP, NT, and RT resulted in average increment of 166.3% and 152.3% at a depth of 2.5-17.5 cm in the row positions, respectively. The mean SPR in topsoil in the rows means soil compaction is not the main factor limiting plant growth and crop yield. SPR in the row of RT soil was lower than NT at a depth of 2.5-12.5 cm. The SWC in NT and RT soil was highest in the inter-rows and least in the rows or shoulders, respectively. However, the lateral variation trend of MP was opposite to NT. From the profile view of SWC, MP was greater than NT and RT in 0-20 cm of the rows. SWC in RT soil was higher than NT in the row of 0-20 cm. Crop rotation did not have a marked impact on SPR and SWC. In addition to the tillage practices, the factor which affects SPR greatly was depth but not position. These two factors have significant effects on SWC. These results indicated that the adoption of RT was a more suitable conservation tillage practices than NT in the black soil of Northeast China.

Keywords: row, soil penetration resistance, spatial variability, tillage practice

Procedia PDF Downloads 120