Search results for: train schedule
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1085

Search results for: train schedule

125 The Effect of Aerobics and Yogic Exercise on Selected Physiological and Psychological Variables of Middle-Aged Women

Authors: A. Pallavi, N. Vijay Mohan

Abstract:

A nation can be economically progressive only when the citizens have sufficient capacity to work efficiently to increase the productivity. So, good health must be regarded as a primary need of the community. This helps the growth and development of the body and the mind, which in turn leads to progress and prosperity of the nation. An optimum growth is a necessity for an efficient existence in a biologically adverse and economically competitive world. It is also necessary for the execution of daily routine work. Yoga is a method or a system for the complete development of the personality in a human being. It can be further elaborated as an all-around and complete development of the body, mind, morality, intellect and soul of a being. Sri Aurobindo defines yoga as 'a methodical effort towards self-perfection by the development of the potentialities in the individual.' Aerobic exercise as any activity that uses large muscle groups, can be maintained continuously, and is rhythmic I nature. It is a type of exercise that overloads the heart and lungs and causes them to work harder than at rest. The important idea behind aerobic exercise today, is to get up and get moving. There are more activities that ever to choose from, whether it is a new activity or an old one. Find something you enjoy doing that keeps our heart rate elevated for a continuous time period and get moving to a healthier life. Middle aged selected and served as the subjects for the purpose of this study. The selected subjects were in the age group of 30 to 40 years. By going through the literature and after consulting the experts in yoga and aerobic training, the investigator had chosen the variables which are specifically related to the middle-aged men. The selected physiological variables are pulse rate, diastolic blood pressure, systolic blood pressure; percent body fat and vital capacity. The selected psychological variables are job anxiety, occupational stress. The study was formulated as a random group design consisting of aerobic exercise and yogic exercises groups. The subjects (N=60) were at random divided into three equal groups of twenty middle-aged men each. The groups were assigned the names as follows: 1. Experimental group I- aerobic exercises group, 2. Experimental group II- yogic exercises, 3. Control group. All the groups were subjected to pre-test prior to the experimental treatment. The experimental groups participated in their respective duration of twenty-four weeks, six days in a week throughout the study. The various tests administered were: prior to training (pre-test), after twelfth week (second test) and twenty-fourth weeks (post-test) of the training schedule.

Keywords: pulse rate, diastolic blood pressure, systolic blood pressure; percent body fat and vital capacity, psychological variables, job anxiety, occupational stress, aerobic exercise, yogic exercise

Procedia PDF Downloads 445
124 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard

Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni

Abstract:

The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.

Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model

Procedia PDF Downloads 143
123 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 189
122 Innovative Technologies of Management of Personnel Processes in the Public Civil Service

Authors: O. V. Jurieva, O. U. Jurieva, R. H. Yagudin, P. B. Chursin

Abstract:

In the recent scientific researches on the problems of public service the idea of the use of innovative technologies of management of personnel processes is accurately formulated. Authors made an attempt to analyze the changes in the public service organizations and to understand how the studied situation is interpreted by the government employees themselves. For this purpose the strategy of sociological research was carried out on the basis of application of questionnaire developed by M. Rokich and focus group research. For the research purposes it was necessary to get to microlevel in order to include daily activities of employees of an organization, their life experience and values in the focus of the analysis. Based on P. Bourdieu's methodology, authors investigated the established patterns of consciousness and behavior of officials (doxa) and also analyzed the tendencies of re-thinking (change) of the settled content of values (heterodoxy) by them. The distinctive feature of the conducted research is that the public servants who have different length of service in the public service took part in the research procedure. The obtained data helped to answer the following question: what are the specifics of doxs of the public servants who work in the public civil service more than 7-10 years and what perception of values of civil service have junior experts whose work experience doesn't exceed 3 years. Respondents were presented by two groups: (1) public servants of the level of main positions in the public civil service of the Republic of Tatarstan. (2) Public servants of the level of lower positions in the ministries and departments of the Republic of Tatarstan. For the study of doxa or of the existing values of public servants, the research with use of the questionnaire based on M. Rokich's system is conducted. Two types of values are emphasised: terminal and instrumental, which are united by us in the collective concept doxa. Doxa: the instrument of research of the established patterns of consciousness and behavior which can either resist to changes in the organization or, on the contrary, support their implementation. In the following stage an attempt to deepen our understanding of the essence and specifics of doxa of officials by means of the applied sociological research which is carried out by focus group method is made. Information obtained by authors during the research convinces that for the success of policy of changes in the organizations of public service it is necessary to develop special technologies of informing employees about the essence and inevitability of the developed innovations, to involve them in the process of changes, to train and to develop the younger generation of civil servants, seriously to perceive additional training and retraining of officials.

Keywords: innovative technologies, public service organizations, public servants

Procedia PDF Downloads 273
121 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 92
120 Chronically Ill Patient Satisfaction: An Indicator of Quality of Service Provided at Primary Health Care Settings in Alexandria

Authors: Alyaa Farouk Ibrahim, Gehan ElSayed, Ola Mamdouh, Nazek AbdelGhany

Abstract:

Background: Primary health care (PHC) can be considered the first contact between the patient and the health care system. It includes all the basic health care services to be provided to the community. Patient's satisfaction regarding health care has often improved the provision of care, also considered as one of the most important measures for evaluating the health care. Objective: This study aims to identify patient’s satisfaction with services provided at the primary health care settings in Alexandria. Setting: Seven primary health care settings representing the seven zones of Alexandria governorate were selected randomly and included in the study. Subjects: The study comprised 386 patients attended the previously selected settings at least twice before the time of the study. Tools: Two tools were utilized for data collection; sociodemographic characteristics and health status structured interview schedule and patient satisfaction scale. Reliability test for the scale was done using Cronbach's Alpha test, the result of the test ranged between 0.717 and 0.967. The overall satisfaction was computed and divided into high, medium, and low satisfaction. Results: Age of the studied sample ranged between 19 and 62 years, more than half (54.2%) of them aged 40 to less than 60 years. More than half (52.8%) of the patients included in the study were diabetics, 39.1% of them were hypertensive, 19.2% had cardiovascular diseases, the rest of the sample had tumor, liver diseases, and orthopedic/neurological disorders (6.5%, 5.2% & 3.2%, respectively). The vast majority of the study group mentioned high satisfaction with overall service cost, environmental conditions, medical staff attitude and health education given at the PHC settings (87.8%, 90.7%, 86.3% & 90.9%, respectively), however, medium satisfaction was mostly reported concerning medical checkup procedures, follow-up data and referral system (41.2%, 28.5% & 28.9%, respectively). Score level of patient satisfaction with health services provided at the assessed Primary health care settings proved to be significantly associated with patients’ social status (P=0.003, X²=14.2), occupation (P=0.011, X²=11.2), and monthly income (P=0.039, X²=6.50). In addition, a significant association was observed between score level of satisfaction and type of illness (P=0.007, X²=9.366), type of medication (P=0.014, X²=9.033), prior knowledge about the health center (P=0.050, X²=3.346), and highly significant with the administrative zone (P=0.001, X²=55.294). Conclusion: The current study revealed that overall service cost, environmental conditions, staff attitude and health education at the assessed primary health care settings gained high patient satisfaction level, while, medical checkup procedures, follow-up, and referral system caused a medium level of satisfaction among assessed patients. Nevertheless, social status, occupation, monthly income, type of illness, type of medication and administrative zones are all factors influencing patient satisfaction with services provided at the health facilities.

Keywords: patient satisfaction, chronic illness, quality of health service, quality of service indicators

Procedia PDF Downloads 352
119 Exploratory Study on Mediating Role of Commitment-to-Change in Relations between Employee Voice, Employee Involvement and Organizational Change Readiness

Authors: Rohini Sharma, Chandan Kumar Sahoo, Rama Krishna Gupta Potnuru

Abstract:

Strong competitive forces and requirements to achieve efficiency are forcing the organizations to realize the necessity and inevitability of change. What's more, the trend does not appear to be abating. Researchers have estimated that about two thirds of change project fails. Empirical evidences further shows that organizations invest significantly in the planned change but people side is accounted for in a token or instrumental way, which is identified as one of the important reason, why change endeavours fail. However, whatever be the reason for change, organizational change readiness must be gauged prior to the institutionalization of organizational change. Hence, in this study the influence of employee voice and employee involvement on organizational change readiness via commitment-to-change is examined, as it is an area yet to be extensively studied. Also, though a recent study has investigated the interrelationship between leadership, organizational change readiness and commitment to change, our study further examined these constructs in relation with employee voice and employee involvement that plays a consequential role for organizational change readiness. Further, integrated conceptual model weaving varied concepts relating to organizational readiness with focus on commitment to change as mediator was found to be an area, which required more theorizing and empirical validation, and this study rooted in an Indian public sector organization is a step in this direction. Data for the study were collected through a survey among employees of Rourkela Steel Plant (RSP), a unit of Steel Authority of India Limited (SAIL); the first integrated Steel Plant in the public sector in India, for which stratified random sampling method was adopted. The schedule was distributed to around 700 employees, out of which 516 complete responses were obtained. The pre-validated scales were used for the study. All the variables in the study were measured on a five-point Likert scale ranging from “strongly disagree (1)” to “strongly agree (5)”. Structural equation modeling (SEM) using AMOS 22 was used to examine the hypothesized model, which offers a simultaneous test of an entire system of variables in a model. The study results shows that inter-relationship between employee voice and commitment-to-change, employee involvement and commitment-to-change and commitment-to-change and organizational change readiness were significant. To test the mediation hypotheses, Baron and Kenny’s technique was used. Examination of direct and mediated effect of mediators confirmed that commitment-to-change partially mediated the relation between employee involvement and organizational change readiness. Furthermore, study results also affirmed that commitment-to-change does not mediate the relation between employee involvement and organizational change readiness. The empirical exploration therefore establishes that it is important to harness employee’s valuable suggestions regarding change for building organizational change readiness. Regarding employee involvement, it was found that sharing information and involving people in decision-making, leads to a creation of participative climate, which educes employee commitment during change and commitment-to-change further, fosters organizational change readiness.

Keywords: commitment-to-change, change management, employee voice, employee involvement, organizational change readiness

Procedia PDF Downloads 327
118 A Comparison of Tsunami Impact to Sydney Harbour, Australia at Different Tidal Stages

Authors: Olivia A. Wilson, Hannah E. Power, Murray Kendall

Abstract:

Sydney Harbour is an iconic location with a dense population and low-lying development. On the east coast of Australia, facing the Pacific Ocean, it is exposed to several tsunamigenic trenches. This paper presents a component of the most detailed assessment of the potential for earthquake-generated tsunami impact on Sydney Harbour to date. Models in this study use dynamic tides to account for tide-tsunami interaction. Sydney Harbour’s tidal range is 1.5 m, and the spring tides from January 2015 that are used in the modelling for this study are close to the full tidal range. The tsunami wave trains modelled include hypothetical tsunami generated from earthquakes of magnitude 7.5, 8.0, 8.5, and 9.0 MW from the Puysegur and New Hebrides trenches as well as representations of the historical 1960 Chilean and 2011 Tohoku events. All wave trains are modelled for the peak wave to coincide with both a low tide and a high tide. A single wave train, representing a 9.0 MW earthquake at the Puysegur trench, is modelled for peak waves to coincide with every hour across a 12-hour tidal phase. Using the hydrodynamic model ANUGA, results are compared according to the impact parameters of inundation area, depth variation and current speeds. Results show that both maximum inundation area and depth variation are tide dependent. Maximum inundation area increases when coincident with a higher tide, however, hazardous inundation is only observed for the larger waves modelled: NH90high and P90high. The maximum and minimum depths are deeper on higher tides and shallower on lower tides. The difference between maximum and minimum depths varies across different tidal phases although the differences are slight. Maximum current speeds are shown to be a significant hazard for Sydney Harbour; however, they do not show consistent patterns according to tide-tsunami phasing. The maximum current speed hazard is shown to be greater in specific locations such as Spit Bridge, a narrow channel with extensive marine infrastructure. The results presented for Sydney Harbour are novel, and the conclusions are consistent with previous modelling efforts in the greater area. It is shown that tide must be a consideration for both tsunami modelling and emergency management planning. Modelling with peak tsunami waves coinciding with a high tide would be a conservative approach; however, it must be considered that maximum current speeds may be higher on other tides.

Keywords: emergency management, sydney, tide-tsunami interaction, tsunami impact

Procedia PDF Downloads 242
117 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID

Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis

Abstract:

Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.

Keywords: artificial intelligence, COVID, neural network, machine learning

Procedia PDF Downloads 93
116 Road Accidents to School Children’s in Dar Es Salaam, Tanzania

Authors: Kabuga Daniel

Abstract:

Road accidents resulting to deaths and injuries have become a new public health challenge especially in developing countries including Tanzania. Reports from Tanzania Traffic Police Force shows that last year 2016 accidents increased compare to previous year 2015, accident happened from 3710 up to 5219, accidents and safety data indicate that children are the most vulnerable to road crashes where 78 pupils died and 182 others were seriously injured in separate roads accident last year. A survey done by Amend indicates that Pupil mode of transport in Dar es salaam schools are by walk 87%, bus 9.21%, car 1.32%, motorcycle 0.88%, 3-wheeler 0.24%, train 0.14%, bicycle 0.10%, ferry 0.07%, and combined mode 0.44%. According to this study, majority of school children’s uses walking mode, most of school children’s agreed to continue using walking mode and request to have signs for traffic control during crossing road like STOP sign and CHILD CROSSING sign for safe crossing. Because children not only sit inside this buses (Daladala) but also they walk in a group to/from school, and few (33.2%) parents or adults are willing to supervise their children’s during working to school while 50% of parents agree to let their children walking alone to school if the public transport started from nearby street. The study used both qualitative and quantitative methods of research by conducting physical surveying on sample districts. The main objectives of this research are to carries out all factors affecting school children’s when they use public road, to promote and encourage the safe use of public road by all classes especially pupil or student through the circulation of advice, information and knowledge gain from research and to recommends future direction for the developments for road design or plan to vulnerable users. The research also critically analyze the problems causing death and injuries to school children’s in Dar es Salaam Region. This study determines the relationship between road traffic accidents and factors, such as socio-economic, status, and distance from school, number of sibling, behavioral problems, knowledge and attitudes of public and their parents towards road safety and parent educational study traffic. The study comes up with some of recommendations including Infrastructure Improvements like, safe footpaths, Safe crossings, Speed humps, Speed limits, Road signs. However, Planners and policymakers wishing to increase walking and cycling among children need to consider options that address distance constraints, the land use planners and transport professionals use better understanding of the various factors that affect children’s choices of school travel mode, results suggest that all school travel attributes should be considered during school location.

Keywords: accidents, childrens, school, Tanzania

Procedia PDF Downloads 243
115 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach

Authors: Jared Beard, Ali Baheri

Abstract:

As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.

Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification

Procedia PDF Downloads 157
114 Time Travel Testing: A Mechanism for Improving Renewal Experience

Authors: Aritra Majumdar

Abstract:

While organizations strive to expand their new customer base, retaining existing relationships is a key aspect of improving overall profitability and also showcasing how successful an organization is in holding on to its customers. It is an experimentally proven fact that the lion’s share of profit always comes from existing customers. Hence seamless management of renewal journeys across different channels goes a long way in improving trust in the brand. From a quality assurance standpoint, time travel testing provides an approach to both business and technology teams to enhance the customer experience when they look to extend their partnership with the organization for a defined phase of time. This whitepaper will focus on key pillars of time travel testing: time travel planning, time travel data preparation, and enterprise automation. Along with that, it will call out some of the best practices and common accelerator implementation ideas which are generic across verticals like healthcare, insurance, etc. In this abstract document, a high-level snapshot of these pillars will be provided. Time Travel Planning: The first step of setting up a time travel testing roadmap is appropriate planning. Planning will include identifying the impacted systems that need to be time traveled backward or forward depending on the business requirement, aligning time travel with other releases, frequency of time travel testing, preparedness for handling renewal issues in production after time travel testing is done and most importantly planning for test automation testing during time travel testing. Time Travel Data Preparation: One of the most complex areas in time travel testing is test data coverage. Aligning test data to cover required customer segments and narrowing it down to multiple offer sequencing based on defined parameters are keys for successful time travel testing. Another aspect is the availability of sufficient data for similar combinations to support activities like defect retesting, regression testing, post-production testing (if required), etc. This section will talk about the necessary steps for suitable data coverage and sufficient data availability from a time travel testing perspective. Enterprise Automation: Time travel testing is never restricted to a single application. The workflow needs to be validated in the downstream applications to ensure consistency across the board. Along with that, the correctness of offers across different digital channels needs to be checked in order to ensure a smooth customer experience. This section will talk about the focus areas of enterprise automation and how automation testing can be leveraged to improve the overall quality without compromising on the project schedule. Along with the above-mentioned items, the white paper will elaborate on the best practices that need to be followed during time travel testing and some ideas pertaining to accelerator implementation. To sum it up, this paper will be written based on the real-time experience author had on time travel testing. While actual customer names and program-related details will not be disclosed, the paper will highlight the key learnings which will help other teams to implement time travel testing successfully.

Keywords: time travel planning, time travel data preparation, enterprise automation, best practices, accelerator implementation ideas

Procedia PDF Downloads 159
113 Necessity for a Standardized Occupational Health and Safety Management System: An Exploratory Study from the Danish Offshore Wind Sector

Authors: Dewan Ahsan

Abstract:

Denmark is well ahead in generating electricity from renewable sources. The offshore wind sector is playing the pivotal role to achieve this target. Though there is a rapid growth of offshore wind sector in Denmark, still there is a dearth of synchronization in OHS (occupational health and safety) regulation and standards. Therefore, this paper attempts to ascertain: i) what are the major challenges of the company specific OHS standards? ii) why does the offshore wind industry need a standardized OHS management system? and iii) who can play the key role in this process? To achieve these objectives, this research applies the interview and survey techniques. This study has identified several key challenges in OHS management system which are; gaps in coordination and communication among the stakeholders, gaps in incident reporting systems, absence of a harmonized OHS standard and blame culture. Furthermore, this research has identified eleven key stakeholders who are actively involve with the offshore wind business in Denmark. As noticed, the relationships among these stakeholders are very complex specially between operators and sub-contractors. The respondent technicians are concerned with the compliance of various third-party OHS standards (e.g. ISO 31000, ISO 29400, Good practice guidelines by G+) which are applying by various offshore companies. On top of these standards, operators also impose their own OHS standards. From the technicians point of angle, many of these standards are not even specific for the offshore wind sector. So, it is a big challenge for the technicians and sub-contractors to comply with different company specific standards which also elevate the price of their services offer to the operators. For instance, when a sub-contractor is competing for a bidding, it must fulfill a number of OHS requirements (which demands many extra documantions) set by the individual operator and/the turbine supplier. According to sub-contractors’ point of view these extra works consume too much time to prepare the bidding documents and they also need to train their employees to pass the specific OHS certification courses to accomplish the demand for individual clients and individual project. The sub-contractors argued that in many cases these extra documentations and OHS certificates are inessential to ensure the quality service. So, a standardized OHS management procedure (which could be applicable for all the clients) can easily solve this problem. In conclusion, this study highlights that i) development of a harmonized OHS standard applicable for all the operators and turbine suppliers, ii) encouragement of technicians’ active participation in the OHS management, iii) development of a good safety leadership, and, iv) sharing of experiences among the stakeholders (specially operators-operators-sub contractors) are the most vital strategies to overcome the existing challenges and to achieve the goal of 'zero accident/harm' in the offshore wind industry.

Keywords: green energy, offshore, safety, Denmark

Procedia PDF Downloads 214
112 Learning to Translate by Learning to Communicate to an Entailment Classifier

Authors: Szymon Rutkowski, Tomasz Korbak

Abstract:

We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.

Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning

Procedia PDF Downloads 128
111 The Spanish Didactic Book 'El Calculo Y La Medida en El Primer Grado De La Escuela Decroly' (1934): A Look at the Mathematical Knowledge

Authors: Juliana Chiarini Balbino Fernandes

Abstract:

This article aims to investigate the Spanish didactic book, entitled ‘El Calculo y La Medida en El Primer Grado de La Escuela Decroly’, written by Dr. O. Decroly and A. Hamaide, published in Madrid, in the year 1934. In addition to analyzing how mathematical knowledge is present in the proposed Centers of Interest. The textbooks, in addition to pedagogical tools, reflect a certain moment in society and allow the analysis of the theoretical-methodological proposal that can be implemented by the teacher. The study proposed here will be carried out by the lens of Cultural History, supported by Roger Chartier (1991) and by the concepts on textbooks, based on Alain Choppin (2004). The textbook selected for this study exposes a program of ideas associated with the method of Centers of Interest and arithmetic is linked to these interests. In the first courses (six to eight years), most centers can be considered to correspond to occasional calls, as they take advantage of events that arise spontaneously to work with observation, measurement, association and expression exercises. The program of ideas associated with Centers of Interest addresses the biological and social aspects of children, as long as they can express their needs for activities and games, satisfying the natural curiosity. Still, the program of associated ideas offers occasions for problems whose data are taken in observation exercises and concrete expressions (manuals, drawings). In the method applied at the school of L'Ermitage, school created by Decroly in Belgium in 1907, observation, is the basis of each center of interest. It offers the chance to compare and measure. To observe is more than to perceive; it is also to establish relations between the graded aspects of the same object, to seek relations between different intensities; is to verify successions, special and temporary relationships; is to make comparisons, to notice differences and similarities in block or datable (analysis), is to establish a bridge between the world and the thought. To make the observation more precise, it is important to compare, measure, and resort to considered objects as natural units of measure. Measurement and calculation are, therefore, quite naturally subject to observation. Thus, it is possible to make the child enter into the interest in the calculation, linking it to the observation. It was observed that the Centers of Interest, according to Decroly, should respond to the concerns and attend to the motivations of the students and the teaching of arithmetical must obey a logical seriation, considering the interest and the experience of the children. The teaching of arithmetical should not be limited to the schedule, it should cover every quantitative aspect that arises in the other disciplines. The feeling of unity is established in observation, association and expression, which coordinate a whole program of cultural activities, concentrating it around a central idea.

Keywords: didactic book, centers of interest, mathematical knowledge, primary education

Procedia PDF Downloads 108
110 [Keynote Talk]: New Generations and Employment: An Exploratory Study about Tensions between the Psycho-Social Characteristics of the Generation Z and Expectations and Actions of Organizational Structures Related with Employment (CABA, 2016)

Authors: Esteban Maioli

Abstract:

Generational studies have an important research tradition in social and human sciences. On the one hand, the speed of social change in the context of globalization imposes the need to research the transformations are identified both the subjectivity of the agents involved and its inclusion in the institutional matrix, specifically employment. Generation Z, (generally considered as the population group whose birth occurs after 1995) have unique psycho-social characteristics. Gen Z is characterized by a different set of values, beliefs, attitudes and ambitions that impact in their concrete action in organizational structures. On the other hand, managers often have to deal with generational differences in the workplace. Organizations have members who belong to different generations; they had never before faced the challenge of having such a diverse group of members. The members of each historical generation are characterized by a different set of values, beliefs, attitudes and ambitions that are manifest in their concrete action in organizational structures. Gen Z it’s the only one who can fully be considered "global," while its members were born in the consolidated context of globalization. Some salient features of the Generation Z can be summarized as follows. They’re the first fully born into a digital world. Social networks and technology are integrated into their lives. They are concerned about the challenges of the modern world (poverty, inequality, climate change, among others). They are self-expressive, more liberal and open to change. They often bore easily, with short attention spans. They do not like routine tasks. They want to achieve a good life-work balance, and they are interested in a flexible work environment, as opposed to traditional work schedule. They are critical thinkers, who come with innovative and creative ideas to help. Research design considered methodological triangulation. Data was collected with two techniques: a self-administered survey with multiple choice questions and attitudinal scales applied over a non-probabilistic sample by reasoned decision. According to the multi-method strategy, also it was conducted in-depth interviews. Organizations constantly face new challenges. One of the biggest ones is to learn to manage a multi-generational scope of work. While Gen Z has not yet been fully incorporated (expected to do so in five years or so), many organizations have already begun to implement a series of changes in its recruitment and development. The main obstacle to retaining young talent is the gap between the expectations of iGen applicants and what companies offer. Members of the iGen expect not only a good salary and job stability but also a clear career plan. Generation Z needs to have immediate feedback on their tasks. However, many organizations have yet to improve both motivation and monitoring practices. It is essential for companies to take a review of organizational practices anchored in the culture of the organization.

Keywords: employment, expectations, generation Z, organizational culture, organizations, psycho-social characteristics

Procedia PDF Downloads 201
109 Maternal Risk Factors Associated with Low Birth Weight Neonates in Pokhara, Nepal: A Hospital Based Case Control Study

Authors: Dipendra Kumar Yadav, Nabaraj Paudel, Anjana Yadav

Abstract:

Background: Low Birth weight (LBW) is defined as the weight at birth less than 2500 grams, irrespective of the period of their gestation. LBW is an important indicator of general health status of population and is considered as the single most important predictors of infant mortality especially of deaths within the first month of life that is birth weight determines the chances of newborn survival. Objective of this study was to identify the maternal risk factors associated with low birth weight neonates. Materials and Methods: A hospital based case-control study was conducted in maternity ward of Manipal Teaching Hospital, Pokhara, Nepal from 23 September 2014 to 12 November 2014. During study period 59 cases were obtained and twice number of control group were selected with frequency matching of the mother`s age with ± 3 years and total controls were 118. Interview schedule was used for data collection along with record review. Data were entered in Epi-data program and analysis was done with help of SPSS software program. Results: From bivariate logistic regression analysis, eighteen variables were found significantly associated with LBW and these were place of residence, family monthly income, education, previous still birth, previous LBW, history of STD, history of vaginal bleeding, anemia, ANC visits, less than four ANC visits, de-worming status, counseling during pregnancy, CVD, physical workload, stress, extra meal during pregnancy, smoking and alcohol consumption status. However after adjusting confounding variables, only six variables were found significantly associated with LBW. Mothers who had family monthly income up to ten thousand rupees were 4.83 times more likely to deliver LBW with CI (1.5-40.645) and p value 0.014 compared to mothers whose family income NRs.20,001-60,000. Mothers who had previous still birth were 2.01 times more likely to deliver LBW with CI (0.69-5.87) and p value 0.02 compared to mothers who did not has previous still birth. Mothers who had previous LBW were 5.472 times more likely to deliver LBW with CI (1.2-24.93) and p value 0.028 compared to mothers who did not has previous LBW. Mothers who had anemia during pregnancy were 3.36 times more likely to deliver LBW with CI (0.77-14.57) and p value 0.014 compared to mothers who did not has anemia. Mothers who delivered female newborn were 2.96 times more likely to have LBW with 95% CI (1.27-7.28) and p value 0.01 compared to mothers who deliver male newborn. Mothers who did not get extra meal during pregnancy were 6.04 times more likely to deliver LBW with CI (1.11-32.7) and p value 0.037 compared to mothers who getting the extra meal during pregnancy. Mothers who consumed alcohol during pregnancy were 4.83 times more likely to deliver LBW with CI (1.57-14.83) and p value 0.006 compared to mothers who did not consumed alcohol during pregnancy. Conclusions: To reduce low birth weight baby through economic empowerment of family and individual women. Prevention and control of anemia during pregnancy is one of the another strategy to control the LBW baby and mothers should take full dose of iron supplements with screening of haemoglobin level. Extra nutritional food should be provided to women during pregnancy. Health promotion program will be focused on avoidance of alcohol and strengthen of health services that leads increasing use of maternity services.

Keywords: low birth weight, case-control, risk factors, hospital based study

Procedia PDF Downloads 300
108 Mapping the Early History of Common Law Education in England, 1292-1500

Authors: Malcolm Richardson, Gabriele Richardson

Abstract:

This paper illustrates how historical problems can be studied successfully using GIS even in cases in which data, in the modern sense, is fragmentary. The overall problem under investigation is how early (1300-1500) English schools of Common Law moved from apprenticeship training in random individual London inns run in part by clerks of the royal chancery to become what is widely called 'the Third University of England,' a recognized system of independent but connected legal inns. This paper focuses on the preparatory legal inns, called the Inns of Chancery, rather than the senior (and still existing) Inns of Court. The immediate problem studied in this paper is how the junior legal inns were organized, staffed, and located from 1292 to about 1500, and what maps tell us about the role of the chancery clerks as managers of legal inns. The authors first uncovered the names of all chancery clerks of the period, most of them unrecorded in histories, from archival sources in the National Archives, Kew. Then they matched the names with London property leases. Using ArcGIS, the legal inns and their owners were plotted on a series of maps covering the period 1292 to 1500. The results show a distinct pattern of ownership of the legal inns and suggest a narrative that would help explain why the Inns of Chancery became serious centers of learning during the fifteenth century. In brief, lower-ranking chancery clerks, always looking for sources of income, discovered by 1370 that legal inns could be a source of income. Since chancery clerks were intimately involved with writs and other legal forms, and since the chancery itself had a long-standing training system, these clerks opened their own legal inns to train fledgling lawyers, estate managers, and scriveners. The maps clearly show growth patterns of ownership by the chancery clerks for both legal inns and other London properties in the areas of Holborn and The Strand between 1450 and 1417. However, the maps also show that a royal ordinance of 1417 forbidding chancery clerks to live with lawyers, law students, and other non-chancery personnel had an immediate effect, and properties in that area of London leased by chancery clerks simply stop after 1417. The long-term importance of the patterns shown in the maps is that while the presence of chancery clerks in the legal inns likely created a more coherent education system, their removal forced the legal profession, suddenly without a hostelry managerial class, to professionalize the inns and legal education themselves. Given the number and social status of members of the legal inns, the effect on English education was to free legal education from the limits of chancery clerk education (the clerks were not practicing common lawyers) and to enable it to become broader in theory and practice, in fact, a kind of 'finishing school' for the governing (if not noble) class.

Keywords: GIS, law, London, education

Procedia PDF Downloads 174
107 Evaluation of the Role of Advocacy and the Quality of Care in Reducing Health Inequalities for People with Autism, Intellectual and Developmental Disabilities at Sheffield Teaching Hospitals

Authors: Jonathan Sahu, Jill Aylott

Abstract:

Individuals with Autism, Intellectual and Developmental disabilities (AIDD) are one of the most vulnerable groups in society, hampered not only by their own limitations to understand and interact with the wider society, but also societal limitations in perception and understanding. Communication to express their needs and wishes is fundamental to enable such individuals to live and prosper in society. This research project was designed as an organisational case study, in a large secondary health care hospital within the National Health Service (NHS), to assess the quality of care provided to people with AIDD and to review the role of advocacy to reduce health inequalities in these individuals. Methods: The research methodology adopted was as an “insider researcher”. Data collection included both quantitative and qualitative data i.e. a mixed method approach. A semi-structured interview schedule was designed and used to obtain qualitative and quantitative primary data from a wide range of interdisciplinary frontline health care workers to assess their understanding and awareness of systems, processes and evidence based practice to offer a quality service to people with AIDD. Secondary data were obtained from sources within the organisation, in keeping with “Case Study” as a primary method, and organisational performance data were then compared against national benchmarking standards. Further data sources were accessed to help evaluate the effectiveness of different types of advocacy that were present in the organisation. This was gauged by measures of user and carer experience in the form of retrospective survey analysis, incidents and complaints. Results: Secondary data demonstrate near compliance of the Organisation with the current national benchmarking standard (Monitor Compliance Framework). However, primary data demonstrate poor knowledge of the Mental Capacity Act 2005, poor knowledge of organisational systems, processes and evidence based practice applied for people with AIDD. In addition there was poor knowledge and awareness of frontline health care workers of advocacy and advocacy schemes for this group. Conclusions: A significant amount of work needs to be undertaken to improve the quality of care delivered to individuals with AIDD. An operational strategy promoting the widespread dissemination of information may not be the best approach to deliver quality care and optimal patient experience and patient advocacy. In addition, a more robust set of standards, with appropriate metrics, needs to be developed to assess organisational performance which will stand the test of professional and public scrutiny.

Keywords: advocacy, autism, health inequalities, intellectual developmental disabilities, quality of care

Procedia PDF Downloads 217
106 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
105 Assessment of Urban Environmental Noise in Urban Habitat: A Spatial Temporal Study

Authors: Neha Pranav Kolhe, Harithapriya Vijaye, Arushi Kamle

Abstract:

The economic growth engines are urban regions. As the economy expands, so does the need for peace and quiet, and noise pollution is one of the important social and environmental issue. Health and wellbeing are at risk from environmental noise pollution. Because of urbanisation, population growth, and the consequent rise in the usage of increasingly potent, diverse, and highly mobile sources of noise, it is now more severe and pervasive than ever before, and it will only become worse. Additionally, it will expand as long as there is an increase in air, train, and highway traffic, which continue to be the main contributors of noise pollution. The current study will be conducted in two zones of class I city of central India (population range: 1 million–4 million). Total 56 measuring points were chosen to assess noise pollution. The first objective evaluates the noise pollution in various urban habitats determined as formal and informal settlement. It identifies the comparison of noise pollution within the settlements using T- Test analysis. The second objective assess the noise pollution in silent zones (as stated in Central Pollution Control Board) in a hierarchical way. It also assesses the noise pollution in the settlements and compares with prescribed permissible limits using class I sound level equipment. As appropriate indices, equivalent noise level on the (A) frequency weighting network, minimum sound pressure level and maximum sound pressure level were computed. The survey is conducted for a period of 1 week. Arc GIS is used to plot and map the temporal and spatial variability in urban settings. It is discovered that noise levels at most stations, particularly at heavily trafficked crossroads and subway stations, were significantly different and higher than acceptable limits and squares. The study highlights the vulnerable areas that should be considered while city planning. The study demands area level planning while preparing a development plan. It also demands attention to noise pollution from the perspective of residential and silent zones. The city planning in urban areas neglects the noise pollution assessment at city level. This contributes to that, irrespective of noise pollution guidelines, the ground reality is far away from its applicability. The result produces incompatible land use on a neighbourhood scale with respect to noise pollution. The study's final results will be useful to policymakers, architects and administrators in developing countries. This will be useful for noise pollution in urban habitat governance by efficient decision making and policy formulation to increase the profitability of these systems.

Keywords: noise pollution, formal settlements, informal settlements, built environment, silent zone, residential area

Procedia PDF Downloads 118
104 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 121
103 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 156
102 Participatory Approach: A Tool for Improving Food Security and Empowering a Local Community in Chitima, Mozambique

Authors: Matias Hargreaves, Martin Del Valle, Diego Rodriguez, Riveros Jose Luis

Abstract:

Trough years, all kind of social development projects have tried to solve social problems such as hunger, poverty, malnutrition, food insecurity, among others, with poor success. Both private and state initiatives have invested resources in several countries and communities. Nevertheless, most of these initiatives are scientific or external developers-centered, with a lack of local participation. This compromises the sustainability of any intervention and also leads to a poor empowerment of local community. The participatory approach aims to rescue and enhance the local knowledge since it recognizes that this kind of problems are better known by native actors. The objective of the study was to describe the role played by the community empowerment on food security improvement in the NGO “O Viveiro” (15°43'37.77"S; 32°46'27.53"E) and Barrio Broma village (15°43'58.78"S; 32°46'7.27"E) in Chitima, Mozambique. A center for training in goat livestock and orchard was build. A community orchard was co-constructed between foreign technicians and local actors. The prototype was installed in February, 2016 by the technician team and local community with 16 m2 as a nursery garden. Two orchard workshops were conducted in order to design a sustainable productive model which mixes both local and technological approaches. Two goat meat workshops were conducted in order to describe local methods and train the community to conduce their own techniques with high sanitary and productive standards. Technician team stayed in Mozambique until May, 2016. The quorum for the orchard workshops was 20 and 14 persons respectively, which represents 100% and 70%of the total requested quorum (20). For the goat meat workshops were 4 and 5 persons, which representa80% and 100% of the total requested quorum (5). Until August, 2016, the orchard is 3.219 m2 and it grows several vegetables as beans, chili pepper, garlic, onion, tomatoes, lettuce, sweet potato, yuca potato, cabbage, eggplant, papaya trees, mango, and cassava. The process of increasing in size and diversification of vegetables grown was led entirely by the local community. In connection with this, the local community started to harvest and began to sell the vegetable products at the local market. At the meat goat workshops, local participants rescued a local knowledge by describing and practicing a traditional way to process goat meat by drying it outdoors and then doing a smoked treatment. This information might contribute to describe the level of empowerment of this community, and thus give evidence of acceptance of foreign intervention for improving their own proceedings and traditions.

Keywords: children malnutrition, food security, Local community, participatory approach

Procedia PDF Downloads 276
101 Evaluation of Bagh Printing Motifs and Processes of Madhya Pradesh: From Past to Contemporary

Authors: Kaveri Dutta, Ratna Sharma

Abstract:

Indian traditional textile is a synthesis of various cultures. Art and crafts of a country showcases the rich cultural and artistic history of that nation. Prehistorically Indian handicrafts were basically made for day to day use; the yearning for aesthetic application soon saw the development of flooding designs and motifs. Similarly, Bagh print a traditional hand block Print with natural colours an Indian handicraft practiced in Bagh, Madhya Pradesh(India). Bagh print has its roots in Sindh, which is now a part of Pakistan. The present form of Bagh printing actually started in 1962 when the craftsmen migrated from Manavar to the neighboring town of Bagh situated in Madhya Pradesh and hence Bagh has always been associated with this printing style. Bagh printing basically involved blocks that are carved onto motifs that represent flora such as Jasmine, Mushroom leheriya and so on. There are some prints that were inspired by the jaali work that embellished the Taj Mahal and various other forts. Inspiration is also drawn from the landscapes and geometrical figures. The motifs evoke various moods in the serenity of the prints and that is the catchy element of Bagh prints. The development in this traditional textile is as essential as in another field. Nowadays fashion trends are fragile and innovative changes over existing fashion field in the short span is the demand of times. We must make efforts to preserve this cultural heritage of arts and crafts and this is done either by documenting the various ancient traditions or by making a blend of it. Since this craft is well known over the world, but the need is to document the original motif, fabric, technology and colors used in contemporary fashion. Hence keeping above points in mind this study on bagh print textiles of Madhya Pradesh work has been formulated. The information incorporated in the paper was based on secondary data taken from relevant books, journals, museum visit and articles. Besides for the demographic details and working profile of the artisans dealt with printing, an interview schedule was carried out in three regions of Madhya Pradesh. This work of art was expressed in Cotton fabric. For this study selected traditional motifs for Bang printing was used. Some of the popular traditional Bagh motifs are Jasmine, Mushroom leheriya, geometrical figures and jaali work. The Bagh printed cotton fabrics were developed into a range of men’s ethic wear in combination with embroideries from Rajasthan. Products developed were bandhgala jackets, kurtas, serwani and dupattas. From the present study, it can be observed that the embellished traditional Bang printed range of ethnic men’s wear resulted in the fresh and colourful pattern. The embroidered Bagh printed cotton fabric also created a huge change in a positive way among artisans of the three regions.

Keywords: art and craft of Madhya Pradesh, evolution of printing in India, history of Bagh printing, sources of inspiration

Procedia PDF Downloads 353
100 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning

Authors: Hossein Havaeji, Tony Wong, Thien-My Dao

Abstract:

1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.

Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning

Procedia PDF Downloads 122
99 A Qualitative Study Identifying the Complexities of Early Childhood Professionals' Use and Production of Data

Authors: Sara Bonetti

Abstract:

The use of quantitative data to support policies and justify investments has become imperative in many fields including the field of education. However, the topic of data literacy has only marginally touched the early care and education (ECE) field. In California, within the ECE workforce, there is a group of professionals working in policy and advocacy that use quantitative data regularly and whose educational and professional experiences have been neglected by existing research. This study aimed at analyzing these experiences in accessing, using, and producing quantitative data. This study utilized semi-structured interviews to capture the differences in educational and professional backgrounds, policy contexts, and power relations. The participants were three key professionals from county-level organizations and one working at a State Department to allow for a broader perspective at systems level. The study followed Núñez’s multilevel model of intersectionality. The key in Núñez’s model is the intersection of multiple levels of analysis and influence, from the individual to the system level, and the identification of institutional power dynamics that perpetuate the marginalization of certain groups within society. In a similar manner, this study looked at the dynamic interaction of different influences at individual, organizational, and system levels that might intersect and affect ECE professionals’ experiences with quantitative data. At the individual level, an important element identified was the participants’ educational background, as it was possible to observe a relationship between that and their positionality, both with respect to working with data and also with respect to their power within an organization and at the policy table. For example, those with a background in child development were aware of how their formal education failed to train them in the skills that are necessary to work in policy and advocacy, and especially to work with quantitative data, compared to those with a background in administration and/or business. At the organizational level, the interviews showed a connection between the participants’ position within the organization and their organization’s position with respect to others and their degree of access to quantitative data. This in turn affected their sense of empowerment and agency in dealing with data, such as shaping what data is collected and available. These differences reflected on the interviewees’ perceptions and expectations for the ECE workforce. For example, one of the interviewees pointed out that many ECE professionals happen to use data out of the necessity of the moment. This lack of intentionality is a cause for, and at the same time translates into missed training opportunities. Another interviewee pointed out issues related to the professionalism of the ECE workforce by remarking the inadequacy of ECE students’ training in working with data. In conclusion, Núñez’s model helped understand the different elements that affect ECE professionals’ experiences with quantitative data. In particular, what was clear is that these professionals are not being provided with the necessary support and that we are not being intentional in creating data literacy skills for them, despite what is asked of them and their work.

Keywords: data literacy, early childhood professionals, intersectionality, quantitative data

Procedia PDF Downloads 252
98 Industrial Waste Multi-Metal Ion Exchange

Authors: Thomas S. Abia II

Abstract:

Intel Chandler Site has internally developed its first-of-kind (FOK) facility-scale wastewater treatment system to achieve multi-metal ion exchange. The process was carried out using a serial process train of carbon filtration, pH / ORP adjustment, and cationic exchange purification to treat dilute metal wastewater (DMW) discharged from a substrate packaging factory. Spanning a trial period of 10 months, a total of 3,271 samples were collected and statistically analyzed (average baseline + standard deviation) to evaluate the performance of a 95-gpm, multi-reactor continuous copper ion exchange treatment system that was consequently retrofitted for manganese ion exchange to meet environmental regulations. The system is also equipped with an inline acid and hot caustic regeneration system to rejuvenate exhausted IX resins and occasionally remove surface crud. Data generated from lab-scale studies was transferred to system operating modifications following multiple trial-and-error experiments. Despite the DMW treatment system failing to meet internal performance specifications for manganese output, it was observed to remove the cation notwithstanding the prevalence of copper in the waste stream. Accordingly, the average manganese output declined from 6.5 + 5.6 mg¹L⁻¹ at pre-pilot to 1.1 + 1.2 mg¹L⁻¹ post-pilot (83% baseline reduction). This milestone was achieved regardless of the average influent manganese to DMW increasing from 1.0 + 13.7 mg¹L⁻¹ at pre-pilot to 2.1 + 0.2 mg¹L⁻¹ post-pilot (110% baseline uptick). Likewise, the pre-trial and post-trial average influent copper values to DMW were 22.4 + 10.2 mg¹L⁻¹ and 32.1 + 39.1 mg¹L⁻¹, respectively (43% baseline increase). As a result, the pre-trial and post-trial average copper output values were 0.1 + 0.5 mg¹L⁻¹ and 0.4 + 1.2 mg¹L⁻¹, respectively (300% baseline uptick). Conclusively, the operating pH range upstream of treatment (between 3.5 and 5) was shown to be the largest single point of influence for optimizing manganese uptake during multi-metal ion exchange. However, the high variability of the influent copper-to-manganese ratio was observed to adversely impact the system functionality. The journal herein intends to discuss the operating parameters such as pH and oxidation-reduction potential (ORP) that were shown to influence the functional versatility of the ion exchange system significantly. The literature also proposes to discuss limitations of the treatment system such as influent copper-to-manganese ratio variations, operational configuration, waste by-product management, and system recovery requirements to provide a balanced assessment of the multi-metal ion exchange process. The take-away from this literature is intended to analyze the overall feasibility of ion exchange for metals manufacturing facilities that lack the capability to expand hardware due to real estate restrictions, aggressive schedules, or budgetary constraints.

Keywords: copper, industrial wastewater treatment, multi-metal ion exchange, manganese

Procedia PDF Downloads 143
97 Monitoring and Improving Performance of Soil Aquifer Treatment System and Infiltration Basins Performance: North Gaza Emergency Sewage Treatment Plant as Case Study

Authors: Sadi Ali, Yaser Kishawi

Abstract:

As part of Palestine, Gaza Strip (365 km2 and 1.8 million habitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is to find non-conventional water resource from treated wastewater to irrigate 1500 hectares and serves over 100,000 inhabitants. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & 9 infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, phase A is functioning since Apr 2009. Since Apr 2009, a monitoring plan is conducted to monitor the infiltration rate (I.R.) of the 9 basins. Nearly 23 million m3 of partially treated wastewater were infiltrated up to Jun 2014. It is important to maintain an acceptable rate to allow the basins to handle the coming quantities (currently 10,000 m3 are pumped an infiltrated daily). The methodology applied was to review and analysis the collected data including the I.R.s, the WW quality and the drying-wetting schedule of the basins. One of the main findings is the relation between the Total Suspended Solids (TSS) at BLWWTP and the I.R. at the basins. Since April 2009, the basins scored an average I.R. of about 2.5 m/day. Since then the records showed a decreasing pattern of the average rate until it reached the lower value of 0.42 m/day in Jun 2013. This was accompanied with an increase of TSS (mg/L) concentration at the source reaching above 200 mg/L. The reducing of TSS concentration directly improved the I.R. (by cleaning the WW source ponds at Biet Lahia WWTP site). This was reflected in an improvement in I.R. in last 6 months from 0.42 m/day to 0.66 m/day then to nearly 1.0 m/day as the average of the last 3 months of 2013. The wetting-drying scheme of the basins was observed (3 days wetting and 7 days drying) besides the rainfall rates. Despite the difficulty to apply this scheme accurately a control of flow to each basin was applied to improve the I.R. The drying-wetting system affected the I.R. of individual basins, thus affected the overall system rate which was recorded and assessed. Also the ploughing activities at the infiltration basins as well were recommended at certain times to retain a certain infiltration level. This breaks the confined clogging layer which prevents the infiltration. It is recommended to maintain proper quality of WW infiltrated to ensure an acceptable performance of IBs. The continual maintenance of settling ponds at BLWWTP, continual ploughing of basins and applying soil treatment techniques at the IBs will improve the I.R.s. When the new WWTP functions a high standard effluent quality (TSS 20mg, BOD 20 mg/l and TN 15 mg/l) will be infiltrated, thus will enhance I.R.s of IBs due to lower organic load.

Keywords: SAT, wastewater quality, soil remediation, North Gaza

Procedia PDF Downloads 234
96 Global Service-Learning: Lessons Learned from Teacher Candidates

Authors: Miranda Lin

Abstract:

This project examined the impact of a globally focused service-learning project implemented in a multicultural education course in a Midwestern university. This project facilitated critical self-reflection and build cross-cultural competence while nurturing a partnership with two schools that serve students with disabilities in Vietnam. Through a service-learning project, pre-service teachers connected via Skype with the principals/teachers at schools in Vietnam to identify and subsequently develop needed instructional materials for students with mild, moderate, and severe disabilities. Qualitative data sources include students’ intercultural competence self-reflection survey (pre-test and post-test), reflections, discussions, service project, and lesson plans. Literature Review- Global service-learning is a teaching strategy that encompasses service experiences both in the local community and abroad. Drawing on elements of global learning and international service-learning, global service-learning experiences are guided by a framework that is designed to support global learning outcomes and involve direct engagement with difference. By engaging in real-world challenges, global service-learning experiences can support the achievement of learning outcomes such as civic. Knowledge and intercultural knowledge and competence. Intercultural competence development is considered essential for cooperative and reciprocal engagement with community partners.Method- Participants (n=27*) were mostly elementary and early childhood pre-service teachers who were enrolled in a multicultural education course. All but one was female. Among the pre-service teachers, one Asian American, two Latinas, and the rest were White. Two pre-service teachers identified themselves as from the low socioeconomic families and the rest were from the middle to upper middle class.The global service-learning project was implemented in the spring of 2018. Two Vietnamese schools that served students with disabilities agreed to be the global service-learning sites. Both schools were located in an urban city.Systematic collection of data coincided with the course schedule as follows: an initial intercultural competence self-reflection survey completed in week one, guided reflections submitted in week 1, 9, and 16, written lesson plans and supporting materials for the service project submitted in week 16, and a final intercultural competence self-reflection survey completed in week 16. Significance-This global service-learning project has helped participants meet Merryfield’s goals in various degrees. They 1) learned knowledge and skills in the basics of instructional planning, 2) used a variety of instructional methods that encourage active learning, meet the different learning styles of students, and are congruent with content and educational goals, 3) gained the awareness and support of their students as individuals and as learners, 4) developed questioning techniques that build higher-level thinking skills, and 5) made progress in critically reflecting on and improving their own teaching and learning as a professional educator as a result of this project.

Keywords: global service-learning, teacher education, intercultural competence, diversity

Procedia PDF Downloads 117