Search results for: shape sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3370

Search results for: shape sensing

2410 The Impact Of Türki̇ye’s Decision-making Mechanism On The Transformation In Türkiye-syria Relations (2002-2024)

Authors: Ibrahim Akkan

Abstract:

This study analyses the transformation of Türkiye's Syria policy between 2002 and 2024 and the impact of domestic political dynamics in this process. Since the collapse of the Ottoman Empire, Türkiye and Syria have had a tense relationship for a long time due to reasons such as border issues, water sharing, security concerns and the activities of terrorist organizations. However, the process that started with the Adana Agreement in 1998 gained momentum with the Justice and Development Party (Ak Party) coming to power in 2002 and a historical period of rapprochement began between the two countries. During this period, Türkiye adopted the concept of “zero problems with neighbors” in its foreign policy and deepened its strategic partnerships in the region. Turkish-Syrian relations also developed within this framework, the trade volume between the two countries increased and cooperation was strengthened through mutual visits and diplomatic agreements. However, the Arab Spring that started in 2011 was a sharp turning point in Turkish-Syrian relations. The harsh stance of the Bashar Assad administration against the popular uprisings in Syria caused Türkiye to take a stance against Assad and support opposition groups. This process led to the severing of diplomatic ties between the two countries and the gradual deterioration of relations until 2024. Türkiye directly intervened in the civil war in Syria after the Arab Spring and conducted military operations in northern Syria that highlighted security policies. The main purpose of this study is to examine the transformation in Türkiye's Syria policies between 2002 and 2024 and to analyze the role of domestic political dynamics in Türkiye in this transformation. The main research question of the study is how domestic political actors in Türkiye, especially decision-makers (leaders, governments, political parties), shape foreign policy. In this context, the extent to which the leadership of the Ak Party government is decisive in decision-making processes and how the impact of domestic dynamics on foreign policy emerges will be studied. In this study, how both the pressures of the international system and domestic political dynamics shape foreign policy will be analyzed using the theoretical framework of neoclassical realism. How decision-making processes are decisive in foreign policy will be examined through a case study specific to Türkiye-Syria relations. In addition, the strategic preferences of leaders such as Recep Tayyip Erdoğan and Ahmet Davutoğlu in foreign policy and how these preferences overlap with developments in domestic politics will be evaluated using the discourse analysis method. This study aims to make a new contribution to the literature by providing a comprehensive analysis of how domestic dynamics shape foreign policy in Türkiye-Syria relations.

Keywords: decision-making mechanisms, foreign policy analysis, neoclassical realism, syria, türkiye

Procedia PDF Downloads 16
2409 Remote Sensing-Based Prediction of Asymptomatic Rice Blast Disease Using Hyperspectral Spectroradiometry and Spectral Sensitivity Analysis

Authors: Selvaprakash Ramalingam, Rabi N. Sahoo, Dharmendra Saraswat, A. Kumar, Rajeev Ranjan, Joydeep Mukerjee, Viswanathan Chinnasamy, K. K. Chaturvedi, Sanjeev Kumar

Abstract:

Rice is one of the most important staple food crops in the world. Among the various diseases that affect rice crops, rice blast is particularly significant, causing crop yield and economic losses. While the plant has defense mechanisms in place, such as chemical indicators (proteins, salicylic acid, jasmonic acid, ethylene, and azelaic acid) and resistance genes in certain varieties that can protect against diseases, susceptible varieties remain vulnerable to these fungal diseases. Early prediction of rice blast (RB) disease is crucial, but conventional techniques for early prediction are time-consuming and labor-intensive. Hyperspectral remote sensing techniques hold the potential to predict RB disease at its asymptomatic stage. In this study, we aimed to demonstrate the prediction of RB disease at the asymptomatic stage using non-imaging hyperspectral ASD spectroradiometer under controlled laboratory conditions. We applied statistical spectral discrimination theory to identify unknown spectra of M. Oryzae, the fungus responsible for rice blast disease. The infrared (IR) region was found to be significantly affected by RB disease. These changes may result in alterations in the absorption, reflection, or emission of infrared radiation by the affected plant tissues. Our research revealed that the protein spectrum in the IR region is impacted by RB disease. In our study, we identified strong correlations in the region (Amide group - I) around X 1064 nm and Y 1300 nm with the Lambda / Lambda derived spectra methods for protein detection. During the stages when the disease is developing, typically from day 3 to day 5, the plant's defense mechanisms are not as effective. This is especially true for the PB-1 variety of rice, which is highly susceptible to rice blast disease. Consequently, the proteins in the plant are adversely affected during this critical time. The spectral contour plot reveals the highly correlated spectral regions 1064 nm and Y 1300 nm associated with RB disease infection. Based on these spectral sensitivities, we developed new spectral disease indices for predicting different stages of disease emergence. The goal of this research is to lay the foundation for future UAV and satellite-based studies aimed at long-term monitoring of RB disease.

Keywords: rice blast, asymptomatic stage, spectral sensitivity, IR

Procedia PDF Downloads 88
2408 Electrochemical Response Transductions of Graphenated-Polyaniline Nanosensor for Environmental Anthracene

Authors: O. Tovide, N. Jahed, N. Mohammed, C. E. Sunday, H. R. Makelane, R. F. Ajayi, K. M. Molapo, A. Tsegaye, M. Masikini, S. Mailu, A. Baleg, T. Waryo, P. G. Baker, E. I. Iwuoha

Abstract:

A graphenated–polyaniline (GR-PANI) nanocomposite sensor was constructed and used for the determination of anthracene. The direct electro-oxidation behavior of anthracene on the GR-PANI modified glassy carbon electrode (GCE) was used as the sensing principle. The results indicate thatthe response profile of the oxidation of anthracene on GR-PANI-modified GCE provides for the construction of sensor systems based onamperometric and potentiometric signal transductions. A dynamic linear range of 0.12- 100 µM anthracene and a detection limit of 0.044 µM anthracene were established for the sensor system.

Keywords: electrochemical sensors, environmental pollutants, graphenated-polymers, polyaromatic hydrocarbon

Procedia PDF Downloads 357
2407 A Numerical Hybrid Finite Element Model for Lattice Structures Using 3D/Beam Elements

Authors: Ahmadali Tahmasebimoradi, Chetra Mang, Xavier Lorang

Abstract:

Thanks to the additive manufacturing process, lattice structures are replacing the traditional structures in aeronautical and automobile industries. In order to evaluate the mechanical response of the lattice structures, one has to resort to numerical techniques. Ansys is a globally well-known and trusted commercial software that allows us to model the lattice structures and analyze their mechanical responses using either solid or beam elements. In this software, a script may be used to systematically generate the lattice structures for any size. On the one hand, solid elements allow us to correctly model the contact between the substrates (the supports of the lattice structure) and the lattice structure, the local plasticity, and the junctions of the microbeams. However, their computational cost increases rapidly with the size of the lattice structure. On the other hand, although beam elements reduce the computational cost drastically, it doesn’t correctly model the contact between the lattice structures and the substrates nor the junctions of the microbeams. Also, the notion of local plasticity is not valid anymore. Moreover, the deformed shape of the lattice structure doesn’t correspond to the deformed shape of the lattice structure using 3D solid elements. In this work, motivated by the pros and cons of the 3D and beam models, a numerically hybrid model is presented for the lattice structures to reduce the computational cost of the simulations while avoiding the aforementioned drawbacks of the beam elements. This approach consists of the utilization of solid elements for the junctions and beam elements for the microbeams connecting the corresponding junctions to each other. When the global response of the structure is linear, the results from the hybrid models are in good agreement with the ones from the 3D models for body-centered cubic with z-struts (BCCZ) and body-centered cubic without z-struts (BCC) lattice structures. However, the hybrid models have difficulty to converge when the effect of large deformation and local plasticity are considerable in the BCCZ structures. Furthermore, the effect of the junction’s size of the hybrid models on the results is investigated. For BCCZ lattice structures, the results are not affected by the junction’s size. This is also valid for BCC lattice structures as long as the ratio of the junction’s size to the diameter of the microbeams is greater than 2. The hybrid model can take into account the geometric defects. As a demonstration, the point clouds of two lattice structures are parametrized in a platform called LATANA (LATtice ANAlysis) developed by IRT-SystemX. In this process, for each microbeam of the lattice structures, an ellipse is fitted to capture the effect of shape variation and roughness. Each ellipse is represented by three parameters; semi-major axis, semi-minor axis, and angle of rotation. Having the parameters of the ellipses, the lattice structures are constructed in Spaceclaim (ANSYS) using the geometrical hybrid approach. The results show a negligible discrepancy between the hybrid and 3D models, while the computational cost of the hybrid model is lower than the computational cost of the 3D model.

Keywords: additive manufacturing, Ansys, geometric defects, hybrid finite element model, lattice structure

Procedia PDF Downloads 114
2406 Retrospective Cartography of Tbilisi and Surrounding Area

Authors: Dali Nikolaishvili, Nino Khareba, Mariam Tsitsagi

Abstract:

Tbilisi has been a capital of Georgia since the 5ᵗʰ century. City area was covered by forest in historical past. Nowadays the situation has been changing dramatically. Dozens of problems are caused by damages/destruction of green cover and solution, at one glance, seems to be uncomplicated (planting trees and creating green quarters), but on the other hand, according to the increasing tendency, the built up of areas still remains unsolved. Finding out the ways to overcome such obstacles is important even for protecting the health of society. Making of Retrospective cartography of the forest area of Tbilisi with use of GIS technology and remote sensing was the main aim of the research. Research about the dynamic of forest-cover in Tbilisi and its surroundings included the following steps: assessment of the dynamic of forest in Tbilisi and its surroundings. The survey was mainly based on the retrospective mapping method. Using of GIS technology, studying, comparing and identifying the narrative sources was the next step. And the last one was analyzed of the changes from the 80s to the present days on the basis of decryption of remotely sensed images. After creating a unified cartographic basis, the mapping and plans of different periods have been linked to this geodatabase. Data about green parks, individual old plants existing in the private yards and respondents' Information (according to a questionnaire created in advance) was added to the basic database, the general plan of Tbilisi and Scientific works as well. On the basis of analysis of historic, including cartographic sources, forest-cover maps for different periods of time were made. In addition, was made the catalog of individual green parks (location, area, typical composition, name and so on), which was the basis of creating several thematic maps. Areas with a high rate of green area degradation were identified. Several maps depicting the dynamics of forest cover of Tbilisi were created and analyzed. The methods of linking the data of the old cartographic sources to the modern basis were developed too, the result of which may be used in Urban Planning of Tbilisi. Understanding, perceiving and analyzing the real condition of green cover in Tbilisi and its problems, in turn, will help to take appropriate measures for the maintenance of ancient plants, to develop forests and to plan properly parks, squares, and recreational sites. Because the healthy environment is the main condition of human health and implies to the rational development of the city.

Keywords: catalogue of green area, GIS, historical cartography, cartography, remote sensing, Tbilisi

Procedia PDF Downloads 138
2405 Effect of O2 Pressure of Fe-Doped TiO2 Nanostructure on Morphology Properties for Gas Sensing

Authors: Samar Y. Al-Dabagh, Adawiya J. Haider, Mirvat D. Majed

Abstract:

Pure nanostructure TiO2 and thin films doped with transition metal Fe were prepared by pulsed laser deposition (PLD) on Si (111) substrate. The thin films structures were determined by X-ray diffraction (XRD). The morphology properties were determined from atomic force microscopy (AFM), which shows that the roughness increases when TiO2 is doped with Fe. Results show TiO2 doped with Fe metal thin films deposited on Si (111) substrate has maximum sensitivity to ethanol vapor at 10 mbar oxygen pressure than at 0.01 and 0.1 mbar with optimum operation temperature of 250°C.

Keywords: pulsed laser deposition (PLD), TiO2 doped thin films, nanostructure, gas sensor

Procedia PDF Downloads 384
2404 Study on Seismic Performance of Reinforced Soil Walls in Order to Offer Modified Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, mechanically stabilized earth wall parameters and type of the site showed that the used method in this study leads to most efficient designs in comparison with other methods which are generally suggested in cods that are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape

Procedia PDF Downloads 486
2403 The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses

Authors: Mohammad Aminnia, Mahmood Hosseini

Abstract:

Environmental and functional conditions sometimes necessitate the architectural plan of the building to be asymmetric, and this result in an asymmetric structure. In such cases, finding an optimal pattern for locating the components of the lateral load bearing system, including shear walls, in the building’s plan is desired. In case of shear walls, in addition to the location, the shape of the wall cross-section is also an effective factor. Various types of shear wall and their proper layout might come effective in better stiffness distribution and more appropriate seismic response of the building. Several studies have been conducted in the context of analysis and design of shear walls; however, few studies have been performed on making decisions for the location and form of shear walls in multi-story buildings, especially those with irregular plan. In this study, an attempt has been made to obtain the most reliable seismic behavior of multi-story reinforced concrete vertically chamfered buildings by using more appropriate shear walls form and arrangement in 7-, 10-, 12-, and 15-story buildings. The considered forms and arrangements include common rectangular walls and L-, T-, U- and Z-shaped plan, located as the core or in the outer frames of the building structure. Comparison of seismic behaviors of the buildings, including maximum roof displacement, and particularly the formation of plastic hinges and their distribution in the buildings’ structures, have been done based on the results of a series of nonlinear time history analyses by using a set of selected earthquake records. Results show that shear walls with U-shaped cross-section, placed as the building central core, and also walls with Z-shaped cross-section, placed at the corners give the building more reliable seismic behavior.

Keywords: vertically chamfered buildings, non-linear time history analyses, l-, t-, u- and z-shaped plan walls

Procedia PDF Downloads 260
2402 Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks

Authors: Aleksander Ejsmont, Stefan Wuttke, Joanna Goscianska

Abstract:

Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites.

Keywords: Co-MOF, solvothermal synthesis, morphology control, core-shell

Procedia PDF Downloads 165
2401 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit

Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger

Abstract:

The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.

Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor

Procedia PDF Downloads 252
2400 Optimal Perturbation in an Impulsively Blocked Channel Flow

Authors: Avinash Nayak, Debopam Das

Abstract:

The current work implements the variational principle to find the optimum initial perturbation that provides maximum growth in an impulsively blocked channel flow. The conventional method for studying temporal stability has always been through modal analysis. In most of the transient flows, this modal analysis is still followed with the quasi-steady assumption, i.e. change in base flow is much slower compared to perturbation growth rate. There are other studies where transient analysis on time dependent flows is done by formulating the growth of perturbation as an initial value problem. But the perturbation growth is sensitive to the initial condition. This study intends to find the initial perturbation that provides the maximum growth at a later time. Here, the expression of base flow for blocked channel is derived and the formulation is based on the two dimensional perturbation with stream function representing the perturbation quantity. Hence, the governing equation becomes the Orr-Sommerfeld equation. In the current context, the cost functional is defined as the ratio of disturbance energy at a terminal time 'T' to the initial energy, i.e. G(T) = ||q(T)||2/||q(0)||2 where q is the perturbation and ||.|| defines the norm chosen. The above cost functional needs to be maximized against the initial perturbation distribution. It is achieved with the constraint that perturbation follows the basic governing equation, i.e. Orr-Sommerfeld equation. The corresponding adjoint equation is derived and is solved along with the basic governing equation in an iterative manner to provide the initial spatial shape of the perturbation that provides the maximum growth G (T). The growth rate is plotted against time showing the development of perturbation which achieves an asymptotic shape. The effects of various parameters, e.g. Reynolds number, are studied in the process. Thus, the study emphasizes on the usage of optimal perturbation and its growth to understand the stability characteristics of time dependent flows. The assumption of quasi-steady analysis can be verified against these results for the transient flows like impulsive blocked channel flow.

Keywords: blocked channel flow, calculus of variation, hydrodynamic stability, optimal perturbation

Procedia PDF Downloads 423
2399 Shear Stress and Oxygen Concentration Manipulation in a Micropillars Microfluidic Bioreactor

Authors: Deybith Venegas-Rojas, Jens Budde, Dominik Nörz, Manfred Jücker, Hoc Khiem Trieu

Abstract:

Microfluidics is a promising approach for biomedicine cell culture experiments with microfluidic bioreactors (MBR), which can provide high precision in volume and time control over mass transport and microenvironments in small-scale studies. Nevertheless, shear stress and oxygen concentration are important factors that affect the microenvironment and then the cell culture. It is presented a novel MBR design in which differences in geometry, shear stress, and oxygen concentration were studied and optimized for cell culture. The aim is to mimic the in vivo condition with biocompatible materials and continuous perfusion of nutrients, a healthy shear stress, and oxygen concentration. The design consists of a capture system of PDMS micropillars which keep cells in place, so it is not necessary any hydrogel or complicated scaffolds for cells immobilization. Besides, the design allows continuous supply with nutrients or even any other chemical for cell experimentation. Finite element method simulations were used to study and optimize the effect of parameters such as flow rate, shear stress, oxygen concentration, micropillars shape, and dimensions. The micropillars device was fabricated with microsystem technology such as soft-lithography, deep reactive ion etching, self-assembled monolayer, replica molding, and oxygen plasma bonding. Eight different geometries were fabricated and tested, with different flow rates according to the simulations. During the experiments, it was observed the effect of micropillars size, shape, and configuration for stability and shear stress control when increasing flow rate. The device was tested with several successful HepG2 3D cell cultures. With this MBR, the aforementioned parameters can be controlled in order to keep a healthy microenvironment according to specific necessities of different cell types, with no need of hydrogels and can be used for a wide range of experiments with cells.

Keywords: cell culture, micro-bioreactor, microfluidics, micropillars, oxygen concentration, shear stress

Procedia PDF Downloads 292
2398 Experimental and Numerical Analysis of Wood Pellet Breakage during Pneumatic Transport

Authors: Julian Jaegers, Siegmar Wirtz, Viktor Scherer

Abstract:

Wood pellets belong to the most established trade formats of wood-based fuels. Especially, because of the transportability and the storage properties, but also due to low moisture content, high energy density, and the homogeneous particle size and shape, wood pellets are well suited for power generation in power plants and for the use in automated domestic firing systems. Before they are thermally converted, wood pellets pass various transport and storage procedures. There they undergo different mechanical impacts, which leads to pellet breakage and abrasion and to an increase in fines. The fines lead to operational problems during storage, charging, and discharging of pellets, they can increase the risk of dust explosions and can lead to pollutant emissions during combustion. In the current work, the dependence of the formation of fines caused by breakage during pneumatic transport is analyzed experimentally and numerically. The focus lies on the influence of conveying velocity, pellet loading, pipe diameter, and the shape of pipe components like bends or couplings. A test rig has been built, which allows the experimental evaluation of the pneumatic transport varying the above-mentioned parameters. Two high-speed cameras are installed for the quantitative optical access to the particle-particle and particle-wall contacts. The particle size distribution of the bulk before and after a transport process is measured as well as the amount of fines produced. The experiments will be compared with results of corresponding DEM/CFD simulations to provide information on contact frequencies and forces. The contribution proposed will present experimental results and report on the status of the DEM/CFD simulations. The final goal of the project is to provide a better insight into pellet breakage during pneumatic transport and to develop guidelines ensuring a more gentle transport.

Keywords: DEM/CFD-simulation of pneumatic conveying, mechanical impact on wood pellets during transportation, pellet breakage, pneumatic transport of wood pellets

Procedia PDF Downloads 151
2397 Biomechanical Perspectives on the Urinary Bladder: Insights from the Hydrostatic Skeleton Concept

Authors: Igor Vishnevskyi

Abstract:

Introduction: The urinary bladder undergoes repeated strain during its working cycle, suggesting the presence of an efficient support system, force transmission, and mechanical amplification. The concept of a "hydrostatic skeleton" (HS) could contribute to our understanding of the functional relationships among bladder constituents. Methods: A multidisciplinary literature review was conducted to identify key features of the HS and to gather evidence supporting its applicability in urinary bladder biomechanics. The collected evidence was synthesized to propose a framework for understanding the potential hydrostatic properties of the urinary bladder based on existing knowledge and HS principles. Results: Our analysis revealed similarities in biomechanical features between living fluid-filled structures and the urinary bladder. These similarities include the geodesic arrangement of fibres, the role of enclosed fluid (urine) in force transmission, prestress as a determinant of stiffness, and the ability to maintain shape integrity during various activities. From a biomechanical perspective, urine may be considered an essential component of the bladder. The hydrostatic skeleton, with its autonomy and flexibility, may provide insights for researchers involved in bladder engineering. Discussion: The concept of a hydrostatic skeleton offers a holistic perspective for understanding bladder function by considering multiple mechanical factors as a single structure with emergent properties. Incorporating viewpoints from various fields on HS can help identify how this concept applies to live fluid-filled structures or organs and reveal its broader relevance to biological systems, both natural and artificial. Conclusion: The hydrostatic skeleton (HS) design principle can be applied to the urinary bladder. Understanding the bladder as a structure with HS can be instrumental in biomechanical modelling and engineering. Further research is required to fully elucidate the cellular and molecular mechanisms underlying HS in the bladder.

Keywords: hydrostatic skeleton, urinary bladder morphology, shape integrity, prestress, biomechanical modelling

Procedia PDF Downloads 82
2396 Calculation of Fractal Dimension and Its Relation to Some Morphometric Characteristics of Iranian Landforms

Authors: Mitra Saberi, Saeideh Fakhari, Amir Karam, Ali Ahmadabadi

Abstract:

Geomorphology is the scientific study of the characteristics of form and shape of the Earth's surface. The existence of types of landforms and their variation is mainly controlled by changes in the shape and position of land and topography. In fact, the interest and application of fractal issues in geomorphology is due to the fact that many geomorphic landforms have fractal structures and their formation and transformation can be explained by mathematical relations. The purpose of this study is to identify and analyze the fractal behavior of landforms of macro geomorphologic regions of Iran, as well as studying and analyzing topographic and landform characteristics based on fractal relationships. In this study, using the Iranian digital elevation model in the form of slopes, coefficients of deposition and alluvial fan, the fractal dimensions of the curves were calculated through the box counting method. The morphometric characteristics of the landforms and their fractal dimension were then calculated for 4criteria (height, slope, profile curvature and planimetric curvature) and indices (maximum, Average, standard deviation) using ArcMap software separately. After investigating their correlation with fractal dimension, two-way regression analysis was performed and the relationship between fractal dimension and morphometric characteristics of landforms was investigated. The results show that the fractal dimension in different pixels size of 30, 90 and 200m, topographic curves of different landform units of Iran including mountain, hill, plateau, plain of Iran, from1.06in alluvial fans to1.17in The mountains are different. Generally, for all pixels of different sizes, the fractal dimension is reduced from mountain to plain. The fractal dimension with the slope criterion and the standard deviation index has the highest correlation coefficient, with the curvature of the profile and the mean index has the lowest correlation coefficient, and as the pixels become larger, the correlation coefficient between the indices and the fractal dimension decreases.

Keywords: box counting method, fractal dimension, geomorphology, Iran, landform

Procedia PDF Downloads 87
2395 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.

Keywords: object-based, roof material, concrete tile, WorldView-2

Procedia PDF Downloads 426
2394 Research on the Evolution of Public Space in Tourism-Oriented Traditional Rural Settlements

Authors: Yu Zhang, Mingxue Lang, Li Dong

Abstract:

The hundreds of years of slow succession of living environment in rural area is a crucial carrier of China’s long history of culture and national wisdom. In recent years, the space evolution of traditional rural settlements has been promoted by the intervention of tourism development, among which the public architecture and outdoor activity areas together served as the major places for villagers, and tourists’ social activities are an important characterization for settlement spatial evolution. Traditional public space upgrade and layout study of new public space can effectively promote the tourism industry development of traditional rural settlements. This article takes Qi County, one China Traditional Culture Village as the exemplification and uses the technology of Remote Sensing (RS), Geographic Information System (GIS) and Space Syntax, studies the evolution features of public space of tourism-oriented traditional rural settlements in four steps. First, acquire the 2003 and 2016 image data of Qi County, using the remote sensing application EDRAS8.6. Second, vectorize the basic maps of Qi County including its land use map with the application of ArcGIS 9.3 meanwhile, associating with architectural and site information concluded from field research. Third, analyze the accessibility and connectivity of the inner space of settlements using space syntax; run cross-correlation with the public space data of 2003 and 2016. Finally, summarize the evolution law of the public space of settlements; study the upgrade pattern of traditional public space and location plan for new public space. Major findings of this paper including: first, location layout of traditional public space has a larger association with the calculation results of space syntax and further confirmed the objective value of space syntax in expressing the space and social relations. Second, the intervention of tourism development generates remarkable impact on public space location of tradition rural settlements. Third, traditional public space produces the symbols of both strengthening and decline and forms a diversified upgrade pattern for the purpose of meeting the different tourism functional needs. Finally, space syntax provides an objective basis for location plan of new public space that meets the needs of tourism service. Tourism development has a significant impact on the evolution of public space of traditional rural settlements. Two types of public space, architecture, and site are both with changes seen from the perspective of quantity, location, dimension and function after the intervention of tourism development. Function upgrade of traditional public space and scientific layout of new public space are two important ways in achieving the goal of sustainable development of tourism-oriented traditional rural settlements.

Keywords: public space evolution, Qi county, space syntax, tourism oriented, traditional rural settlements

Procedia PDF Downloads 343
2393 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method

Authors: Rahim Jafari, Tuba Okutucu-Özyurt

Abstract:

The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared with the available experimental data in the literature.

Keywords: microchannel, boiling, Cahn-Hilliard method, simulation

Procedia PDF Downloads 429
2392 Carbon Nanofilms on Diamond for All-Carbon Chemical Sensors

Authors: Vivek Kumar, Alexander M. Zaitsev

Abstract:

A study on chemical sensing properties of carbon nanofilms on diamond for developing all-carbon chemical sensors is presented. The films were obtained by high temperature graphitization of diamond followed by successive plasma etchings. Characterization of the films was done by Raman spectroscopy, atomic force microscopy, and electrical measurements. Fast and selective response to common organic vapors as seen as sensitivity of electrical conductance was observed. The phenomenological description of the chemical sensitivity is proposed as a function of the surface and bulk material properties of the films.

Keywords: chemical sensor, carbon nanofilm, graphitization of diamond, plasma etching, Raman spectroscopy, atomic force microscopy

Procedia PDF Downloads 449
2391 Evaluation of Soil Erosion Risk and Prioritization for Implementation of Management Strategies in Morocco

Authors: Lahcen Daoudi, Fatima Zahra Omdi, Abldelali Gourfi

Abstract:

In Morocco, as in most Mediterranean countries, water scarcity is a common situation because of low and unevenly distributed rainfall. The expansions of irrigated lands, as well as the growth of urban and industrial areas and tourist resorts, contribute to an increase of water demand. Therefore in the 1960s Morocco embarked on an ambitious program to increase the number of dams to boost water retention capacity. However, the decrease in the capacity of these reservoirs caused by sedimentation is a major problem; it is estimated at 75 million m3/year. Dams and reservoirs became unusable for their intended purposes due to sedimentation in large rivers that result from soil erosion. Soil erosion presents an important driving force in the process affecting the landscape. It has become one of the most serious environmental problems that raised much interest throughout the world. Monitoring soil erosion risk is an important part of soil conservation practices. The estimation of soil loss risk is the first step for a successful control of water erosion. The aim of this study is to estimate the soil loss risk and its spatial distribution in the different fields of Morocco and to prioritize areas for soil conservation interventions. The approach followed is the Revised Universal Soil Loss Equation (RUSLE) using remote sensing and GIS, which is the most popular empirically based model used globally for erosion prediction and control. This model has been tested in many agricultural watersheds in the world, particularly for large-scale basins due to the simplicity of the model formulation and easy availability of the dataset. The spatial distribution of the annual soil loss was elaborated by the combination of several factors: rainfall erosivity, soil erodability, topography, and land cover. The average annual soil loss estimated in several basins watershed of Morocco varies from 0 to 50t/ha/year. Watersheds characterized by high-erosion-vulnerability are located in the North (Rif Mountains) and more particularly in the Central part of Morocco (High Atlas Mountains). This variation of vulnerability is highly correlated to slope variation which indicates that the topography factor is the main agent of soil erosion within these basin catchments. These results could be helpful for the planning of natural resources management and for implementing sustainable long-term management strategies which are necessary for soil conservation and for increasing over the projected economic life of the dam implemented.

Keywords: soil loss, RUSLE, GIS-remote sensing, watershed, Morocco

Procedia PDF Downloads 466
2390 Validation of Mapping Historical Linked Data to International Committee for Documentation (CIDOC) Conceptual Reference Model Using Shapes Constraint Language

Authors: Ghazal Faraj, András Micsik

Abstract:

Shapes Constraint Language (SHACL), a World Wide Web Consortium (W3C) language, provides well-defined shapes and RDF graphs, named "shape graphs". These shape graphs validate other resource description framework (RDF) graphs which are called "data graphs". The structural features of SHACL permit generating a variety of conditions to evaluate string matching patterns, value type, and other constraints. Moreover, the framework of SHACL supports high-level validation by expressing more complex conditions in languages such as SPARQL protocol and RDF Query Language (SPARQL). SHACL includes two parts: SHACL Core and SHACL-SPARQL. SHACL Core includes all shapes that cover the most frequent constraint components. While SHACL-SPARQL is an extension that allows SHACL to express more complex customized constraints. Validating the efficacy of dataset mapping is an essential component of reconciled data mechanisms, as the enhancement of different datasets linking is a sustainable process. The conventional validation methods are the semantic reasoner and SPARQL queries. The former checks formalization errors and data type inconsistency, while the latter validates the data contradiction. After executing SPARQL queries, the retrieved information needs to be checked manually by an expert. However, this methodology is time-consuming and inaccurate as it does not test the mapping model comprehensively. Therefore, there is a serious need to expose a new methodology that covers the entire validation aspects for linking and mapping diverse datasets. Our goal is to conduct a new approach to achieve optimal validation outcomes. The first step towards this goal is implementing SHACL to validate the mapping between the International Committee for Documentation (CIDOC) conceptual reference model (CRM) and one of its ontologies. To initiate this project successfully, a thorough understanding of both source and target ontologies was required. Subsequently, the proper environment to run SHACL and its shape graphs were determined. As a case study, we performed SHACL over a CIDOC-CRM dataset after running a Pellet reasoner via the Protégé program. The applied validation falls under multiple categories: a) data type validation which constrains whether the source data is mapped to the correct data type. For instance, checking whether a birthdate is assigned to xsd:datetime and linked to Person entity via crm:P82a_begin_of_the_begin property. b) Data integrity validation which detects inconsistent data. For instance, inspecting whether a person's birthdate occurred before any of the linked event creation dates. The expected results of our work are: 1) highlighting validation techniques and categories, 2) selecting the most suitable techniques for those various categories of validation tasks. The next plan is to establish a comprehensive validation model and generate SHACL shapes automatically.

Keywords: SHACL, CIDOC-CRM, SPARQL, validation of ontology mapping

Procedia PDF Downloads 256
2389 A Numerical Study of Adherend Geometry on the Stress Distribution in Adhesively Lap Joint

Authors: Ahmet Calik

Abstract:

In present study, the effect of adherend geometry on the tensile strength of adhesively single lap aluminum structures joint, bonded was numerically studied using by three dimensional finite element model. Six joint model were investigated. Analyses were performed in ANSYS commercial software. The results shows that the adherends shape has the highest effect on peel and shear stresses.

Keywords: adhesive, adherend, single lap joints, finite element

Procedia PDF Downloads 295
2388 Investigating the Aerosol Load of Eastern Mediterranean Basin with Sentinel-5p Satellite

Authors: Deniz Yurtoğlu

Abstract:

Aerosols directly affect the radiative balance of the earth by absorbing and/or scattering the sun rays reaching the atmosphere and indirectly affect the balance by acting as a nucleus in cloud formation. The composition, physical, and chemical properties of aerosols vary depending on their sources and the time spent in the atmosphere. The Eastern Mediterranean Basin has a high aerosol load that is formed from different sources; such as anthropogenic activities, desert dust outbreaks, and the spray of sea salt; and the area is subjected to atmospheric transport from other locations on the earth. This region, which includes the deserts of Africa, the Middle East, and the Mediterranean sea, is one of the most affected areas by climate change due to its location and the chemistry of the atmosphere. This study aims to investigate the spatiotemporal deviation of aerosol load in the Eastern Mediterranean Basin between the years 2018-2022 with the help of a new pioneer satellite of ESA (European Space Agency), Sentinel-5P. The TROPOMI (The TROPOspheric Monitoring Instrument) traveling on this low-Earth orbiting satellite is a UV (Ultraviolet)-sensing spectrometer with a resolution of 5.5 km x 3.5 km, which can make measurements even in a cloud-covered atmosphere. By using Absorbing Aerosol Index data produced by this spectrometer and special scripts written in Python language that transforms this data into images, it was seen that the majority of the aerosol load in the Eastern Mediterranean Basin is sourced from desert dust and anthropogenic activities. After retrieving the daily data, which was separated from the NaN values, seasonal analyses match with the normal aerosol variations expected, which are high in warm seasons and lower in cold seasons. Monthly analyses showed that in four years, there was an increase in the amount of Absorbing Aerosol Index in spring and winter by 92.27% (2019-2021) and 39.81% (2019-2022), respectively. On the other hand, in the summer and autumn seasons, a decrease has been observed by 20.99% (2018-2021) and 0.94% (2018-2021), respectively. The overall variation of the mean absorbing aerosol index from TROPOMI between April 2018 to April 2022 reflects a decrease of 115.87% by annual mean from 0.228 to -0.036. However, when the data is analyzed by the annual mean values of the years which have the data from January to December, meaning from 2019 to 2021, there was an increase of 57.82% increase (0.108-0.171). This result can be interpreted as the effect of climate change on the aerosol load and also, more specifically, the effect of forest fires that happened in the summer months of 2021.

Keywords: aerosols, eastern mediterranean basin, sentinel-5p, tropomi, aerosol index, remote sensing

Procedia PDF Downloads 69
2387 Prevalence of Oral Tori in Malaysia: A Teaching Hospital Based Cross Sectional Study

Authors: Preethy Mary Donald, Renjith George

Abstract:

Oral tori are localized non-neoplastic protuberances of maxilla and mandible. Torus palatinus (TP) is found on the midline of the roof of mouth existing as single growth or in clusters. Torus mandibularis(TM) is located on the lingual aspect of the mandible commonly between canine and premolar region. Etiology of their presence was not clear and was found to be multifactorial. Their variations in relation to age, gender, ethnicity and also the characteristics of TP and TM have become the interest of multiple studies. The objectives of this study were to determine the prevalence of torus palatinus (TP) and torus mandibularis (TM) among patients who have visited outpatient department, Faculty of Dentistry, Melaka Manipal Medical College. 108 patients were examined for the presence of oral tori at the outpatient department, Faculty of Dentistry, Melaka-Manipal Medical College. Factors such as age, gender, ethnicity of the patients and size, shape, location of the oral tori were studied. For TP, Malays (62.96%) have been found to have the highest prevalence than Chinese (43.3%) and Indians (35.71%). For TM, Chinese (7.46%) had predominated compared to Malays (7.41%) and Indians (0%). There is no significant association between occurrence of TP and TM with age, gender and ethnicity. For Torus palatinus, the most common size was Grade 1(1-3mm), most common location was molar region, and the most common shape was spindle. For Torus mandibularis, the most frequent location was canine premolar region and exists in unilateral single or bilateral single fashion. The overall prevalence rates were 47.2% for TP and 6.48% for TM. However, there is no significant association between occurrence of TP and TM with age, gender and ethnicity. The results showed variations in clinical characteristics and support the findings that occurrence of tori is a dynamic phenomenon which is multifactorial owing to the environmental factors such as stress from occlusion and dietary habits. It could be due to the genetic make-up of the individual.

Keywords: torus palatinus, torus mandibularis, age, gender

Procedia PDF Downloads 281
2386 Use of Geometrical Relationship in the Ancient Vihara Housing Reclining Buddha Remains of Thailand's Kamphaeng Phet World Heritage Site

Authors: Vacharee Svamivastu

Abstract:

This research investigates the application of geometrical relationship to the ancient religious assembly hall (Vihara) housing a reclining Buddha statue of Thailand's Kamphaeng Phet Historical Park. The study utilizes the archaeological and wooden roof structure remains of the Vihara as the prima facie evidence, supplemented with evidence from other active archaeological sites with architectural kinship as well as Buddhist ideology. At present, the wooden roofs of the Vihara fell prey to the elements and there remain only the base, columns and enclosing walls. Unlike typical Viharas whose floor plan are of rectangular shape, the floor plan of the Vihara housing the reclining Buddha is of square configuration of 25x25m. Further observation has revealed the utilization of large laterite boulders as the principal construction material of the assembly hall (Vihara) columns. The laterite columns are of square shape (1x1m) and various heights (H), ranging from 3.50m to 5.50m. The erection of the Vihara required a total of 36 laterite columns. The pattern of columns arrangement is of two rows of inner columns, two rows of outer columns and two rows of verandah columns. The space between pairs of the verandah columns was stacked with laterite blocks of varying sizes to form the Vihara walls with small openings for ventilation. Upon applying the geometrical relationship-grid system to the Vihara, the results reveal that the placement of the columns was deliberately and masterfully undertaken such that the center of the square-shaped Vihara is conspicuously spacious so as to accommodate the sacred reclining Buddha statue. The elegance of the Vihara demonstrates the ingenious application of geometrical relationship to transforming a space into a structure (i.e. Vihara) of architectural and religious significance.

Keywords: geometrical relationship, the religious assembly hall, Vihara, Kamphaeng Phet School of Master Builder

Procedia PDF Downloads 277
2385 Seismic Performance of Highway Bridges with Partially Self-Centering Isolation Bearings against Near-Fault Ground Motions

Authors: Shengxin Yu

Abstract:

Earthquakes can cause varying degrees of damage to building and bridge structures. Traditional laminated natural rubber bearings (NRB) exhibit inadequate energy dissipation and restraint, particularly under near-fault ground motions, resulting in excessive displacements in the superstructure. This paper presents a composite natural rubber bearing (NFUD-NRB) incorporating two types of shape memory alloy (SMA) U-shaped dampers (UD). The bearing exhibits adjustable features, predominantly characterized by partial self-centering and multi-level energy dissipation, facilitated by nickel-titanium-based SMA (NiTi-SMA) and iron-based SMA (Fe-SMA) UDs. The hysteresis characteristics of NFUD-NRB can be tailored by manipulating the configuration of NiTi-SMA and Fe-SMA UDs. Firstly, the proposed bearing's geometric configuration and working principle are introduced. The rationality of the modeling strategy for the bearing is validated through existing experimental results. Parameterized numerical simulations are subsequently performed to investigate the partially self-centering behavior of NFUD-NRB. The findings indicate that NFUD-NRB can attain the anticipated nonlinear behavior and deliver adequate energy dissipation. Finally, the impact of NFUD-NRB on improving the seismic resilience of highway bridges is examined using the OpenSees software, with particular emphasis on the seismic performance of NFUD-NRB under near-fault ground motions. System-level analysis reveals that bridge systems equipped with NFUD-NRBs exhibit satisfactory residual deformations and higher energy dissipation than those equipped with traditional NRBs. Moreover, NFUD-NRB markedly mitigates the detrimental impacts of near-fault ground motions on the main structure of bridges.

Keywords: partially self-centering behavior, energy dissipation, natural rubber bearing, shape memory alloy, U-shaped damper, numerical investigation, near-fault ground motion

Procedia PDF Downloads 59
2384 Synthesis, Characterization and Gas Sensing Applications of Perovskite CaZrO3 Nanoparticles

Authors: B. M. Patil

Abstract:

Calcium Zirconate (CaZrO3) has high protonic conductivities at elevated temperature in water or hydrogen atmosphere. Undoped calcium zirconate acts as a p-type semiconductor in air. In this paper, we reported synthesis of CaZrO3 nanoparticles via modified molecular precursor method. The precursor calcium zirconium oxalate (CZO) was synthesized by exchange reaction between freshly generated aqueous solution of sodium zirconyl oxalate and calcium acetate at room temperature. The controlled pyrolysis of CZO in air at 700°C for one hour resulted in the formation nanocrystalline CaZrO3 powder. CaZrO3 obtained by the present method was characterized by Simultaneous thermogravimetry and differential thermogravimetry (TG-DTA), X-ray diffraction (XRD), infra-red spectroscopy and transmission electron microscopy (TEM). The pellets of synthesized CaZrO3 fabricated, sintered at 1000°C for 5 hr and tested as sensors for NO2 and NH3 gases.

Keywords: CaZrO3, CZO, NO2, NH3

Procedia PDF Downloads 170
2383 Learning Compression Techniques on Smart Phone

Authors: Farouk Lawan Gambo, Hamada Mohammad

Abstract:

Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.

Keywords: data compression, learning preference, mobile learning, multimedia

Procedia PDF Downloads 451
2382 Generalized Mean-Field Theory of Phase Unwrapping via Multiple Interferograms

Authors: Yohei Saika

Abstract:

On the basis of Bayesian inference using the maximizer of the posterior marginal estimate, we carry out phase unwrapping using multiple interferograms via generalized mean-field theory. Numerical calculations for a typical wave-front in remote sensing using the synthetic aperture radar interferometry, phase diagram in hyper-parameter space clarifies that the present method succeeds in phase unwrapping perfectly under the constraint of surface- consistency condition, if the interferograms are not corrupted by any noises. Also, we find that prior is useful for extending a phase in which phase unwrapping under the constraint of the surface-consistency condition. These results are quantitatively confirmed by the Monte Carlo simulation.

Keywords: Bayesian inference, generalized mean-field theory, phase unwrapping, multiple interferograms, statistical mechanics

Procedia PDF Downloads 481
2381 Introducing an Innovative Structural Fuse for Creation of Repairable Buildings with See-Saw Motion during Earthquake and Investigating It by Nonlinear Finite Element Modeling

Authors: M. Hosseini, N. Ghorbani Amirabad, M. Zhian

Abstract:

Seismic design codes accept structural and nonstructural damages after the sever earthquakes (provided that the building is prevented from collapse), so that in many cases demolishing and reconstruction of the building is inevitable, and this is usually very difficult, costly and time consuming. Therefore, designing and constructing of buildings in such a way that they can be easily repaired after earthquakes, even major ones, is quite desired. For this purpose giving the possibility of rocking or see-saw motion to the building structure, partially or as a whole, has been used by some researchers in recent decade .the central support which has a main role in creating the possibility of see-saw motion in the building’s structural system. In this paper, paying more attention to the key role of the central fuse and support, an innovative energy dissipater which can act as the central fuse and support of the building with seesaw motion is introduced, and the process of reaching an optimal geometry for that by using finite element analysis is presented. Several geometric shapes were considered for the proposed central fuse and support. In each case the hysteresis moment rotation behavior of the considered fuse were obtained under simultaneous effect of vertical and horizontal loads, by nonlinear finite element analyses. To find the optimal geometric shape, the maximum plastic strain value in the fuse body was considered as the main parameter. The rotational stiffness of the fuse under the effect of acting moments is another important parameter for finding the optimum shape. The proposed fuse and support can be called Yielding Curved Bars and Clipped Hemisphere Core (YCB&CHC or more briefly YCB) energy dissipater. Based on extensive nonlinear finite element analyses it was found out the using rectangular section for the curved bars gives more reliable results. Then, the YCB energy dissipater with the optimal shape was used in a structural model of a 12 story regular building as its central fuse and support to give it the possibility of seesaw motion, and its seismic responses were compared to those of a the building in the fixed based conditions, subjected to three-components acceleration of several selected earthquakes including Loma Prieta, Northridge, and Park Field. In building with see-saw motion some simple yielding-plate energy dissipaters were also used under circumferential columns.The results indicated that equipping the buildings with central and circumferential fuses result in remarkable reduction of seismic responses of the building, including the base shear, inter story drift, and roof acceleration. In fact by using the proposed technique the plastic deformations are concentrated in the fuses in the lowest story of the building, so that the main body of the building structure remains basically elastic, and therefore, the building can be easily repaired after earthquake.

Keywords: rocking mechanism, see-saw motion, finite element analysis, hysteretic behavior

Procedia PDF Downloads 410