Search results for: simultaneous measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3322

Search results for: simultaneous measurement

2362 Removal of Mixed Heavy Metals from Contaminated Clay Soils Using Pulsed Electrokinetic Process

Authors: Nuhu Dalhat Mu’azu, Abdullahi Usman, A. Bukhari, Muhammad Hussain Essa, Salihu Lukman

Abstract:

Electrokinetic remediation process was employed for the removal of four (4) heavy metals (Cr, Cu, Hg and Pb) from contaminated clay and bentonite soils under pulsed current supply mode. The effects of voltage gradient, pulse duty cycle and bentonite/clay ratio on the simultaneous removal efficiencies of the heavy metals were investigated. A total of thirteen experiments were designed and conducted according to factorial design with each experiment allowed to continuously ran for 3 weeks. Results obtained showed that increase in bentonite ratio decreased the removal efficiency of the heavy metals with no significant effect on the energy consumption. Conversely, increase in both voltage gradient and pulse duty cycle increased the heavy metals removal efficiencies with increased in energy consumption. Additionally, increase in voltage gradient increased the electrical conductivity and the soil pH due to due to continuous refill and replacement of process fluids as they decomposed under the induced voltage gradient. Under different operating conditions, the maximum removal efficiencies obtained for Cr, Cu, Hg, and Pb were 21.87, 83.2, 62.4, 78.06 and 16.65% respectively.

Keywords: clay, bentonite, soil remediation, mixed contaminants, heavy metals, and electrokinetic-adsorption

Procedia PDF Downloads 435
2361 Prioritizing Quality Dimensions in ‘Servitised’ Business through AHP

Authors: Mohita Gangwar Sharma

Abstract:

Different factors are compelling manufacturers to move towards the phenomenon of servitization i.e. when firms go beyond giving support to the customers in operating the equipment. The challenges that are being faced in this transition by the manufacturing firms from being a product provider to a product- service provider are multipronged. Product-Service Systems (PSS) lies in between the pure-product and pure-service continuum. Through this study, we wish to understand the dimensions of ‘PSS-quality’. We draw upon the quality literature for both the product and services and through an expert survey for a specific transportation sector using analytical hierarchical process (AHP) derive a conceptual model that can be used as a comprehensive measurement tool for PSS offerings.

Keywords: servitisation, quality, product-service system, AHP

Procedia PDF Downloads 313
2360 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation

Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza

Abstract:

The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.

Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes

Procedia PDF Downloads 482
2359 Enhanced Peroxidase Production by Raoultella Species

Authors: Ayodeji O. Falade, Leonard V. Mabinya, Uchechukwu U. Nwodo, Anthony I. Okoh

Abstract:

Given the high-utility of peroxidase, its production in large amount is of utmost importance. Over the years, actinomycetes have been the major peroxidase-producing bacteria. Consequently, other classes of bacteria with peroxidase production potentials are underexplored. This study, therefore, sought to enhance peroxidase production by a Raoultella species, a new ligninolytic proteobacteria strain, by determining the optimum culture conditions (initial pH, incubation temperature and agitation speed) for peroxidase production under submerged fermentation using the classical process of one variable at a time and supplementing the fermentation medium with some lignin model and inorganic nitrogen compounds. Subsequently, the time-course assay was carried out under optimized conditions. Then, some agricultural residues were valorized for peroxidase production under solid state fermentation. Peroxidase production was optimal at initial pH 5, incubation temperature of 35 °C and agitation speed of 150 rpm with guaiacol and ammonium chloride as the best inducer and nitrogen supplement respectively. Peroxidase production by the Raoultella species was optimal at 72 h with specific productivity of 16.48 ± 0.89 U mg⁻¹. A simultaneous production of a non-peroxide dependent extracellular enzyme which suggests probable laccase production was observed with specific productivity of 13.63 ± 0.45 U mg⁻¹ while sawdust gave the best peroxidase yield under solid state fermentation. In conclusion, peroxidase production by the Raoultella species was increased by 3.40-fold.

Keywords: enzyme production, ligninolytic bacteria, peroxidase, proteobacteria

Procedia PDF Downloads 273
2358 Analysis of Financial Performance Measurement and Financial Distress Assessment of Highway Companies Listed on Indonesia Stock Exchange before and during COVID-19 Pandemic

Authors: Ari Prasetyo, Taufik Faturohman

Abstract:

The COVID-19 pandemic in Indonesia is part of the ongoing worldwide pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was confirmed to have spread to Indonesia on 2 March 2020. Moreover, the government of Indonesia has been conducting a local lockdown to limit people's movement from one city to another city. Therefore, this situation has impact on business operation, especially on highway companies listed on the Indonesia stock exchange. This study evaluates and measures three companies’ financial performance and health conditions before and during the COVID-19 pandemic from 2016 – 2020. The measurement is conducted by using financial ratio analysis and the Altman Z-score method. The ratio used to measure the financial ratio analysis is taken from the decree of the Ministry of SOE’s KEP-100/MBU/2002 about the company’s health level condition. From the decree, there are eight financial ratios used such as return on equity (ROE), return on investment (ROI), current ratio, cash ratio, collection period, inventory turnover, total asset turnover, and total equity to total asset. Altman Z-score is used to calculate the financial distress condition. The result shows that the highway companies for the period 2016 – 2020 are as follows: PT Jasa Marga (Persero) Tbk (AA, BB, BB, BB, C), PT Citra Marga Nusaphala Persada Tbk (BB, AA, BB, BBB, C), and PT Nusantara Infrastructure Tbk (BB, BB, AA, BBB, C). In addition, the Altman Z-score assessment performed in 2016-2020 shows that PT Jasa Marga (Persero) Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020. PT Citra Marga Nusaphala Persada Tbk was in the grey zone area for 2015-2019 and in the distress zone for 2020. PT Nusantara Infrastructure Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020.

Keywords: financial performance, financial ratio, Altman Z-score, financial distress, highway company

Procedia PDF Downloads 196
2357 Volatile Organic Compounds (VOCS) Destruction by Catalytic Oxidation for Environmental Applications

Authors: Mohammed Nasir Kajama, Ngozi Claribelle Nwogu, Edward Gobina

Abstract:

Pt/γ-Al2O3 membrane catalysts were prepared via an evaporative-crystallization deposition method. The obtained Pt/γ-Al2O3 catalyst activity was tested after characterization (SEM-EDAX observation, BET measurement, permeability assessment) in the catalytic oxidation of selected volatile organic compound (VOC) i.e. propane, fed in mixture of oxygen. The VOC conversion (nearly 90%) obtained by varying the operating temperature showed that flow-through membrane reactor might do better in the abatement of VOCs.

Keywords: VOC combustion, flow-through membrane reactor, platinum supported alumina catalysts

Procedia PDF Downloads 549
2356 Hydrodynamic Characterisation of a Hydraulic Flume with Sheared Flow

Authors: Daniel Rowe, Christopher R. Vogel, Richard H. J. Willden

Abstract:

The University of Oxford’s recirculating water flume is a combined wave and current test tank with a 1 m depth, 1.1 m width, and 10 m long working section, and is capable of flow speeds up to 1 ms−1 . This study documents the hydrodynamic characteristics of the facility in preparation for experimental testing of horizontal axis tidal stream turbine models. The turbine to be tested has a rotor diameter of 0.6 m and is a modified version of one of two model-scale turbines tested in previous experimental campaigns. An Acoustic Doppler Velocimeter (ADV) was used to measure the flow at high temporal resolution at various locations throughout the flume, enabling the spatial uniformity and turbulence flow parameters to be investigated. The mean velocity profiles exhibited high levels of spatial uniformity at the design speed of the flume, 0.6 ms−1 , with variations in the three-dimensional velocity components on the order of ±1% at the 95% confidence level, along with a modest streamwise acceleration through the measurement domain, a target 5 m working section of the flume. A high degree of uniformity was also apparent for the turbulence intensity, with values ranging between 1-2% across the intended swept area of the turbine rotor. The integral scales of turbulence exhibited a far higher degree of variation throughout the water column, particularly in the streamwise and vertical scales. This behaviour is believed to be due to the high signal noise content leading to decorrelation in the sampling records. To achieve more realistic levels of vertical velocity shear in the flume, a simple procedure to practically generate target vertical shear profiles in open-channel flows is described. Here, the authors arranged a series of non-uniformly spaced parallel bars placed across the width of the flume and normal to the onset flow. By adjusting the resistance grading across the height of the working section, the downstream profiles could be modified accordingly, characterised by changes in the velocity profile power law exponent, 1/n. Considering the significant temporal variation in a tidal channel, the choice of the exponent denominator, n = 6 and n = 9, effectively provides an achievable range around the much-cited value of n = 7 observed at many tidal sites. The resulting flow profiles, which we intend to use in future turbine tests, have been characterised in detail. The results indicate non-uniform vertical shear across the survey area and reveal substantial corner flows, arising from the differential shear between the target vertical and cross-stream shear profiles throughout the measurement domain. In vertically sheared flow, the rotor-equivalent turbulence intensity ranges between 3.0-3.8% throughout the measurement domain for both bar arrangements, while the streamwise integral length scale grows from a characteristic dimension on the order of the bar width, similar to the flow downstream of a turbulence-generating grid. The experimental tests are well-defined and repeatable and serve as a reference for other researchers who wish to undertake similar investigations.

Keywords: acoustic doppler Velocimeter, experimental hydrodynamics, open-channel flow, shear profiles, tidal stream turbines

Procedia PDF Downloads 97
2355 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters

Authors: Trevor C. Brown, David J. Miron

Abstract:

Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.

Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics

Procedia PDF Downloads 237
2354 Introducing α-Oxoester (COBz) as a Protecting Group for Carbohydrates

Authors: Atul Kumar, Veeranjaneyulu Gannedi, Qazi Naveed Ahmed

Abstract:

Oligosaccharides, which are essential to all cellular organisms, play vital roles in cell recognition, signaling, and are involved in a broad range of biological processes. The chemical synthesis of carbohydrates represents a powerful tool to provide homogeneous glycans. In carbohydrate synthesis, the major concern is the orthogonal protection of hydroxyl groups that can be unmasked independently. Classical protecting groups include benzyl ethers (Bn), which are normally cleaved through hydrogenolysis or by means of metal reduction, and acetate (Ac), benzoate (Bz) or pivaloate esters, which are removed using base promoted hydrolysis. In present work a series of α-Oxoester (COBz) protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac), were designed and KHSO₅/CH₃COCl in methanol was identified as an easy, mild, selective and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of later reagent was advantageous in establishing both sequential as well as simultaneous deprotecting of COBz, Bz, and Ac. The salient feature of our work is its ease to generate different acceptors using designed monosaccharides. In summary, we demonstrated α-Oxoester (COBz) as a new protecting group for carbohydrates and the application of this group for the synthesis of Glycosylphosphatidylinositol (GPI) anchor are in progress.

Keywords: α-Oxoester, oligosaccharides, new protecting group, acceptor synthesis, glycosylation

Procedia PDF Downloads 151
2353 Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees

Authors: Doru Anastasiu Popescu, Dan Rădulescu

Abstract:

In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language.

Keywords: Tag, HTML, web page, genetic algorithm, similarity value, binary tree

Procedia PDF Downloads 357
2352 Comfort Sensor Using Fuzzy Logic and Arduino

Authors: Samuel John, S. Sharanya

Abstract:

Automation has become an important part of our life. It has been used to control home entertainment systems, changing the ambience of rooms for different events etc. One of the main parameters to control in a smart home is the atmospheric comfort. Atmospheric comfort mainly includes temperature and relative humidity. In homes, the desired temperature of different rooms varies from 20 °C to 25 °C and relative humidity is around 50%. However, it varies widely. Hence, automated measurement of these parameters to ensure comfort assumes significance. To achieve this, a fuzzy logic controller using Arduino was developed using MATLAB. Arduino is an open source hardware consisting of a 24 pin ATMEGA chip (atmega328), 14 digital input /output pins and an inbuilt ADC. It runs on 5v and 3.3v power supported by a board voltage regulator. Some of the digital pins in Aruduino provide PWM (pulse width modulation) signals, which can be used in different applications. The Arduino platform provides an integrated development environment, which includes support for c, c++ and java programming languages. In the present work, soft sensor was introduced in this system that can indirectly measure temperature and humidity and can be used for processing several measurements these to ensure comfort. The Sugeno method (output variables are functions or singleton/constant, more suitable for implementing on microcontrollers) was used in the soft sensor in MATLAB and then interfaced to the Arduino, which is again interfaced to the temperature and humidity sensor DHT11. The temperature-humidity sensor DHT11 acts as the sensing element in this system. Further, a capacitive humidity sensor and a thermistor were also used to support the measurement of temperature and relative humidity of the surrounding to provide a digital signal on the data pin. The comfort sensor developed was able to measure temperature and relative humidity correctly. The comfort percentage was calculated and accordingly the temperature in the room was controlled. This system was placed in different rooms of the house to ensure that it modifies the comfort values depending on temperature and relative humidity of the environment. Compared to the existing comfort control sensors, this system was found to provide an accurate comfort percentage. Depending on the comfort percentage, the air conditioners and the coolers in the room were controlled. The main highlight of the project is its cost efficiency.

Keywords: arduino, DHT11, soft sensor, sugeno

Procedia PDF Downloads 317
2351 Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile

Authors: Z. Younsi, L. Koufi, H. Gidik, D. Lahem, W. Wim Thielemans

Abstract:

This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising.

Keywords: benzene, C₆H₆, efficiency, photocatalytic degradation, textile fabrics, titanium dioxide, TiO₂, toluene, C₇H₈, visible light

Procedia PDF Downloads 176
2350 Capital Adequacy and Islamic Banks Behavior: Evidence from Middle East Countries

Authors: Khaled Alkadamani

Abstract:

Using the simultaneous equations model, this paper examines the impact of capital requirements on bank risk-taking during the recent financial crisis. It also explores the relationship between capital and risk decisions and the impact of economic instability on this relationship. By analyzing the data of 20 Islamic commercial banks between 2004 and 2014 from four Middle East countries, the study concludes a positive effect of regulatory pressure on bank capital in Saudi Arabia and UAE and a negative effect in Jordan and Kuwait. Moreover, the results show a negative impact of regulatory pressure on bank risk taking in Saudi Arabia, Jordan and UAE. The findings reveal also that banks close to the minimum regulatory capital requirements improve their capital adequacy by increasing their capital and decreasing their risk taking. Furthermore, the results show that economic crisis negatively affects bank risk changes, suggesting that banks react to the impact of uncertainty by reducing their risk taking. Finally, the estimations show a negative correlation between banks profitability and capital adequacy ratio (CAR), implying that as more capital is set aside as a buffer for banks safety; it affects the performance of Islamic banks.

Keywords: bank capital, bank regulation, crisis, Islamic banks, risk taking

Procedia PDF Downloads 444
2349 Survey of Methods for Solutions of Spatial Covariance Structures and Their Limitations

Authors: Joseph Thomas Eghwerido, Julian I. Mbegbu

Abstract:

In modelling environment processes, we apply multidisciplinary knowledge to explain, explore and predict the Earth's response to natural human-induced environmental changes. Thus, the analysis of spatial-time ecological and environmental studies, the spatial parameters of interest are always heterogeneous. This often negates the assumption of stationarity. Hence, the dispersion of the transportation of atmospheric pollutants, landscape or topographic effect, weather patterns depends on a good estimate of spatial covariance. The generalized linear mixed model, although linear in the expected value parameters, its likelihood varies nonlinearly as a function of the covariance parameters. As a consequence, computing estimates for a linear mixed model requires the iterative solution of a system of simultaneous nonlinear equations. In other to predict the variables at unsampled locations, we need to know the estimate of the present sampled variables. The geostatistical methods for solving this spatial problem assume covariance stationarity (locally defined covariance) and uniform in space; which is not apparently valid because spatial processes often exhibit nonstationary covariance. Hence, they have globally defined covariance. We shall consider different existing methods of solutions of spatial covariance of a space-time processes at unsampled locations. This stationary covariance changes with locations for multiple time set with some asymptotic properties.

Keywords: parametric, nonstationary, Kernel, Kriging

Procedia PDF Downloads 258
2348 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed.

Abstract:

High-Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20-60 and 6-18 µg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 µg/ml and for 6S were 0.3672 and 1.2238 µg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: ginger, 6-gingerol, HPLC, 6-shogaol

Procedia PDF Downloads 449
2347 Same-Day Detection Method of Salmonella Spp., Shigella Spp. and Listeria Monocytogenes with Fluorescence-Based Triplex Real-Time PCR

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

Faster detection and characterization of pathogens are the basis of the evoid from foodborne pathogens. Salmonella spp., Shigella spp. and Listeria monocytogenes are common foodborne bacteria that are among the most life-threatining. It is important to rapid and accurate detection of these pathogens to prevent food poisoning and outbreaks or to manage food chains. The present work promise to develop a sensitive, species specific and reliable PCR based detection system for simultaneous detection of Salmonella spp., Shigella spp. and Listeria monocytogenes. For this purpose, three genes were picked out, ompC for Salmonella spp., ipaH for Shigella spp. and hlyA for L. monocytogenes. After short pre-enrichment of milk was passed through a vacuum filter and bacterial DNA was exracted using commercially available kit GIDAGEN®(Turkey, İstanbul). Detection of amplicons was verified by examination of the melting temperature (Tm) that are 72° C, 78° C, 82° C for Salmonella spp., Shigella spp. and L. monocytogenes, respectively. The method specificity was checked against a group of bacteria strains, and also carried out sensitivity test resulting in under 10² CFU mL⁻¹ of milk for each bacteria strain. Our results show that the flourescence based triplex qPCR method can be used routinely to detect Salmonella spp., Shigella spp. and L. monocytogenes during the milk processing procedures in order to reduce cost, time of analysis and the risk of foodborne disease outbreaks.

Keywords: evagreen, food-born bacteria, pathogen detection, real-time pcr

Procedia PDF Downloads 245
2346 Setting Control Limits For Inaccurate Measurements

Authors: Ran Etgar

Abstract:

The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X ̅-chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter (Y ̅) is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables.

Keywords: quality control, process control, round-off, measurement, rounding error

Procedia PDF Downloads 104
2345 Modeling of Processes Running in Radical Clusters Formed by Ionizing Radiation with the Help of Continuous Petri Nets and Oxygen Effect

Authors: J. Barilla, M. Lokajíček, H. Pisaková, P. Simr

Abstract:

The final biological effect of ionizing particles may be influenced strongly by some chemical substances present in cells mainly in the case of low-LET radiation. The influence of oxygen may be particularly important because oxygen is always present in living cells. The corresponding processes are then running mainly in the chemical stage of radio biological mechanism. The radical clusters formed by densely ionizing ends of primary or secondary charged particles are mainly responsible for final biological effect. The damage effect depends then on radical concentration at a time when the cluster meets a DNA molecule. It may be strongly influenced by oxygen present in a cell as oxygen may act in different directions: at small concentration of it the interaction with hydrogen radicals prevails while at higher concentrations additional efficient oxygen radicals may be formed. The basic radical concentration in individual clusters diminishes, which is influenced by two parallel processes: chemical reactions and diffusion of corresponding clusters. The given simultaneous evolution may be modeled and analyzed well with the help of Continuous Petri nets. The influence of other substances present in cells during irradiation may be studied, too. Some results concerning the impact of oxygen content will be presented.

Keywords: radiobiological mechanism, chemical phase, DSB formation, Petri nets

Procedia PDF Downloads 316
2344 Health Monitoring of Composite Pile Construction Using Fiber Bragg Gratings Sensor Arrays

Authors: B. Atli-Veltin, A. Vosteen, D. Megan, A. Jedynska, L. K. Cheng

Abstract:

Composite materials combine the advantages of being lightweight and possessing high strength. This is in particular of interest for the development of large constructions, e.g., aircraft, space applications, wind turbines, etc. One of the shortcomings of using composite materials is the complex nature of the failure mechanisms which makes it difficult to predict the remaining lifetime. Therefore, condition and health monitoring are essential for using composite material for critical parts of a construction. Different types of sensors are used/developed to monitor composite structures. These include ultrasonic, thermography, shearography and fiber optic. The first 3 technologies are complex and mostly used for measurement in laboratory or during maintenance of the construction. Optical fiber sensor can be surface mounted or embedded in the composite construction to provide the unique advantage of in-operation measurement of mechanical strain and other parameters of interest. This is identified to be a promising technology for Structural Health Monitoring (SHM) or Prognostic Health Monitoring (PHM) of composite constructions. Among the different fiber optic sensing technologies, Fiber Bragg Grating (FBG) sensor is the most mature and widely used. FBG sensors can be realized in an array configuration with many FBGs in a single optical fiber. In the current project, different aspects of using embedded FBG for composite wind turbine monitoring are investigated. The activities are divided into two parts. Firstly, FBG embedded carbon composite laminate is subjected to tensile and bending loading to investigate the response of FBG which are placed in different orientations with respect to the fiber. Secondly, the demonstration of using FBG sensor array for temperature and strain sensing and monitoring of a 5 m long scale model of a glass fiber mono-pile is investigated. Two different FBG types are used; special in-house fibers and off-the-shelf ones. The results from the first part of the study are showing that the FBG sensors survive the conditions during the production of the laminate. The test results from the tensile and the bending experiments are indicating that the sensors successfully response to the change of strain. The measurements from the sensors will be correlated with the strain gauges that are placed on the surface of the laminates.

Keywords: Fiber Bragg Gratings, embedded sensors, health monitoring, wind turbine towers

Procedia PDF Downloads 246
2343 Automatic Vertical Wicking Tester Based on Optoelectronic Techniques

Authors: Chi-Wai Kan, Kam-Hong Chau, Ho-Shing Law

Abstract:

Wicking property is important for textile finishing and wears comfort. Good wicking properties can ensure uniformity and efficiency of the textiles treatment. In view of wear comfort, quick wicking fabrics facilitate the evaporation of sweat. Therefore, the wetness sensation of the skin is minimised to prevent discomfort. The testing method for vertical wicking was standardised by the American Association of Textile Chemists and Colorists (AATCC) in 2011. The traditional vertical wicking test involves human error to observe fast changing and/or unclear wicking height. This study introduces optoelectronic devices to achieve an automatic Vertical Wicking Tester (VWT) and reduce human error. The VWT can record the wicking time and wicking height of samples. By reducing the difficulties of manual judgment, the reliability of the vertical wicking experiment is highly increased. Furthermore, labour is greatly decreased by using the VWT. The automatic measurement of the VWT has optoelectronic devices to trace the liquid wicking with a simple operation procedure. The optoelectronic devices detect the colour difference between dry and wet samples. This allows high sensitivity to a difference in irradiance down to 10 μW/cm². Therefore, the VWT is capable of testing dark fabric. The VWT gives a wicking distance (wicking height) of 1 mm resolution and a wicking time of one-second resolution. Acknowledgment: This is a research project of HKRITA funded by Innovation and Technology Fund (ITF) with title “Development of an Automatic Measuring System for Vertical Wicking” (ITP/055/20TP). Author would like to thank the financial support by ITF. Any opinions, findings, conclusions or recommendations expressed in this material/event (or by members of the project team) do not reflect the views of the Government of the Hong Kong Special Administrative Region, the Innovation and Technology Commission or the Panel of Assessors for the Innovation and Technology Support Programme of the Innovation and Technology Fund and the Hong Kong Research Institute of Textiles and Apparel. Also, we would like to thank the support and sponsorship from Lai Tak Enterprises Limited, Kingis Development Limited and Wing Yue Textile Company Limited.

Keywords: AATCC method, comfort, textile measurement, wetness sensation

Procedia PDF Downloads 104
2342 Biogas Production from University Canteen Waste: Effect of Organic Loading Rate and Retention Time

Authors: Khamdan Cahyari, Gumbolo Hadi Susanto, Pratikno Hidayat, Sukirman

Abstract:

University canteen waste was used as raw material to produce biogas in Faculty of Industrial Technology, Islamic University of Indonesia. This faculty was home to more than 3000 students and lecturers who work and study for 5 days/week (8 hours/day). It produced approximately 85 ton/year organic fraction of canteen waste. Yet, this waste had been dumped for years in landfill area which cause severe environmental problems. It was proposed to utilize the waste as raw material for producing renewable energy source of biogas. This research activities was meant to investigate the effect of organic loading rate (OLR) and retention time (RT) of continuous anaerobic digestion process for 200 days. Organic loading rate was set at value 2, 3, 4 and 5 g VS/l/d whereas the retention time was adjusted at 30, 24, 18 and 14.4 days. Optimum condition was achieved at OLR 4 g VS/l/d and RT 24 days with biogas production rate between 0.75 to 1.25 liter/day (40-60% CH4). This indicated that the utilization of canteen waste to produce biogas was promising method to mitigate environmental problem of university canteen waste. Furthermore, biogas could be used as alternative energy source to supply energy demand at the university. This implementation is simultaneous solution for both waste and energy problems to achieve green campus.

Keywords: canteen waste, biogas, anaerobic digestion, university, green campus

Procedia PDF Downloads 422
2341 Kinetics of Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto

Abstract:

Sulfur-oxidizing bacteria were isolated and then grown on salak fruit seeds forming a biofilm on the surface. Their performances in sulfide removal were experimentally observed. In doing so, the salak fruit seeds containing biofilm were then used as packing material in a cylinder. Biogas obtained from biological treatment, which contains 27.95 ppm of hydrogen sulfide was flown through the packed bed. The hydrogen sulfide from the biogas was absorbed in the biofilm and then degraded by the microbes in the biofilm. The hydrogen sulfide concentrations at a various axial position and various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. Since the biofilm is very thin, the sulfide concentration in the Biofilm at a certain axial position is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The values of the parameters were also obtained by curve-fitting. The accuracy of the model proposed was tested by comparing the calculation results using the model with the experimental data obtained. It turned out that the model proposed can describe the removal of sulfide liquid using bio-filter in the packed bed. The biofilter could remove 89,83 % of the hydrogen sulfide in the feed at 2.5 hr of operation and biogas flow rate of 30 L/hr.

Keywords: sulfur-oxidizing bacteria, salak fruit seeds, biofilm, packing material, biogas

Procedia PDF Downloads 225
2340 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion

Authors: L. Mouzai, M. Bouhadef

Abstract:

Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.

Keywords: flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion

Procedia PDF Downloads 203
2339 Optimization of Sequential Thermophilic Bio-Hydrogen/Methane Production from Mono-Ethylene Glycol via Anaerobic Digestion: Impact of Inoculum to Substrate Ratio and N/P Ratio

Authors: Ahmed Elreedy, Ahmed Tawfik

Abstract:

This investigation aims to assess the effect of inoculum to substrate ratio (ISR) and nitrogen to phosphorous balance on simultaneous biohydrogen and methane production from anaerobic decomposition of mono-ethylene glycol (MEG). Different ISRs were applied in the range between 2.65 and 13.23 gVSS/gCOD, whereas the tested N/P ratios were changed from 4.6 to 8.5; both under thermophilic conditions (55°C). The maximum obtained methane and hydrogen yields (MY and HY) of 151.86±10.8 and 22.27±1.1 mL/gCODinitial were recorded at ISRs of 5.29 and 3.78 gVSS/gCOD, respectively. Unlikely, the ammonification process, in terms of net ammonia produced, was found to be ISR and COD/N ratio dependent, reaching its peak value of 515.5±31.05 mgNH4-N/L at ISR and COD/N ratio of 13.23 gVSS/gCOD and 11.56. The optimum HY was enhanced by more than 1.45-fold with declining N/P ratio from 8.5 to 4.6; whereas, the MY was improved (1.6-fold), while increasing N/P ratio from 4.6 to 5.5 with no significant impact at N/P ratio of 8.5. The results obtained revealed that the methane production was strongly influenced by initial ammonia, compared to initial phosphate. Likewise, the generation of ammonia was markedly deteriorated from 535.25±41.5 to 238.33±17.6 mgNH4-N/L with increasing N/P ratio from 4.6 to 8.5. The kinetic study using Modified Gompertz equation was successfully fitted to the experimental outputs (R2 > 0.9761).

Keywords: mono-ethylene glycol, biohydrogen and methane, inoculum to substrate ratio, nitrogen to phosphorous balance, ammonification

Procedia PDF Downloads 384
2338 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking

Authors: Peter U. Eze, P. Udaya, Robin J. Evans

Abstract:

Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.

Keywords: Constant Correlation, Medical Image, Spread Spectrum, Tamper Detection, Watermarking

Procedia PDF Downloads 199
2337 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 94
2336 The Position of Space weather in Africa-Education and Outreach

Authors: Babagana Abubakar, Alhaji Kuya

Abstract:

Although the field of Space weather science is a young field among the space sciences, but yet history has it that activities related to this science began since the year 1859 when the great solar storm happened which resulted in the disruptions of telegraphs operations around the World at that particular time subsequently making it possible for the scientist Richard Carrington to be able to connect the Solar flare observed a day earlier before the great storm and the great deflection of the Earth’s Magnetic field (geometric storm) simultaneous with the telegraph disruption. However years later as at today with the advent of and the coming into existence of the Explorer 1, the Luna 1 and the establishments of the United States International Space Weather Program, International Geophysical Year (IGY) as well as the International Center for Space Weather Sciences and Education (ICSWSE) have made us understand the Space weather better and enable us well define the field of Space weather science. Despite the successes recorded in the development of Space sciences as a whole over the last century and the coming onboard of specialized bodies/programs on space weather like the International Space Weather Program and the ICSWSE, the majority of Africans including institutions, research organizations and even some governments are still ignorant about the existence of theSpace weather science,because apart from some very few countries like South Africa, Nigeria and Egypt among some few others the majority of the African nations and their academic institutions have no knowledge or idea about the existence of this field of Space science (Space weather).

Keywords: Africa, space, weather, education, science

Procedia PDF Downloads 454
2335 Characterization and Calibration of a Fluxgate Magnetometer Sensor 539

Authors: Luz Yoali Alfaro Luna, Angélica Hernández Rayas, Teodoro Córdova Fraga

Abstract:

This work characterizes and calibrates a fluxgate 539 magnetometer sensor, implementing a real-time monitoring interface to measure magnetic fields with high precision. The objective is to develop an innovative prototype integrating the Fluxgate 539 sensor, a WX-DC2412 power supply, and an Arduino UNO. Methods include interface programming and data conversion to Gauss units. The results show accurate measurements after calibrating the sensor, establishing a foundation for further research in magnetobiology.

Keywords: calibration, fluxgate 539, magnetobiology, magnetic field measurement, monitoring interface, sensor characterization

Procedia PDF Downloads 24
2334 An Approach on the Design of a Solar Cell Characterization Device

Authors: Christoph Mayer, Dominik Holzmann

Abstract:

This paper presents the development of a compact, portable and easy to handle solar cell characterization device. The presented device reduces the effort and cost of single solar cell characterization to a minimum. It enables realistic characterization of cells under sunlight within minutes. In the field of photovoltaic research the common way to characterize a single solar cell or a module is, to measure the current voltage curve. With this characteristic the performance and the degradation rate can be defined which are important for the consumer or developer. The paper consists of the system design description, a summary of the measurement results and an outline for further developments.

Keywords: solar cell, photovoltaics, PV, characterization

Procedia PDF Downloads 424
2333 Comparison of Monte Carlo Simulations and Experimental Results for the Measurement of Complex DNA Damage Induced by Ionizing Radiations of Different Quality

Authors: Ifigeneia V. Mavragani, Zacharenia Nikitaki, George Kalantzis, George Iliakis, Alexandros G. Georgakilas

Abstract:

Complex DNA damage consisting of a combination of DNA lesions, such as Double Strand Breaks (DSBs) and non-DSB base lesions occurring in a small volume is considered as one of the most important biological endpoints regarding ionizing radiation (IR) exposure. Strong theoretical (Monte Carlo simulations) and experimental evidence suggests an increment of the complexity of DNA damage and therefore repair resistance with increasing linear energy transfer (LET). Experimental detection of complex (clustered) DNA damage is often associated with technical deficiencies limiting its measurement, especially in cellular or tissue systems. Our groups have recently made significant improvements towards the identification of key parameters relating to the efficient detection of complex DSBs and non-DSBs in human cellular systems exposed to IR of varying quality (γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm). The induction and processing of DSB and non-DSB-oxidative clusters were measured using adaptations of immunofluorescence (γH2AX or 53PB1 foci staining as DSB probes and human repair enzymes OGG1 or APE1 as probes for oxidized purines and abasic sites respectively). In the current study, Relative Biological Effectiveness (RBE) values for DSB and non-DSB induction have been measured in different human normal (FEP18-11-T1) and cancerous cell lines (MCF7, HepG2, A549, MO59K/J). The experimental results are compared to simulation data obtained using a validated microdosimetric fast Monte Carlo DNA Damage Simulation code (MCDS). Moreover, this simulation approach is implemented in two realistic clinical cases, i.e. prostate cancer treatment using X-rays generated by a linear accelerator and a pediatric osteosarcoma case using a 200.6 MeV proton pencil beam. RBE values for complex DNA damage induction are calculated for the tumor areas. These results reveal a disparity between theory and experiment and underline the necessity for implementing highly precise and more efficient experimental and simulation approaches.

Keywords: complex DNA damage, DNA damage simulation, protons, radiotherapy

Procedia PDF Downloads 329