Search results for: surface damage detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11509

Search results for: surface damage detection

1609 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 138
1608 Facile Synthesis and Characterization of Heterostructure Core-Shell Silver-Silica Nanocomposite for Humidity Sensing

Authors: Fatai O. Oladoyinbo, Felix O. Sanni, Akinwunmi Fatai, Kamoli A. Amusa, Saheed A. Ganiyu, Wasiu B. Ayinde, Tajudeen A. Afolabi, Enock O. Dare

Abstract:

Silver (Ag) and silica (SiO2) nanoparticles were synthesized using the chemical reduction method from silver nitrate and sodium silicate, respectively. X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Uv-Visible spectroscopy, Energy Dispersive X-ray (EDX) spectroscopy and N2 adsorption-desorption techniques were utilized to characterize the composition and structure of the samples. The crystallinity pattern of Ag nanoparticles was indexed as (111), (200), (220) and (311), which allowed reflections from face-centered cubic silver. XRD of SiO2 showed good porosity with a broad-spectrum band at Bragg’s angle 2θ of 22° while that of Ag-SiO2 showed distinct peaks at 2θ values of 39°, 43°, 66° and 79°. The XRD result agreed perfectly with the SEM and HRTEM images which showed Ag-SiO2 isotropic and anisotropic under the varying concentration of reactants. The elemental composition of Ag-SiO2, as displayed by EDX, confirmed Ag enrichment in the Ag-SiO2 heterostructure. The Uv-Visible peak at 421 nm confirmed the Surface Plasmon Resonance absorption peak of silver nanoparticles. N2 adsorption-desorption result showed a broad band of Ag-SiO2 from 3 to 8 nm, which indicated relatively narrow pore size distributions. Humidity sensing measurements performed in a controlled humidity chamber showed very high sensitivity with a sensitivity factor (SF) of 4.63 and high linearity with a steady decrease in resistance to humidity from 880 Ω at 10% RH to 190 Ω at 100% RH, indicating that Ag-SiO2 nanocomposite is a good sensing material with high sensitivity and linearity.

Keywords: silver, silica, nanocomposite, synthesis, heterostructure, core shell

Procedia PDF Downloads 65
1607 Installation of an Inflatable Bladder and Sill Walls for Riverbank Erosion Protection and Improved Water Intake Zone Smokey Hill River – Salina, Kansas

Authors: Jeffrey A. Humenik

Abstract:

Environmental, Limited Liability Corporation (EMR) provided civil construction services to the U.S. Army Corps of Engineers, Kansas City District, for the placement of a protective riprap blanket on the west bank of the Smoky Hill River, construction of 2 shore abutments and the construction of a 140 foot long sill wall spanning the Smoky Hill River in Salina, Kansas. The purpose of the project was to protect the riverbank from erosion and hold back water to a specified elevation, creating a pool to ensure adequate water intake for the municipal water supply. Geotextile matting and riprap were installed for streambank erosion protection. An inflatable bladder (AquaDam®) was designed to the specific river dimension and installed to divert the river and allow for dewatering during the construction of the sill walls and cofferdam. AquaDam® consists of water filled polyethylene tubes to create aqua barriers and divert water flow or prevent flooding. A challenge of the project was the fact that 100% of the sill wall was constructed within an active river channel. The threat of flooding of the work area, damage to the aqua dam by debris, and potential difficulty of water removal presented a unique set of challenges to the construction team. Upon completion of the West Sill Wall, floating debris punctured the AquaDam®. The manufacturing and delivery of a new AquaDam® would delay project completion by at least 6 weeks. To keep the project ahead of schedule, the decision was made to construct an earthen cofferdam reinforced with rip rap for the construction of the East Abutment and East Sill Wall section. During construction of the west sill wall section, a deep scour hole was encountered in the wall alignment that prevented EMR from using the natural rock formation as a concrete form for the lower section of the sill wall. A formwork system was constructed, that allowed the west sill wall section to be placed in two horizontal lifts of concrete poured on separate occasions. The first sectional lift was poured to fill in the scour hole and act as a footing for the second sectional lift. Concrete wall forms were set on the first lift and anchored to the surrounding riverbed in a manner that the second lift was poured in a similar fashion as a basement wall. EMR’s timely decision to keep the project moving toward completion in the face of changing conditions enabled project completion two (2) months ahead of schedule. The use of inflatable bladders is an effective and cost-efficient technology to divert river flow during construction. However, a secondary plan should be part of project design in the event debris transported by river punctures or damages the bladders.

Keywords: abutment, AquaDam®, riverbed, scour

Procedia PDF Downloads 138
1606 The Effect of Ultrasound as Pre-Treatment for Drying of Red Delicious and Golden Delicious Apples

Authors: Gulcin Yildiz

Abstract:

Drying (dehydration) is the process of removing water from food in order to preserve the food and an alternative to reduce post-harvest loss of fruits. Different pre-treatment methods have been developed for fruit drying, such as ultrasound. If no pre-treatment is done, the fruits will continue to darken after they are dried. However, the effects of ultrasound as pre-treatment on drying of apples has not been well documented. This study was undertaken to investigate the effect of ultrasound as pre-treatment before oven drying of red delicious and golden delicious apples. Red delicious and golden delicious apples were dried in different temperatures. Before performing drying experiments in an oven at 50, 75 and 100 °C, ultrasound as pretreatment was applied in 5, 10, and 15 minutes. Colors of the dried apples were measured with a Minolta Chroma Meter CR-300 (Minolta Camera Co. Ltd., Osaka, Japan) by directly holding the device vertically to the surface of the samples. Content of total phenols was determined spectrophotometrically with the FolinCiocalteau assay, and the antioxidant capacity was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The samples (both red delicious and golden delicious apples) with longer ultrasound treatment produced higher weight loss due to the changes in tissue structure. However less phenolic content and antioxidant capacity were observed for the samples with longer ultrasound pre-treatment. The highest total phenolic content (TPC) was determined in dried apples at 75 °C with 5 minutes pre-treatment ultrasound and the lowest TPC was determined in dried apples at 50 °C with 15 minutes pre-treatment ultrasound which was subjected to the longest ultrasound pre-treatment and drying. The combination of 5 min of ultrasound pre-treatment and 75 °C of oven-drying showed to be the best combination for an energy efficient process. This combination exhibited good antioxidant properties as well. The present study clearly demonstrated that applying ultrasound as pre-treatment for drying of apples is an effective process in terms of quality of dried products, time, and energy.

Keywords: golden delicious apples, red delicious apples, total phenolic content, Ultrasound

Procedia PDF Downloads 289
1605 Isolated Contraction of Deep Lumbar Paraspinal Muscle with Magnetic Nerve Root Stimulation: A Pilot Study

Authors: Shi-Uk Lee, Chae Young Lim

Abstract:

Objective: The aim of this study was to evaluate the changes of lumbar deep muscle thickness and cross-sectional area using ultrasonography with magnetic stimulation. Methods: To evaluate the changes of lumbar deep muscle by using magnetic stimulation, 12 healthy volunteers (39.6±10.0 yrs) without low back pain during 3 months participated in this study. All the participants were checked with X-ray and electrophysiologic study to confirm that they had no problems with their back. Magnetic stimulation was done on the L5 and S1 root with figure-eight coil as previous study. To confirm the proper motor root stimulation, the surface electrode was put on the tibialis anterior (L5) and abductor hallucis muscles (S1) and the hot spots of magnetic stimulation were found with 50% of maximal magnetic stimulation and determined the stimulation threshold lowering the magnetic intensity by 5%. Ultrasonography was used to assess the changes of L5 and S1 lumbar multifidus (superficial and deep) cross-sectional area and thickness with maximal magnetic stimulation. Cross-sectional area (CSA) and thickness was evaluated with image acquisition program, ImageJ software (National Institute of Healthy, USA). Wilcoxon signed-rank was used to compare outcomes between before and after stimulations. Results: The mean minimal threshold was 29.6±3.8% of maximal stimulation intensity. With minimal magnetic stimulation, thickness of L5 and S1 deep multifidus (DM) were increased from 1.25±0.20, 1.42±0.23 cm to 1.40±0.27, 1.56±0.34 cm, respectively (P=0.005, P=0.003). CSA of L5 and S1 DM were also increased from 2.26±0.18, 1.40±0.26 cm2 to 2.37±0.18, 1.56±0.34 cm2, respectively (P=0.002, P=0.002). However, thickness of L5 and S1 superficial multifidus (SM) were not changed from 1.92±0.21, 2.04±0.20 cm to 1.91±0.33, 1.96±0.33 cm (P=0.211, P=0.199) and CSA of L5 and S1 were also not changed from 4.29±0.53, 5.48±0.32 cm2 to 4.42±0.42, 5.64±0.38 cm2. With maximal magnetic stimulation, thickness of L5, S1 of DM and SM were increased (L5 DM, 1.29±0.26, 1.46±0.27 cm, P=0.028; L5 SM, 2.01±0.42, 2.24±0.39 cm, P=0.005; S1 DM, 1.29±0.19, 1.67±0.29 P=0.002; S1 SM, 1.90±0.36, 2.30±0.36, P=0.002). CSA of L5, S1 of DM and SM were also increased (all P values were 0.002). Conclusions: Deep lumbar muscles could be stimulated with lumbar motor root magnetic stimulation. With minimal stimulation, thickness and CSA of lumbosacral deep multifidus were increased in this study. Further studies are needed to confirm whether the similar results in chronic low back pain patients are represented. Lumbar magnetic stimulation might have strengthening effect of deep lumbar muscles with no discomfort.

Keywords: magnetic stimulation, lumbar multifidus, strengthening, ultrasonography

Procedia PDF Downloads 361
1604 Evaluating Evaporation and Seepage Losses in Lakes Using Sentinel Images and the Water Balance Equation

Authors: Abdelrahman Elsehsah

Abstract:

The main objective of this study is to assess changes in the water capacity of Aswan High Dam Lake (AHDL) caused by evaporation and seepage losses. To achieve this objective, a comprehensive methodology was employed. The methodology involves acquiring Sentinel-3 imagery and extracting the surface area of the lake using remote sensing techniques. Using water areas calculated from sentinel images, collected field data, and the lake’s water balance equation, monthly evaporation and seepage losses were estimated for the years 2021 and 2022. Based on the water balance method results, the average monthly evaporation losses for the year 2021 were estimated to be around 1.41 billion cubic meters (Bm3), which closely matches the estimates provided by the Ministry of Water Resources and Irrigation (MWRI) annual reports (approximately 1.37 Bm3 in the same year). This means that the water balance method slightly overestimated the monthly evaporation losses by about 2.92%. Similarly, the average monthly seepage losses for the year 2022 were estimated to be around 0.005 Bm3, while the MWRI reports indicated approximately 0.0046 Bm3. By another means, the water balance method overestimated the monthly seepage losses by about 8.70%. Furthermore, the study found that the average monthly evaporation rate within AHDL was 210.88 mm/month, which closely aligns with the computed value of approximately 204.9 mm/month by AHDA. These findings indicated that the applied water balance method, utilizing remote sensing and field data, is a reliable tool for estimating monthly evaporation and seepage losses as well as monthly evaporation rates in AHDL.

Keywords: Aswan high dam lake, remote sensing, water balance equation, seepage loss, evaporation loss

Procedia PDF Downloads 12
1603 Uncertainty Quantification of Crack Widths and Crack Spacing in Reinforced Concrete

Authors: Marcel Meinhardt, Manfred Keuser, Thomas Braml

Abstract:

Cracking of reinforced concrete is a complex phenomenon induced by direct loads or restraints affecting reinforced concrete structures as soon as the tensile strength of the concrete is exceeded. Hence it is important to predict where cracks will be located and how they will propagate. The bond theory and the crack formulas in the actual design codes, for example, DIN EN 1992-1-1, are all based on the assumption that the reinforcement bars are embedded in homogeneous concrete without taking into account the influence of transverse reinforcement and the real stress situation. However, it can often be observed that real structures such as walls, slabs or beams show a crack spacing that is orientated to the transverse reinforcement bars or to the stirrups. In most Finite Element Analysis studies, the smeared crack approach is used for crack prediction. The disadvantage of this model is that the typical strain localization of a crack on element level can’t be seen. The crack propagation in concrete is a discontinuous process characterized by different factors such as the initial random distribution of defects or the scatter of material properties. Such behavior presupposes the elaboration of adequate models and methods of simulation because traditional mechanical approaches deal mainly with average material parameters. This paper concerned with the modelling of the initiation and the propagation of cracks in reinforced concrete structures considering the influence of transverse reinforcement and the real stress distribution in reinforced concrete (R/C) beams/plates in bending action. Therefore, a parameter study was carried out to investigate: (I) the influence of the transversal reinforcement to the stress distribution in concrete in bending mode and (II) the crack initiation in dependence of the diameter and distance of the transversal reinforcement to each other. The numerical investigations on the crack initiation and propagation were carried out with a 2D reinforced concrete structure subjected to quasi static loading and given boundary conditions. To model the uncertainty in the tensile strength of concrete in the Finite Element Analysis correlated normally and lognormally distributed random filed with different correlation lengths were generated. The paper also presents and discuss different methods to generate random fields, e.g. the Covariance Matrix Decomposition Method. For all computations, a plastic constitutive law with softening was used to model the crack initiation and the damage of the concrete in tension. It was found that the distributions of crack spacing and crack widths are highly dependent of the used random field. These distributions are validated to experimental studies on R/C panels which were carried out at the Laboratory for Structural Engineering at the University of the German Armed Forces in Munich. Also, a recommendation for parameters of the random field for realistic modelling the uncertainty of the tensile strength is given. The aim of this research was to show a method in which the localization of strains and cracks as well as the influence of transverse reinforcement on the crack initiation and propagation in Finite Element Analysis can be seen.

Keywords: crack initiation, crack modelling, crack propagation, cracks, numerical simulation, random fields, reinforced concrete, stochastic

Procedia PDF Downloads 139
1602 Periodontal Soft Tissue Sculpturing and Use of Interim Appliance for Rehabilitation of Anterior Edentulousness: Case Report

Authors: Hande Yesil, Seda Aycan Altan, M. Vehbi Bal, Alper Uyar, O. Cumhur Sipahi

Abstract:

Purpose: Fixed partial dentures (FPDs) must fulfill functional requirements such as phonetics, chewing efficiency and esthetics especially in the anterior region. A convex type tissue surface is usually recommended for pontics of FPDs. That pontic design also provides suitable oral hygiene and ease of cleaning. However, high esthetic requirements and correct emergence profile are not always achievable because of the convex shape of adjacent soft tissues. Therefore, the ovate type pontic which fulfills the high esthetic demands of the patients may be a good alternative to the modified ridge lap pontic design. Clinical Report: A female patient referred with the complaint of anterior upper edentulousness. In the oral examination it was determined that teeth 11, 12, 21, 22 were deficient. A thick and convex gingival tissue that may cause aesthetic problems was also observed.. Periodontal augmentation surgery was performed to ensure proper papillary configuration and gingival contour. An interim removable partial denture (IRPD) which applied pressure to operated gingival tissues was fabricated postoperatively. The IRPD was used for 4 weeks and after completion of tissue sculpting, the permanent FPD with an ovate pontic was fabricated and cemented. After a follow-up period of 6 months, not any esthetical and hygienic problem was detected and the patient was satisfied with her prosthesis. Conclusion: It was concluded that shaping of gingival contours with IRPD and use of a FPD with ovate pontic fulfills all esthetic and hygienic requirements.

Keywords: interim appliance, ovate pontic, tissue sculpturing, fixed partial denture

Procedia PDF Downloads 269
1601 Requests and Responses to Requests in Jordanian Arabic

Authors: Raghad Abu Salma, Beatrice Szczepek Reed

Abstract:

Politeness is one of the most researched areas in pragmatics as it is key to interpersonal interactional phenomena. Many studies, particularly in linguistics, have focused on developing politeness theories and exploring linguistic devices used in communication to construct and establish social norms. However, the question of what constitutes polite language remains a point of ongoing debate. Prior research primarily examined politeness in English and its native speaking communities, oversimplifying the notion of politeness and associating it with surface-level language use. There is also a dearth of literature on politeness in Arabic, particularly in the context of Jordanian Arabic. Prior research investigating politeness in Arabic make generalized claims about politeness in Arabic without taking the linguistic variations into account or providing empirical evidence. This proposed research aims to explore how Jordanian Arabic influences its first language users in making and responding to requests, exploring participants' perceptions of politeness and the linguistic choices they make in their interactions. The study focuses on Jordanian expats living in London, UK providing an intercultural perspective that prior research does not consider. This study employs a mixed-methods approach combining discourse completion tasks (DCTs) with semi-structured interviews. While DCTs provide insight into participants’ linguistic choices, semi-structured interviews glean insight into participants' perceptions of politeness and their linguistic choices impacted by cultural norms and diverse experiences. This paper discusses previous research on politeness in Arabic, identifies research gaps, and discusses different methods for data collection. This paper also presents preliminary findings from the ongoing study.

Keywords: politeness, pragmatics, jordanian arabic, intercultural politeness

Procedia PDF Downloads 67
1600 Nanopharmaceutical: A Comprehensive Appearance of Drug Delivery System

Authors: Mahsa Fathollahzadeh

Abstract:

The various nanoparticles employed in drug delivery applications include micelles, liposomes, solid lipid nanoparticles, polymeric nanoparticles, functionalized nanoparticles, nanocrystals, cyclodextrins, dendrimers, and nanotubes. Micelles, composed of amphiphilic block copolymers, can encapsulate hydrophobic molecules, allowing for targeted delivery. Liposomes, vesicular structures made up of phospholipids, can encapsulate both hydrophobic and hydrophilic molecules, providing a flexible platform for delivering therapeutic agents. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are designed to improve the stability and bioavailability of lipophilic drugs. Polymeric nanoparticles, such as poly(lactic-co-glycolic acid) (PLGA), are biodegradable and can be engineered to release drugs in a controlled manner. Functionalized nanoparticles, coated with targeting ligands or antibodies, can specifically target diseased cells or tissues. Nanocrystals, engineered to have specific surface properties, can enhance the solubility and bioavailability of poorly soluble drugs. Cyclodextrins, doughnut-shaped molecules with hydrophobic cavities, can be complex with hydrophobic molecules, allowing for improved solubility and bioavailability. Dendrimers, branched polymers with a central core, can be designed to deliver multiple therapeutic agents simultaneously. Nanotubes and metallic nanoparticles, such as gold nanoparticles, offer real-time tracking capabilities and can be used to detect biomolecular interactions. The use of these nanoparticles has revolutionized the field of drug delivery, enabling targeted and controlled release of therapeutic agents, reduced toxicity, and improved patient outcomes.

Keywords: nanotechnology, nanopharmaceuticals, drug-delivery, proteins, ligands, nanoparticles, chemistry

Procedia PDF Downloads 33
1599 Evidence-Based in Telemonitoring of Users with Pacemakers at Five Years after Implant: The Poniente Study

Authors: Antonio Lopez-Villegas, Daniel Catalan-Matamoros, Remedios Lopez-Liria

Abstract:

Objectives: The purpose of this study was to analyze clinical data, health-related quality of life (HRQoL) and functional capacity of patients using a telemonitoring follow-up system (TM) compared to patients followed-up through standard outpatient visits (HM) 5 years after the implantation of a pacemaker. Methods: This is a controlled, non-randomised, nonblinded clinical trial, with data collection carried out at 5 years after the pacemakers implant. The study was developed at Hospital de Poniente (Almeria, Spain), between October 2012 and November 2013. The same clinical outcomes were analyzed in both follow-up groups. Health-Related Quality of Life and Functional Capacity was assessed through EuroQol-5D (EQ-5D) questionnaire and Duke Activity Status Index (DASI) respectively. Sociodemographic characteristics and clinical data were also analyzed. Results: 5 years after pacemaker implant, 55 of 82 initial patients finished the study. Users with pacemakers were assigned to either a conventional follow-up group at hospital (HM=34, 50 initials) or a telemonitoring system group (TM=21, 32 initials). No significant differences were found between both groups according to sociodemographic characteristics, clinical data, Health-Related Quality of Life and Functional Capacity according to medical record and EQ5D and DASI questionnaires. In addition, conventional follow-up visits to hospital were reduced in 44,84% (p < 0,001) in the telemonitoring group in relation to hospital monitoring group. Conclusion: Results obtained in this study suggest that the telemonitoring of users with pacemakers is an equivalent option to conventional follow-up at hospital, in terms of Health-Related Quality of Life and Functional Capacity. Furthermore, it allows for the early detection of cardiovascular and pacemakers-related problem events and significantly reduces the number of in-hospital visits. Trial registration: ClinicalTrials.gov NCT02234245. The PONIENTE study has been funded by the General Secretariat for Research, Development and Innovation, Regional Government of Andalusia (Spain), project reference number PI/0256/2017, under the research call 'Development and Innovation Projects in the Field of Biomedicine and Health Sciences', 2017.

Keywords: cardiovascular diseases, health-related quality of life, pacemakers follow-up, remote monitoring, telemedicine

Procedia PDF Downloads 117
1598 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound

Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura

Abstract:

The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.

Keywords: camera, image processing, reconstruction, ultrasound

Procedia PDF Downloads 98
1597 Shock-Induced Densification in Glass Materials: A Non-Equilibrium Molecular Dynamics Study

Authors: Richard Renou, Laurent Soulard

Abstract:

Lasers are widely used in glass material processing, from waveguide fabrication to channel drilling. The gradual damage of glass optics under UV lasers is also an important issue to be addressed. Glass materials (including metallic glasses) can undergo a permanent densification under laser-induced shock loading. Despite increased interest on interactions between laser and glass materials, little is known about the structural mechanisms involved under shock loading. For example, the densification process in silica glasses occurs between 8 GPa and 30 GPa. Above 30 GPa, the glass material returns to the original density after relaxation. Investigating these unusual mechanisms in silica glass will provide an overall better understanding in glass behaviour. Non-Equilibrium Molecular Dynamics simulations (NEMD) were carried out in order to gain insight on the silica glass microscopic structure under shock loading. The shock was generated by the use of a piston impacting the glass material at high velocity (from 100m/s up to 2km/s). Periodic boundary conditions were used in the directions perpendicular to the shock propagation to model an infinite system. One-dimensional shock propagations were therefore studied. Simulations were performed with the STAMP code developed by the CEA. A very specific structure is observed in a silica glass. Oxygen atoms around Silicon atoms are organized in tetrahedrons. Those tetrahedrons are linked and tend to form rings inside the structure. A significant amount of empty cavities is also observed in glass materials. In order to understand how a shock loading is impacting the overall structure, the tetrahedrons, the rings and the cavities were thoroughly analysed. An elastic behaviour was observed when the shock pressure is below 8 GPa. This is consistent with the Hugoniot Elastic Limit (HEL) of 8.8 GPa estimated experimentally for silica glasses. Behind the shock front, the ring structure and the cavity distribution are impacted. The ring volume is smaller, and most cavities disappear with increasing shock pressure. However, the tetrahedral structure is not affected. The elasticity of the glass structure is therefore related to a ring shrinking and a cavity closing. Above the HEL, the shock pressure is high enough to impact the tetrahedral structure. An increasing number of hexahedrons and octahedrons are formed with the pressure. The large rings break to form smaller ones. The cavities are however not impacted as most cavities are already closed under an elastic shock. After the material relaxation, a significant amount of hexahedrons and octahedrons is still observed, and most of the cavities remain closed. The overall ring distribution after relaxation is similar to the equilibrium distribution. The densification process is therefore related to two structural mechanisms: a change in the coordination of silicon atoms and a cavity closing. To sum up, non-equilibrium molecular dynamics were carried out to investigate silica behaviour under shock loading. Analysing the structure lead to interesting conclusions upon the elastic and the densification mechanisms in glass materials. This work will be completed with a detailed study of the mechanism occurring above 30 GPa, where no sign of densification is observed after the material relaxation.

Keywords: densification, molecular dynamics simulations, shock loading, silica glass

Procedia PDF Downloads 215
1596 Analyzing Electromagnetic and Geometric Characterization of Building Insulation Materials Using the Transient Radar Method (TRM)

Authors: Ali Pourkazemi

Abstract:

The transient radar method (TRM) is one of the non-destructive methods that was introduced by authors a few years ago. The transient radar method can be classified as a wave-based non destructive testing (NDT) method that can be used in a wide frequency range. Nevertheless, it requires a narrow band, ranging from a few GHz to a few THz, depending on the application. As a time-of-flight and real-time method, TRM can measure the electromagnetic properties of the sample under test not only quickly and accurately, but also blindly. This means that it requires no prior knowledge of the sample under test. For multi-layer structures, TRM is not only able to detect changes related to any parameter within the multi-layer structure but can also measure the electromagnetic properties of each layer and its thickness individually. Although the temperature, humidity, and general environmental conditions may affect the sample under test, they do not affect the accuracy of the Blind TRM algorithm. In this paper, the electromagnetic properties as well as the thickness of the individual building insulation materials - as a single-layer structure - are measured experimentally. Finally, the correlation between the reflection coefficients and some other technical parameters such as sound insulation, thermal resistance, thermal conductivity, compressive strength, and density is investigated. The sample to be studied is 30 cm x 50 cm and the thickness of the samples varies from a few millimeters to 6 centimeters. This experiment is performed with both biostatic and differential hardware at 10 GHz. Since it is a narrow-band system, high-speed computation for analysis, free-space application, and real-time sensor, it has a wide range of potential applications, e.g., in the construction industry, rubber industry, piping industry, wind energy industry, automotive industry, biotechnology, food industry, pharmaceuticals, etc. Detection of metallic, plastic pipes wires, etc. through or behind the walls are specific applications for the construction industry.

Keywords: transient radar method, blind electromagnetic geometrical parameter extraction technique, ultrafast nondestructive multilayer dielectric structure characterization, electronic measurement systems, illumination, data acquisition performance, submillimeter depth resolution, time-dependent reflected electromagnetic signal blind analysis method, EM signal blind analysis method, time domain reflectometer, microwave, milimeter wave frequencies

Procedia PDF Downloads 63
1595 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique

Authors: Pavana Basavakumar, Devadas Bhat

Abstract:

Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.

Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes

Procedia PDF Downloads 318
1594 A Comparative Study of Indoor Radon Concentrations between Dwellings and Workplaces in the Ko Samui District, Surat Thani Province, Southern Thailand

Authors: Kanokkan Titipornpun, Tripob Bhongsuwan, Jan Gimsa

Abstract:

The Ko Samui district of Surat Thani province is located in the high amounts of equivalent uranium in the ground surface that is the source of radon. Our research in the Ko Samui district aimed at comparing the indoor radon concentrations between dwellings and workplaces. Measurements of indoor radon concentrations were carried out in 46 dwellings and 127 workplaces, using CR-39 alpha-track detectors in closed-cup. A total of 173 detectors were distributed in 7 sub-districts. The detectors were placed in bedrooms of dwellings and workrooms of workplaces. All detectors were exposed to airborne radon for 90 days. After exposure, the alpha tracks were made visible by chemical etching before they were manually counted under an optical microscope. The track densities were assumed to be correlated with the radon concentration levels. We found that the radon concentrations could be well described by a log-normal distribution. Most concentrations (37%) were found in the range between 16 and 30 Bq.m-3. The radon concentrations in dwellings and workplaces varied from a minimum of 11 Bq.m-3 to a maximum of 305 Bq.m-3. The minimum (11 Bq.m-3) and maximum (305 Bq.m-3) values of indoor radon concentrations were found in a workplace and a dwelling, respectively. Only for four samples (3%), the indoor radon concentrations were found to be higher than the reference level recommended by the WHO (100 Bq.m-3). The overall geometric mean in the surveyed area was 32.6±1.65 Bq.m-3, which was lower than the worldwide average (39 Bq.m-3). The statistic comparison of the geometric mean indoor radon concentrations between dwellings and workplaces showed that the geometric mean in dwellings (46.0±1.55 Bq.m-3) was significantly higher than in workplaces (28.8±1.58 Bq.m-3) at the 0.05 level. Moreover, our study found that the majority of the bedrooms in dwellings had a closed atmosphere, resulting in poorer ventilation than in most of the workplaces that had access to air flow through open doors and windows at daytime. We consider this to be the main reason for the higher geometric mean indoor radon concentration in dwellings compared to workplaces.

Keywords: CR-39 detector, indoor radon, radon in dwelling, radon in workplace

Procedia PDF Downloads 273
1593 The Effect of Manure Loaded Biochar on Soil Microbial Communities

Authors: T. Weber, D. MacKenzie

Abstract:

The script in this paper describes the use of advanced simulation environment using electronic systems (microcontroller, operational amplifiers, and FPGA). The simulation was used for non-linear dynamic systems behaviour with required observer structure working with parallel real-time simulation based on state-space representation. The proposed deposited model was used for electrodynamic effects including ionising effects and eddy current distribution also. With the script and proposed method, it is possible to calculate the spatial distribution of the electromagnetic fields in real-time and such systems. For further purpose, the spatial temperature distribution may also be used. With upon system, the uncertainties and disturbances may be determined. This provides the estimation of the more precise system states for the required system and additionally the estimation of the ionising disturbances that arise due to radiation effects in space systems. The results have also shown that a system can be developed specifically with the real-time calculation (estimation) of the radiation effects only. Electronic systems can take damage caused by impacts with charged particle flux in space or radiation environment. TID (Total Ionising Dose) of 1 Gy and Single Effect Transient (SET) free operation up to 50 MeVcm²/mg may assure certain functions. Single-Event Latch-up (SEL) results on the placement of several transistors in the shared substrate of an integrated circuit; ionising radiation can activate an additional parasitic thyristor. This short circuit between semiconductor-elements can destroy the device without protection and measurements. Single-Event Burnout (SEB) on the other hand, increases current between drain and source of a MOSFET and destroys the component in a short time. A Single-Event Gate Rupture (SEGR) can destroy a dielectric of semiconductor also. In order to be able to react to these processes, it must be calculated within a shorter time that ionizing radiation and dose is present. For this purpose, sensors may be used for the realistic evaluation of the diffusion and ionizing effects of the test system. For this purpose, the Peltier element is used for the evaluation of the dynamic temperature increases (dT/dt), from which a measure of the ionization processes and thus radiation will be detected. In addition, the piezo element may be used to record highly dynamic vibrations and oscillations to absorb impacts of charged particle flux. All available sensors shall be used to calibrate the spatial distributions also. By measured value of size and known location of the sensors, the entire distribution in space can be calculated retroactively or more accurately. With the formation, the type of ionisation and the direct effect to the systems and thus possible prevent processes can be activated up to the shutdown. The results show possibilities to perform more qualitative and faster simulations independent of space-systems and radiation environment also. The paper gives additionally an overview of the diffusion effects and their mechanisms.

Keywords: cattle, biochar, manure, microbial activity

Procedia PDF Downloads 97
1592 Expression of miRNA 335 in Gall Bladder Cancer: A Correlative Study

Authors: Naseem Fatima, A. N. Srivastava, Tasleem Raza, Vijay Kumar

Abstract:

Introduction: Carcinoma gallbladder is third most common gastrointestinal lethal disease with the highest incidence and mortality rate among women in Northern India. Scientists have found several risk factors that make a person more likely to develop gallbladder cancer; among these risk factors, deregulation of miRNAs has been demonstrated to be one of the most crucial factors. The changes in the expression of specific miRNA genes result in the control of inflammation, cell cycle regulation, stress response, proliferation, differentiation, apoptosis and invasion thus mediate the process in tumorgenesis. The aim of this study was to investigate the role of MiRNA-335 and may as a molecular marker in early detection of gallbladder cancer in suspected cases. Material and Methods: A total of 20 consecutive patients with gallbladder cancer aged between 30-75 years were registered for the study. Total RNA was extracted from tissue by using the mirVANA MiRNA isolation Kit according to the manufacturer’s protocol. The MiRNA- 335 and U6 snRNA-specific cDNA were reverse-transcribed from total RNA using Taqman microRNA reverse-transcription kit according to the manufacturer’s protocol. TaqMan MiRNA probes hsa-miR-335 and Taqman Master Mix without AmpEase UNG, Individual real-time PCR assays were performed in a 20 μL reaction volume on a Real-Time PCR system (Applied Biosystems StepOnePlus™) to detect MiRNA-335 expression in tissue. Relative quantification of target MiRNA expression was evaluated using the comparative cycle threshold (CT) method. The correlation was done in between cycle threshold (CT Value) of target MiRNA in gallbladder cancer with respect to non-cancerous Cholelithiasis gallbladder. Each sample was examined in triplicate. The Newman-Keuls Multiple Comparison Test was used to determine the expression of miR-335. Results: MiRNA335 was found to be significantly downregulated in the gallbladder cancer tissue (P<0.001), when compared with non-cancerous Cholelithiasis gallbladder cases. Out of 20 cases, 75% showed reduced expression of MiRNA335, were at last stage of disease with low overall survival rate and remaining 25% were showed up-regulated expression of MiRNA335 with high survival rate. Conclusion: The present study showed that reduced expression of MiRNA335 is associated with the advancement of the disease, and its deregulation may provide important clues to understanding it as a prognostic marker and opportunities for future research.

Keywords: carcinoma gallbladder, downregulation, MiRNA-335, RT-PCR assay

Procedia PDF Downloads 348
1591 Effect of Austenitizing Temperature, Soaking Time and Grain Size on Charpy Impact Toughness of Quenched and Tempered Steel

Authors: S. Gupta, R. Sarkar, S. Pathak, D. H. Kela, A. Pramanick, P. Talukdar

Abstract:

Low alloy quenched and tempered steels are typically used in cast railway components such as knuckles, yokes, and couplers. Since these components experience extensive impact loading during their service life, adequate impact toughness of these grades need to be ensured to avoid catastrophic failure of parts in service. Because of the general availability of Charpy V Test equipment, Charpy test is the most common and economical means to evaluate the impact toughness of materials and is generally used in quality control applications. With this backdrop, an experiment was designed to evaluate the effect of austenitizing temperature, soaking time and resultant grain size on the Charpy impact toughness and the related fracture mechanisms in a quenched and tempered low alloy steel, with the aim of optimizing the heat treatment parameters (i.e. austenitizing temperature and soaking time) with respect to impact toughness. In the first phase, samples were austenitized at different temperatures viz. 760, 800, 840, 880, 920 and 960°C, followed by quenching and tempering at 600°C for 4 hours. In the next phase, samples were subjected to different soaking times (0, 2, 4 and 6 hours) at a fixed austenitizing temperature (980°C), followed by quenching and tempering at 600°C for 4 hours. The samples corresponding to different test conditions were then subjected to instrumented Charpy tests at -40°C and energy absorbed were recorded. Subsequently, microstructure and fracture surface of samples corresponding to different test conditions were observed under scanning electron microscope, and the corresponding grain sizes were measured. In the final stage, austenitizing temperature, soaking time and measured grain sizes were correlated with impact toughness and the fracture morphology and mechanism.

Keywords: heat treatment, grain size, microstructure, retained austenite and impact toughness

Procedia PDF Downloads 321
1590 Tectonics of Out-of-Sequence Thrusting in Higher Himalaya- Example from Jhakri-Chaura-Sarahan Region, Himachal Pradesh

Authors: Rajkumar Ghosh

Abstract:

The Out-of-Sequence Thrust (OOST) is a common phenomenon in collisional tectonic settings like the Himalayas. These OOSTs are activated in different locations at different time frames. These OOST are linked with the multiple Himalayan Thrusts. Apart from minimal documentation in geological mapping for OOST, there exists a lack of field data to establish OOST in the field. This work has considered three thrusts from NW Himalaya in Himachal Pradesh with published data from other sources, allowing a re-examination for correlation of OOST. For the Sutlej section, the approach has been to do fieldwork and microstructural studies. The information related to the cross-cut signature of S/C- and relative time relation could help to predict the nature of OOST. The activation timing, along with the basis of identification of OOST in Higher Himalayan, was documented in various literature. Compilation of the Grain Boundary Migration (GBM) associated temperature range (400–750 °C) was documented from microstructural studies along the Jhakri-Chaura section. No such significant temperature variation across thrusts was observed. Strain variation paths using S Ʌ C angle measurement were carried out along the Jeori-Wangtu transect to distinguish overprinting structures for OOSTs. Near the Chaura Thrust (CT), angular variation of S Ʌ C was documented, and it varies within a range of 15° - 28 °. Along the NH22 (National Highway, 22), all tectonic units of the orogen are exposed in NW Himalaya, INDIA. But there are inherent difficulties in finding field evidence of OOST, largely due to the lack of adequate surface morphology, including topography and drainage pattern.

Keywords: out-of-sequence thrust (OOST), main central thrust (MCT), south tibetan detachment system (STDS), jhakri thrust (JT), sarahan thrust (ST), chaura thrust (CT), higher himalaya (HH), greater himalayan crystalline (GHC)

Procedia PDF Downloads 72
1589 Management Tools for Assessment of Adverse Reactions Caused by Contrast Media at the Hospital

Authors: Pranee Suecharoen, Ratchadaporn Soontornpas, Jaturat Kanpittaya

Abstract:

Background: Contrast media has an important role for disease diagnosis through detection of pathologies. Contrast media can, however, cause adverse reactions after administration of its agents. Although non-ionic contrast media are commonly used, the incidence of adverse events is relatively low. The most common reactions found (10.5%) were mild and manageable and/or preventable. Pharmacists can play an important role in evaluating adverse reactions, including awareness of the specific preparation and the type of adverse reaction. As most common types of adverse reactions are idiosyncratic or pseudo-allergic reactions, common standards need to be established to prevent and control adverse reactions promptly and effectively. Objective: To measure the effect of using tools for symptom evaluation in order to reduce the severity, or prevent the occurrence, of adverse reactions from contrast media. Methods: Retrospective review descriptive research with data collected on adverse reactions assessment and Naranjo’s algorithm between June 2015 and May 2016. Results: 158 patients (10.53%) had adverse reactions. Of the 1,500 participants with an adverse event evaluation, 137 (9.13%) had a mild adverse reaction, including hives, nausea, vomiting, dizziness, and headache. These types of symptoms can be treated (i.e., with antihistamines, anti-emetics) and the patient recovers completely within one day. The group with moderate adverse reactions, numbering 18 cases (1.2%), had hypertension or hypotension, and shortness of breath. Severe adverse reactions numbered 3 cases (0.2%) and included swelling of the larynx, cardiac arrest, and loss of consciousness, requiring immediate treatment. No other complications under close medical supervision were recorded (i.e., corticosteroids use, epinephrine, dopamine, atropine, or life-saving devices). Using the guideline, therapies are divided into general and specific and are performed according to the severity, risk factors and ingestion of contrast media agents. Patients who have high-risk factors were screened and treated (i.e., prophylactic premedication) for prevention of severe adverse reactions, especially those with renal failure. Thus, awareness for the need for prescreening of different risk factors is necessary for early recognition and prompt treatment. Conclusion: Studying adverse reactions can be used to develop a model for reducing the level of severity and setting a guideline for a standardized, multidisciplinary approach to adverse reactions.

Keywords: role of pharmacist, management of adverse reactions, guideline for contrast media, non-ionic contrast media

Procedia PDF Downloads 290
1588 Experimental Research on Neck Thinning Dynamics of Droplets in Cross Junction Microchannels

Authors: Yilin Ma, Zhaomiao Liu, Xiang Wang, Yan Pang

Abstract:

Microscale droplets play an increasingly important role in various applications, including medical diagnostics, material synthesis, chemical engineering, and cell research due to features of high surface-to-volume ratio and tiny scale, which can significantly improve reaction rates, enhance heat transfer efficiency, enable high-throughput parallel studies as well as reduce reagent usage. As a mature technique to manipulate small amounts of liquids, droplet microfluidics could achieve the precise control of droplet parameters such as size, uniformity, structure, and thus has been widely adopted in the engineering and scientific research of multiple fields. Necking processes of the droplet in the cross junction microchannels are experimentally and theoretically investigated and dynamic mechanisms of the neck thinning in two different regimes are revealed. According to evolutions of the minimum neck width and the thinning rate, the necking process is further divided into different stages and the main driving force during each stage is confirmed. Effects of the flow rates and the cross-sectional aspect ratio on the necking process as well as the neck profile at different stages are provided in detail. The distinct features of the two regimes in the squeezing stage are well captured by the theoretical estimations of the effective flow rate and the variations of the actual flow rates in different channels are reasonably reflected by the channel width ratio. In the collapsing stage, the quantitative relation between the minimum neck width and the remaining time is constructed to identify the physical mechanism.

Keywords: cross junction, neck thinning, force analysis, inertial mechanism

Procedia PDF Downloads 94
1587 Characterization of Natural Polymers for Guided Bone Regeneration Applications

Authors: Benedetta Isella, Aleksander Drinic, Alissa Heim, Phillip Czichowski, Lisa Lauts, Hans Leemhuis

Abstract:

Introduction: Membranes for guided bone regeneration are essential to perform a barrier function between the soft and the regenerating bone tissue. Bioabsorbable membranes are desirable in this field as they do not require a secondary surgery for removal, decreasing patient surgical risk. Collagen was the first bioabsorbable alternative introduced on the market, but its degradation time may be too fast to guarantee bone regeneration, and optimisation is needed. Silk fibroin, being biocompatible, slowly bioabsorbable, and processable into different scaffold types, could be a promising alternative. Objectives: The objective is to compare the general performance of a silk fibroin membrane for guided bone regeneration to current collagen alternatives developing suitable standardized tests for the mechanical and morphological characterization. Methods: Silk fibroin and collagen-based membranes were compared from the morphological and chemical perspective, with techniques such as SEM imaging and from the mechanical point of view with techniques such as tensile and suture retention strength (SRS) tests. Results: Silk fibroin revealed a high degree of reproducibility in surface density. The SRS of silk fibroin (0.76 ± 0.04 N), although lower than collagen, was still comparable to native tissues such as the internal mammary artery (0.56 N), and the same can be extended to general mechanical behaviour in tensile tests. The SRS could be increased by an increase in thickness. Conclusion: Silk fibroin is a promising material in the field of guided bone regeneration, covering the interesting position of not being considered a product containing cells or tissues of animal origin from the regulatory perspective and having longer degradation times with respect to collagen.

Keywords: guided bone regeneration, mechanical characterization, membrane, silk fibroin

Procedia PDF Downloads 17
1586 The Effect of Super-Plasticizer and Ultra-sonic Process on the Carbon Nano Tubes Dispersion in Combination with Nano Silica in Cement Composites to Enhance Its Mechanical Properties

Authors: M.S. El-Feky, Passant Youssef, Mohamed I. Serag

Abstract:

nowadays, nanotechnology is the main trend of research in different areas due to the new potential of using nanometer materials sized less than 100nm. Nanomaterials are needed in cement composites to act as bridging for Nano and micro-cracks to increase tensile strength, reduce the permeability of gases and water in concrete to solve corrosion problem, react with excess Calcium Hydroxide, produce additional C-S-H, act as filler materials to densify the cement matrix and increase its mechanical properties. The present study focuses on the effectiveness of super-plasticizers and ultrasonic processing on the dispersion of Carbon Nanotube at first in water and then in cement composites in combination with Nano silica to enhance the mechanical properties of cement composites. A qualitative analysis using a compressive strength test is conducted with a view to investigate the influence of different dispersion techniques on the mechanical properties of cement composites containing Carbon Nanotube (CNT) and Nano Silica (NS) particles with different percentages. In addition, micro-structural analysis was carried out to understand the surface morphology and microstructure of cement composites with different dosages of NS addition. The investigational study results showed that the combination of NS with a low amount of CNT had a positive effect on the hydration reaction; on the other hand, the combination of CNT and a high amount of NS had a negative effect on the hydration reaction. The compressive strength can be improved by optimum combination 0.02% CNT and 1% NS with gain in strength by 72% and 35% after 7 and 28 days compared to control samples; these results were with an agreement with the morphology structure of composites using microstructure analysis.

Keywords: nano silica, dispersion, sonication, carbon nano tubes

Procedia PDF Downloads 131
1585 Corporate Water Footprint Assessment: The Case of Tata Steel

Authors: Sujata Mukherjee, Arunavo Mukherjee

Abstract:

Water covers 70 per cent of our planet; however, freshwater is incredibly rare, and scarce has been listed as the highest impact global risk. The problems related to freshwater scarcity multiplies with the human population having more than doubled coupled with climate change, changing water cycles leading to droughts and floods and a rise in water pollution. Businesses, governments, and local communities are constrained by water scarcity and are facing growing challenges to their growth and sustainability. Water foot printing as an indicator for water use was introduced in 2002. Business water footprint measures the total water consumed to produce the goods and services it provides. It is a combination of the water that goes into the production and manufacturing of a product or service and the water used throughout the supply chain, as well as during the use of the product. A case study approach was applied describing the efforts of Tata Steel. It is based on a series of semi-structured in-depth interviews with top executives of the company as well as observation and content analysis of internal and external documents about the company’s efforts in sustainable water management. Tata Steel draws water required for industrial use from surface water sources, primarily perennial rivers and streams, internal reservoirs and water from municipal sources. The focus of the present study was to explore Tata Steel’s engagement in sustainable water management focusing on water foot printing accounting as a tool to account for water use in the steel supply chain at its Jamshedpur plant. The findings enabled the researchers to conclude that no sources of water are adversely affected by the company’s production of steel at Jamshedpur.

Keywords: sustainability, corporate responsibility water management, risk management, business engagement

Procedia PDF Downloads 258
1584 Discussion on the Impact Issues in Urban by Earthquake Disaster Cases

Authors: M. C. Teng, M. C. Ke, C. Y. Yang, S. S. Ke

Abstract:

There are more than one thousand times a year of felt earthquakes in Taiwan. Because earthquakes are disaster threats to urban infrastructure, they often disrupt infrastructure services. For example, the highway system is very important to transportation infrastructure; however, it is vulnerable to earthquakes and typhoons in Taiwan. When a highway system is damaged by disaster, it will create a major impact on post-disaster communications and emergency relief and affect disaster relief works. In a study case on September 18th, 2022, the Taitung Chihshang earthquake, with a magnitude of 6.8 on the Richter scale with a depth of 7 km, caused one death; 171 people were injured and had a significant urban infrastructure impact. Hualien and Taitung areas have a large number of surface ruptures, road disruptions due to the collapses, over ten cases of bridges failure or closed, partial railroad section service shutdown, building collapses, and casualties. Taitung Chihshang earthquake, the peak ground acceleration is 585 gal (cm/s²), and the seismic intensity is Level 6 Upper(6+)in Chishang, Taitung County. After the earthquakes, we conducted on-site disaster investigation works in the disaster area; the disaster investigation works included a public and private building survey, a transportation facility survey, a total of ten damaged bridges, and one railroad station damaged were investigated in this investigation. The results showed that the affected locations were mainly concentrated along the Chihshang fault and the Yuli fault in the Huatung Longitudinal Valley. We recorded and described the impact and assessed its influence region in terms of its susceptibility to and the consequences of earthquake attacks. In addition, a lesson is learned from this study regarding the key issues after the Taitung Chihshang earthquake.

Keywords: earthquake, infrastructure, disaster investigation, lesson learned

Procedia PDF Downloads 51
1583 Organ Transplantation in Pakistan from an Anthropological Perspectives

Authors: Qurratulain Faheem

Abstract:

The human body often serves as a reference point to analyse the notions of self and society. Situating on Merleau-Ponty and Bourdieu theories of embodiments, this research explores the notions around the human body and its influence on the ethical considerations in regards to organ transplantation among the Muslim communities in Pakistan. The context of Pakistan makes an intriguing case study as cadaveric organ transplantation is not in practise. Whereas living organ transplantation is commonly is practised between family membersonly. These contradictory practices apparently rests on the ideologies around the human body and religious beliefs as well the personal judgements and authority of healthcare professionals. This research is a year-long ethnographic study carried out as part of doctoral studies. An anthropological approach towards organ transplantation in Pakistan brought forward various socio-cultural notions around the human body and selfhood that serve as a framework around biomedical ethical issues in various societies. Further, it surface the contradictions and issues associated with organ transplantation that makes it a dilemma situated in a nexus of various socio-cultural and political factors rather seeing it as an isolated health concern. This research is a novel study on the subject of organ transplantation in the context of Pakistan but also put forward ethnographic data that could serve as a reference in other religious societies. Further, the ethnographic data bring forward experiences and stories of organ receivers, organ donors, religious leaders, healthcare professionals, and the general public, which aspire to encourage biomedical ethicists and social-scientists to consider ethnography as a research methodology and rely upon people’s lived experiences while establishing policies and practices around biomedical ethical issues.

Keywords: organ transplantation, ethics, pakistan, gender, islam, muslims, living organ donation

Procedia PDF Downloads 80
1582 Organic Contaminant Degradation Using H₂O₂ Activated Biochar with Enhanced Persistent Free Radicals

Authors: Kalyani Mer

Abstract:

Hydrogen peroxide (H₂O₂) is one of the most efficient and commonly used oxidants in in-situ chemical oxidation (ISCO) of organic contaminants. In the present study, we investigated the activation of H₂O₂ by heavy metal (nickel and lead metal ions) loaded biochar for phenol degradation in an aqueous solution (concentration = 100 mg/L). It was found that H₂O₂ can be effectively activated by biochar, which produces hydroxyl (•OH) radicals owing to an increase in the formation of persistent free radicals (PFRs) on biochar surface. Ultrasound treated (30s duration) biochar, chemically activated by 30% phosphoric acid and functionalized by diethanolamine (DEA) was used for the adsorption of heavy metal ions from aqueous solutions. It was found that modified biochar could remove almost 60% of nickel in eight hours; however, for lead, the removal efficiency reached up to 95% for the same time duration. The heavy metal loaded biochar was further used for the degradation of phenol in the absence and presence of H₂O₂ (20 mM), within 4 hours of reaction time. The removal efficiency values for phenol in the presence of H₂O₂ were 80.3% and 61.9%, respectively, by modified biochar loaded with nickel and lead metal ions. These results suggested that the biochar loaded with nickel exhibits a better removal capacity towards phenol than the lead loaded biochar when used in H₂O₂ based oxidation systems. Meanwhile, control experiments were set in the absence of any activating biochar, and the removal efficiency was found to be 19.1% when only H₂O₂ was added in the reaction solution. Overall, the proposed approach serves a dual purpose of using biochar for heavy metal ion removal and treatment of organic contaminants by further using the metal loaded biochar for H₂O₂ activation in ISCO processes.

Keywords: biochar, ultrasound, heavy metals, in-situ chemical oxidation, chemical activation

Procedia PDF Downloads 121
1581 Fluorescence Resonance Energy Transfer in a Supramolecular Assembly of Luminescent Silver Nanoclusters and Cucurbit[8]uril Based Host-Guest System

Authors: Srikrishna Pramanik, Sree Chithra, Saurabh Rai, Sameeksha Agrawal, Debanggana Shil, Saptarshi Mukherjee

Abstract:

The understanding of interactions between organic chromophores and biologically useful luminescent noble metal nanoclusters (NCs) leading to an energy transfer process that has applications in light-harvesting materials is still in its nascent stage. This work describes a photoluminescent supramolecular assembly, made in two stages, employing an energy transfer process between silver (Ag) NCs as the donor and a host-guest system as the acceptor that can find potential applications in diverse fields. Initially, we explored the host-guest chemistry between a cationic guest, Ethidium Bromide and the anionic host Cucurbit[8]uril using spectroscopic and calorimetric techniques to decipher their interaction mechanism in modulating photophysical properties of the chromophore. Next, we synthesized a series of blue-emitting AgNCs using different templates such as protein, peptides, and cyclodextrin. The as-prepared AgNCs were characterized by various spectroscopic techniques. We have established that these AgNCs can be employed as donors in the FRET process with the above acceptor for FRET-based emission color tuning. Our in-depth studies revealed that surface ligands play a key role in modulating FRET efficiency. Overall, by employing a non-covalent strategy, we have tried to develop FRET pairs using blue-emitting NCs and a host-guest complex, which could find potential applications in constructing advanced white light-emitting, anti-counterfeiting materials, and developing biosensors.

Keywords: absorption spectroscopy, cavities, energy transfer, fluorescence, fluorescence resonance energy transfer

Procedia PDF Downloads 28
1580 Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties

Authors: Sina Fatolahzadeh, Sergio A. Sepúlveda

Abstract:

This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data.

Keywords: remote sensing, rock mechanics, rock engineering, slope stability, discontinuity properties

Procedia PDF Downloads 54