Search results for: real-time data acquisition and reporting
25101 Pulmonary Complications of Dengue Infection
Authors: Shilpa Avarebeel
Abstract:
Background: India is one of the seven identified countries in South-East Asia region, regularly reporting dengue infection and may soon transform into a major niche for dengue epidemics. Objective: To study the clinical profile of dengue in our setting with special reference to respiratory complication. Study design: Descriptive and exploratory study, for one year in 2014. All patients confirmed as dengue infection were followed and their clinical profile, along with outcome was determined. Study proforma was designed based on the objective of the study and it was pretested and used after modification. Data was analyzed using statistical software SPSS-Version 16. Data were expressed as mean ±S .D for parametric variables and actual frequencies or percentage for non-parametric data. Comparison between groups was done using students’ t-test for independent groups, Chie square test, one-way ANOVA test, Karl Pearson’s correlation test. Statistical significance is taken at P < 0.05. Results: Study included 134 dengue positive cases. 81% had dengue fever, 18% had dengue hemorrhagic fever, and one had dengue shock syndrome. Most of the cases reported were during the month of June. Maximum number of cases was in the age group of 26-35 years. Average duration of hospital stay was less than seven days. Fever and myalgia was present in all the 134 patients, 16 had bleeding manifestation. 38 had respiratory symptoms, 24 had breathlessness, and 14 had breathlessness and dry cough. On clinical examination of patients with respiratory symptoms, all twenty-eight had hypoxia features, twenty-four had signs of pleural effusion, and four had ARDS features. Chest x-ray confirmed the same. Among the patients with respiratory symptoms, the mean platelet count was 26,537 c/cmm. There was no statistical significant difference in the platelet count in those with ARDS and other dengue complications. Average four units of platelets were transfused to all those who had ARDS in view of bleeding tendency. Mechanical ventilator support was provided for ARDS patients. Those with pleural effusion and pulmonary oedema were given NIV (non-invasive ventilation) support along with supportive care. However, steroids were given to patients with ARDS and 10 patients with signs of respiratory distress. 100%. Mortality was seen in patients with ARDS. Conclusion: Dengue has to be checked for those presenting with fever and breathlessness. Supportive treatments remain the cornerstone of treatment. Platelet transfusion has to be given only by clinical judgment. Steroids have no role except in early ARDS, which is controversial. Early NIV support helps in speedy recovery of dengue patients with respiratory distress.Keywords: adult respiratory distress syndrome, dengue fever, non-invasive ventilation, pulmonary complication
Procedia PDF Downloads 43225100 Development of Advanced Linear Calibration Technique for Air Flow Sensing by Using CTA-Based Hot Wire Anemometry
Authors: Ming-Jong Tsai, T. M. Wu, R. C. Chu
Abstract:
The purpose of this study is to develop an Advanced linear calibration Technique for air flow sensing by using CTA-based Hot wire Anemometry. It contains a host PC with Human Machine Interface, a wind tunnel, a wind speed controller, an automatic data acquisition module, and nonlinear calibration model. To improve the fitting error by using single fitting polynomial, this study proposes a Multiple three-order Polynomial Fitting Method (MPFM) for fitting the non-linear output of a CTA-based Hot wire Anemometry. The CTA-based anemometer with built-in fitting parameters is installed in the wind tunnel, and the wind speed is controlled by the PC-based controller. The Hot-Wire anemometer's thermistor resistance change is converted into a voltage signal or temperature differences, and then sent to the PC through a DAQ card. After completion measurements of original signal, the Multiple polynomial mathematical coefficients can be automatically calculated, and then sent into the micro-processor in the Hot-Wire anemometer. Finally, the corrected Hot-Wire anemometer is verified for the linearity, the repeatability, error percentage, and the system outputs quality control reports.Keywords: flow rate sensing, hot wire, constant temperature anemometry (CTA), linear calibration, multiple three-order polynomial fitting method (MPFM), temperature compensation
Procedia PDF Downloads 41625099 Development and Psychometric Validation of the Hospitalised Older Adults Dignity Scale for Measuring Dignity during Acute Hospital Admissions
Authors: Abdul-Ganiyu Fuseini, Bernice Redley, Helen Rawson, Lenore Lay, Debra Kerr
Abstract:
Aim: The study aimed to develop and validate a culturally appropriate patient-reported outcome measure for measuring dignity for older adults during acute hospital admissions. Design: A three-phased mixed-method sequential exploratory design was used. Methods: Concept elicitation and generation of items for the scale was informed by older adults’ perspectives about dignity during acute hospitalization and a literature review. Content validity evaluation and pre-testing were undertaken using standard instrument development techniques. A cross-sectional survey design was conducted involving 270 hospitalized older adults for evaluation of construct and convergent validity, internal consistency reliability, and test–retest reliability of the scale. Analysis was performed using Statistical Package for the Social Sciences, version 25. Reporting of the study was guided by the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist. Results: We established the 15-item Hospitalized Older Adults’ Dignity Scale that has a 5-factor structure: Shared Decision-Making (3 items); Healthcare Professional-Patient Communication (3 items); Patient Autonomy (4 items); Patient Privacy (2 items); and Respectful Care (3 items). Excellent content validity, adequate construct and convergent validity, acceptable internal consistency reliability, and good test-retest reliability were demonstrated. Conclusion: We established the Hospitalized Older Adults Dignity Scale as a valid and reliable scale to measure dignity for older adults during acute hospital admissions. Future studies using confirmatory factor analysis are needed to corroborate the dimensionality of the factor structure and external validity of the scale. Routine use of the scale may provide information that informs the development of strategies to improve dignity-related care in the future. Impact: The development and validation of the Hospitalized Older Adults Dignity Scale will provide healthcare professionals with a feasible and reliable scale for measuring older adults’ dignity during acute hospitalization. Routine use of the scale may enable the capturing and incorporation of older patients’ perspectives about their healthcare experience and provide information that informs the development of strategies to improve dignity-related care in the future.Keywords: dignity, older adults, hospitalisation, scale, patients, dignified care, acute care
Procedia PDF Downloads 9025098 A Privacy Protection Scheme Supporting Fuzzy Search for NDN Routing Cache Data Name
Authors: Feng Tao, Ma Jing, Guo Xian, Wang Jing
Abstract:
Named Data Networking (NDN) replaces IP address of traditional network with data name, and adopts dynamic cache mechanism. In the existing mechanism, however, only one-to-one search can be achieved because every data has a unique name corresponding to it. There is a certain mapping relationship between data content and data name, so if the data name is intercepted by an adversary, the privacy of the data content and user’s interest can hardly be guaranteed. In order to solve this problem, this paper proposes a one-to-many fuzzy search scheme based on order-preserving encryption to reduce the query overhead by optimizing the caching strategy. In this scheme, we use hash value to ensure the user’s query safe from each node in the process of search, so does the privacy of the requiring data content.Keywords: NDN, order-preserving encryption, fuzzy search, privacy
Procedia PDF Downloads 48425097 Topic Prominence and Temporal Encoding in Mandarin Chinese
Authors: Tzu-I Chiang
Abstract:
A central question for finite-nonfinite distinction in Mandarin Chinese is how does Mandarin encode temporal information without the grammatical contrast between past and present tense. Moreover, how do L2 learners of Mandarin whose native language is English and whose L1 system has tense morphology, acquire the temporal encoding system in L2 Mandarin? The current study reports preliminary findings on the relationship between topic prominence and the temporal encoding in L1 and L2 Chinese. Oral narratives data from 30 natives and learners of Mandarin Chinese were collected via a film-retell task. In terms of coding, predicates collected from the narratives were transcribed and then coded based on four major verb types: n-degree Statives (quality-STA), point-scale Statives (status-STA), n-atom EVENT (ACT), and point EVENT (resultative-ACT). How native speakers and non-native speakers started retelling the story was calculated. Results of the study show that native speakers of Chinese tend to express Topic Time (TT) syntactically at the topic position; whereas L2 learners of Chinese across levels rely mainly on the default time encoded in the event types. Moreover, as the proficiency level of the learner increases, learners’ appropriate use of the event predicates increased, which supports the argument that L2 development of temporal encoding is affected by lexical aspect.Keywords: topic prominence, temporal encoding, lexical aspect, L2 acquisition
Procedia PDF Downloads 20225096 An Enhanced SAR-Based Tsunami Detection System
Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah
Abstract:
Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.Keywords: detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter
Procedia PDF Downloads 39225095 Promoting 'One Health' Surveillance and Response Approach Implementation Capabilities against Emerging Threats and Epidemics Crisis Impact in African Countries
Authors: Ernest Tambo, Ghislaine Madjou, Jeanne Y. Ngogang, Shenglan Tang, Zhou XiaoNong
Abstract:
Implementing national to community-based 'One Health' surveillance approach for human, animal and environmental consequences mitigation offers great opportunities and value-added in sustainable development and wellbeing. 'One Health' surveillance approach global partnerships, policy commitment and financial investment are much needed in addressing the evolving threats and epidemics crises mitigation in African countries. The paper provides insights onto how China-Africa health development cooperation in promoting “One Health” surveillance approach in response advocacy and mitigation. China-Africa health development initiatives provide new prospects in guiding and moving forward appropriate and evidence-based advocacy and mitigation management approaches and strategies in attaining Universal Health Coverage (UHC) and Sustainable Development Goals (SDGs). Early and continuous quality and timely surveillance data collection and coordinated information sharing practices in malaria and other diseases are demonstrated in Comoros, Zanzibar, Ghana and Cameroon. Improvements of variety of access to contextual sources and network of data sharing platforms are needed in guiding evidence-based and tailored detection and response to unusual hazardous events. Moreover, understanding threats and diseases trends, frontline or point of care response delivery is crucial to promote integrated and sustainable targeted local, national “One Health” surveillance and response approach needs implementation. Importantly, operational guidelines are vital in increasing coherent financing and national workforce capacity development mechanisms. Strengthening participatory partnerships, collaboration and monitoring strategies in achieving global health agenda effectiveness in Africa. At the same enhancing surveillance data information streams reporting and dissemination usefulness in informing policies decisions, health systems programming and financial mobilization and prioritized allocation pre, during and post threats and epidemics crises programs strengths and weaknesses. Thus, capitalizing on “One Health” surveillance and response approach advocacy and mitigation implementation is timely in consolidating Africa Union 2063 agenda and Africa renaissance capabilities and expectations.Keywords: Africa, one health approach, surveillance, response
Procedia PDF Downloads 42125094 Healthcare Big Data Analytics Using Hadoop
Authors: Chellammal Surianarayanan
Abstract:
Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare
Procedia PDF Downloads 41325093 Serious Video Games as Literacy and Vocabulary Acquisition Environments for Greek as Second/Foreign Language: The Case of “Einstown”
Authors: Christodoulakis Georgios, Kiourti Elisavet
Abstract:
The Covid-19 pandemic has affected millions of people on a global scale, while lockdowns and quarantine measures were adopted periodically by a vast number of countries. These peculiar socio-historical conditions have led to the growth of participation in online environments. At the same time, the official educational bodies of many countries have been forced, for the first time at least for Greece and Cyprus, to switch to distance learning methods throughout the educational levels. However, this has not been done without issues, both in the technological and functional level, concerning the tools and the processes. Video games are the finest example of simulations of distance learning problem-solving environments. They incorporate different semiotic modes (e.g., a combination of image, sound, texts, gesture) while all this takes place in social and cultural constructed contexts. Players interact in the game environment in terms of spaces, objects, and actions in order to accomplish their goals, solve its problems, and win the game. In addition, players are engaging in layering literacies, which include combinations of independent and collaborative, digital and nondigital practices and spaces acting jointly to support meaning making, including interaction among and across texts and modalities (Abrams, 2017). From this point of view, players are engaged in collaborative, self-directed, and interest-based experiences by going back and forth and around gameplay. Within this context, this paper investigates the way Einstown, a greek serious video game, functions as an effective distance learning environment for teaching Greek as a second|foreign language to adults. The research methodology adopted is the case study approach using mixed methods. The participants were two adult women who are immigrants in Greece and who had zero gaming experience. The results of this research reveal that the videogame Einstown is, in fact, a digital environment of literacy through which the participants achieve active learning, cooperation, and engage in digital and non-digital literacy practices that result in improving the learning of specialized vocabulary presented throughout the gameplay.Keywords: second/foreign language, vocabulary acquisition, literacy, serious video games
Procedia PDF Downloads 15425092 Data Disorders in Healthcare Organizations: Symptoms, Diagnoses, and Treatments
Authors: Zakieh Piri, Shahla Damanabi, Peyman Rezaii Hachesoo
Abstract:
Introduction: Healthcare organizations like other organizations suffer from a number of disorders such as Business Sponsor Disorder, Business Acceptance Disorder, Cultural/Political Disorder, Data Disorder, etc. As quality in healthcare care mostly depends on the quality of data, we aimed to identify data disorders and its symptoms in two teaching hospitals. Methods: Using a self-constructed questionnaire, we asked 20 questions in related to quality and usability of patient data stored in patient records. Research population consisted of 150 managers, physicians, nurses, medical record staff who were working at the time of study. We also asked their views about the symptoms and treatments for any data disorders they mentioned in the questionnaire. Using qualitative methods we analyzed the answers. Results: After classifying the answers, we found six main data disorders: incomplete data, missed data, late data, blurred data, manipulated data, illegible data. The majority of participants believed in their important roles in treatment of data disorders while others believed in health system problems. Discussion: As clinicians have important roles in producing of data, they can easily identify symptoms and disorders of patient data. Health information managers can also play important roles in early detection of data disorders by proactively monitoring and periodic check-ups of data.Keywords: data disorders, quality, healthcare, treatment
Procedia PDF Downloads 43325091 Applying the Global Trigger Tool in German Hospitals: A Retrospective Study in Surgery and Neurosurgery
Authors: Mareen Brosterhaus, Antje Hammer, Steffen Kalina, Stefan Grau, Anjali A. Roeth, Hany Ashmawy, Thomas Gross, Marcel Binnebosel, Wolfram T. Knoefel, Tanja Manser
Abstract:
Background: The identification of critical incidents in hospitals is an essential component of improving patient safety. To date, various methods have been used to measure and characterize such critical incidents. These methods are often viewed by physicians and nurses as external quality assurance, and this creates obstacles to the reporting events and the implementation of recommendations in practice. One way to overcome this problem is to use tools that directly involve staff in measuring indicators of quality and safety of care in the department. One such instrument is the global trigger tool (GTT), which helps physicians and nurses identify adverse events by systematically reviewing randomly selected patient records. Based on so-called ‘triggers’ (warning signals), indications of adverse events can be given. While the tool is already used internationally, its implementation in German hospitals has been very limited. Objectives: This study aimed to assess the feasibility and potential of the global trigger tool for identifying adverse events in German hospitals. Methods: A total of 120 patient records were randomly selected from two surgical, and one neurosurgery, departments of three university hospitals in Germany over a period of two months per department between January and July, 2017. The records were reviewed using an adaptation of the German version of the Institute for Healthcare Improvement Global Trigger Tool to identify triggers and adverse event rates per 1000 patient days and per 100 admissions. The severity of adverse events was classified using the National Coordinating Council for Medication Error Reporting and Prevention. Results: A total of 53 adverse events were detected in the three departments. This corresponded to adverse event rates of 25.5-72.1 per 1000 patient-days and from 25.0 to 60.0 per 100 admissions across the three departments. 98.1% of identified adverse events were associated with non-permanent harm without (Category E–71.7%) or with (Category F–26.4%) the need for prolonged hospitalization. One adverse event (1.9%) was associated with potentially permanent harm to the patient. We also identified practical challenges in the implementation of the tool, such as the need for adaptation of the global trigger tool to the respective department. Conclusions: The global trigger tool is feasible and an effective instrument for quality measurement when adapted to the departmental specifics. Based on our experience, we recommend a continuous use of the tool thereby directly involving clinicians in quality improvement.Keywords: adverse events, global trigger tool, patient safety, record review
Procedia PDF Downloads 24925090 Big Data and Analytics in Higher Education: An Assessment of Its Status, Relevance and Future in the Republic of the Philippines
Authors: Byron Joseph A. Hallar, Annjeannette Alain D. Galang, Maria Visitacion N. Gumabay
Abstract:
One of the unique challenges provided by the twenty-first century to Philippine higher education is the utilization of Big Data. The higher education system in the Philippines is generating burgeoning amounts of data that contains relevant data that can be used to generate the information and knowledge needed for accurate data-driven decision making. This study examines the status, relevance and future of Big Data and Analytics in Philippine higher education. The insights gained from the study may be relevant to other developing nations similarly situated as the Philippines.Keywords: big data, data analytics, higher education, republic of the philippines, assessment
Procedia PDF Downloads 34825089 The Ethical Imperative of Corporate Social Responsibility Practice and Disclosure by Firms in Nigeria Delta Swamplands: A Qualitative Analysis
Authors: Augustar Omoze Ehighalua, Itotenaan Henry Ogiri
Abstract:
As a mono-product economy, Nigeria relies largely on oil revenues for its foreign exchange earnings and the exploration activities of firms operating in the Niger Delta region have left in its wake tales of environmental degradation, poverty and misery. This, no doubt, have created corporate social responsibility issues in the region. The focus of this research is the critical evaluation of the ethical response to Corporate Social Responsibility (CSR) practice by firms operating in Nigeria Delta Swamplands. While CSR is becoming more popular in developed society with effective practice guidelines and reporting benchmark, there is a relatively low level of awareness and selective applicability of existing international guidelines to effectively support CSR practice in Nigeria. This study, haven identified the lack of CSR institutional framework attempts to develop an ethically-driven CSR transparency benchmark laced within a regulatory framework based on international best practices. The research adopts a qualitative methodology and makes use of primary data collected through semi-structured interviews conducted across the six core states of the Niger Delta Region. More importantly, the study adopts an inductive, interpretivist philosophical paradigm that reveal deep phenomenological insights into what local communities, civil society and government officials consider as good ethical benchmark for responsible CSR practice by organizations. The institutional theory provides for the main theoretical foundation, complemented by the stakeholder and legitimacy theories. The Nvivo software was used to analyze the data collected. This study shows that ethical responsibility is lacking in CSR practice by firms in the Niger Delta Region of Nigeria. Furthermore, findings of the study indicate key issues of environmental, health and safety, human rights, and labour as fundamental in developing an effective CSR practice guideline for Nigeria. The study has implications for public policy formulation as well as managerial perspective.Keywords: corporate social responsibility, CSR, ethics, firms, Niger-Delta Swampland, Nigeria
Procedia PDF Downloads 10625088 Testing Supportive Feedback Strategies in Second/Foreign Language Vocabulary Acquisition between Typically Developing Children and Children with Learning Disabilities
Authors: Panagiota A. Kotsoni, George S. Ypsilandis
Abstract:
Learning an L2 is a demanding process for all students and in particular for those with learning disabilities (LD) who demonstrate an inability to catch up with their classmates’ progress in a given period of time. This area of study, i.e. examining children with learning disabilities in L2 has not (yet) attracted the growing interest that is registered in L1 and thus remains comparatively neglected. It is this scientific field that this study wishes to contribute to. The longitudinal purpose of this study is to locate effective Supportive Feedback Strategies (SFS) and add to the quality of learning in second language vocabulary in both typically developing (TD) and LD children. Specifically, this study aims at investigating and comparing the performance of TD with LD children on two different types of SFSs related to vocabulary short and long-term retention. In this study two different SFSs have been examined to a total of ten (10) unknown vocabulary items. Both strategies provided morphosyntactic clarifications upon new contextualized vocabulary items. The traditional SFS (direct) provided the information only in one hypertext page with a selection on the relevant item. The experimental SFS (engaging) provided the exact same split information in three successive hypertext pages in the form of a hybrid dialogue asking from the subjects to move on to the next page by selecting the relevant link. It was hypothesized that this way the subjects would engage in their own learning process by actively asking for more information which would further lead to their better retention. The participants were fifty-two (52) foreign language learners (33 TD and 19 LD) aged from 9 to 12, attending an English language school at the level of A1 (CEFR). The design of the study followed a typical pre-post-post test procedure after an hour and after a week. The results indicated statistically significant group differences with TD children performing significantly better than the LD group in both short and long-term memory measurements and in both SFSs. As regards the effectiveness of one SFS over another the initial hypothesis was not supported by the evidence as the traditional SFS was more effective compared to the experimental one in both TD and LD children. This difference proved to be statistically significant only in the long-term memory measurement and only in the TD group. It may be concluded that the human brain seems to adapt to different SFS although it shows a small preference when information is provided in a direct manner.Keywords: learning disabilities, memory, second/foreign language acquisition, supportive feedback
Procedia PDF Downloads 28425087 Data Management and Analytics for Intelligent Grid
Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh
Abstract:
Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.Keywords: data management, analytics, energy data analytics, smart grid, smart utilities
Procedia PDF Downloads 77925086 Comparison Of Virtual Non-Contrast To True Non-Contrast Images Using Dual Layer Spectral Computed Tomography
Authors: O’Day Luke
Abstract:
Purpose: To validate virtual non-contrast reconstructions generated from dual-layer spectral computed tomography (DL-CT) data as an alternative for the acquisition of a dedicated true non-contrast dataset during multiphase contrast studies. Material and methods: Thirty-three patients underwent a routine multiphase clinical CT examination, using Dual-Layer Spectral CT, from March to August 2021. True non-contrast (TNC) and virtual non-contrast (VNC) datasets, generated from both portal venous and arterial phase imaging were evaluated. For every patient in both true and virtual non-contrast datasets, a region-of-interest (ROI) was defined in aorta, liver, fluid (i.e. gallbladder, urinary bladder), kidney, muscle, fat and spongious bone, resulting in 693 ROIs. Differences in attenuation for VNC and TNV images were compared, both separately and combined. Consistency between VNC reconstructions obtained from the arterial and portal venous phase was evaluated. Results: Comparison of CT density (HU) on the VNC and TNC images showed a high correlation. The mean difference between TNC and VNC images (excluding bone results) was 5.5 ± 9.1 HU and > 90% of all comparisons showed a difference of less than 15 HU. For all tissues but spongious bone, the mean absolute difference between TNC and VNC images was below 10 HU. VNC images derived from the arterial and the portal venous phase showed a good correlation in most tissue types. The aortic attenuation was somewhat dependent however on which dataset was used for reconstruction. Bone evaluation with VNC datasets continues to be a problem, as spectral CT algorithms are currently poor in differentiating bone and iodine. Conclusion: Given the increasing availability of DL-CT and proven accuracy of virtual non-contrast processing, VNC is a promising tool for generating additional data during routine contrast-enhanced studies. This study shows the utility of virtual non-contrast scans as an alternative for true non-contrast studies during multiphase CT, with potential for dose reduction, without loss of diagnostic information.Keywords: dual-layer spectral computed tomography, virtual non-contrast, true non-contrast, clinical comparison
Procedia PDF Downloads 14125085 Method Optimisation for [¹⁸F]-FDG Rodent Imaging Studies
Authors: J. Visser, C. Driver, T. Ebenhan
Abstract:
[¹⁸F]-FDG (fluorodeoxyglucose) is a radiopharmaceutical compound that is used for non-invasive cancer tumor imaging through positron emission tomography (PET). This radiopharmaceutical is used to visualise the metabolic processes in tumour tissues, which can be applied for the diagnosis and prognosis of various types of cancer. [¹⁸F]-FDG has widespread use in both clinical and pre-clinical research settings. Imaging using [¹⁸F]-FDG results in representative normal tissue distribution as well as visualisation of hypermetabolic lesions ([¹⁸F]-FDG avid foci). The metabolic tissue concentration of these lesions following [¹⁸F]-FDG administration can be quantified using Standard Uptake Values (SUV). Standard uptake values of [¹⁸F]-FDG-based Positron Emission Tomography can be influenced by various biological and technical handling factors. Biological factors that affect [¹⁸F]-FDG uptake include the blood glucose levels of subjects, normal physiological variants between subjects and administration of certain pharmaceutical agents. Technical factors that can have an effect include the route of radiopharmaceutical or pharmaceutical agents administered and environmental conditions such as ambient temperature and lighting. These factors influencing tracer uptake need to be investigated to improve the robustness of the imaging protocol, which will achieve reproducible image acquisition across various research projects, optimised tumor visualisation and increased data validity and reliability.Keywords: fluorodeoxyglucose, tumour imaging, Rodent, Blood Glucose, PET/CT Imaging
Procedia PDF Downloads 1125084 Teaching English as a Second/Foreign Language Under Humanistic and Sociocultural Psychology
Authors: Mahrukh Baig
Abstract:
This research paper, sets out to draw some traditional english language teaching practices and to suggest ways for their improvement under the light of humanistic and socio-cultural psychology. This is going to aid language teachers by applying principled psychological methods on the field of education in order to introduce a reciprocal mode of teaching where teacher and learner begin with a mutual effort. However the teacher, after initiating most of the work, gradually passes on more and more responsibility to the learners resulting in their independent endeavors.Keywords: English Language Teaching (ELT), Second Language Acquisition (SLA), teaching english as second/foreign language, humanistic psychology, socio-cultural psychology, application of psychology to language teaching
Procedia PDF Downloads 60825083 Privacy Preserving Data Publishing Based on Sensitivity in Context of Big Data Using Hive
Authors: P. Srinivasa Rao, K. Venkatesh Sharma, G. Sadhya Devi, V. Nagesh
Abstract:
Privacy Preserving Data Publication is the main concern in present days because the data being published through the internet has been increasing day by day. This huge amount of data was named as Big Data by its size. This project deals the privacy preservation in the context of Big Data using a data warehousing solution called hive. We implemented Nearest Similarity Based Clustering (NSB) with Bottom-up generalization to achieve (v,l)-anonymity. (v,l)-Anonymity deals with the sensitivity vulnerabilities and ensures the individual privacy. We also calculate the sensitivity levels by simple comparison method using the index values, by classifying the different levels of sensitivity. The experiments were carried out on the hive environment to verify the efficiency of algorithms with Big Data. This framework also supports the execution of existing algorithms without any changes. The model in the paper outperforms than existing models.Keywords: sensitivity, sensitive level, clustering, Privacy Preserving Data Publication (PPDP), bottom-up generalization, Big Data
Procedia PDF Downloads 29525082 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects
Authors: Behnam Tavakkol
Abstract:
Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data
Procedia PDF Downloads 21525081 A Cooperative Signaling Scheme for Global Navigation Satellite Systems
Authors: Keunhong Chae, Seokho Yoon
Abstract:
Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.Keywords: global navigation satellite network, cooperative signaling, data combining, nodes
Procedia PDF Downloads 28025080 Democracy Bytes: Interrogating the Exploitation of Data Democracy by Radical Terrorist Organizations
Authors: Nirmala Gopal, Sheetal Bhoola, Audecious Mugwagwa
Abstract:
This paper discusses the continued infringement and exploitation of data by non-state actors for destructive purposes, emphasizing radical terrorist organizations. It will discuss how terrorist organizations access and use data to foster their nefarious agendas. It further examines how cybersecurity, designed as a tool to curb data exploitation, is ineffective in raising global citizens' concerns about how their data can be kept safe and used for its acquired purpose. The study interrogates several policies and data protection instruments, such as the Data Protection Act, Cyber Security Policies, Protection of Personal Information(PPI) and General Data Protection Regulations (GDPR), to understand data use and storage in democratic states. The study outcomes point to the fact that international cybersecurity and cybercrime legislation, policies, and conventions have not curbed violations of data access and use by radical terrorist groups. The study recommends ways to enhance cybersecurity and reduce cyber risks using democratic principles.Keywords: cybersecurity, data exploitation, terrorist organizations, data democracy
Procedia PDF Downloads 20425079 Healthcare Data Mining Innovations
Authors: Eugenia Jilinguirian
Abstract:
In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves.Keywords: data mining, healthcare, big data, individualised healthcare, healthcare solutions, database
Procedia PDF Downloads 6625078 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Authors: Yunus Doğan, Ahmet Durap
Abstract:
Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods
Procedia PDF Downloads 36125077 Real-Time Working Environment Risk Analysis with Smart Textiles
Authors: Jose A. Diaz-Olivares, Nafise Mahdavian, Farhad Abtahi, Kaj Lindecrantz, Abdelakram Hafid, Fernando Seoane
Abstract:
Despite new recommendations and guidelines for the evaluation of occupational risk assessments and their prevention, work-related musculoskeletal disorders are still one of the biggest causes of work activity disruption, productivity loss, sick leave and chronic work disability. It affects millions of workers throughout Europe, with a large-scale economic and social burden. These specific efforts have failed to produce significant results yet, probably due to the limited availability and high costs of occupational risk assessment at work, especially when the methods are complex, consume excessive resources or depend on self-evaluations and observations of poor accuracy. To overcome these limitations, a pervasive system of risk assessment tools in real time has been developed, which has the characteristics of a systematic approach, with good precision, usability and resource efficiency, essential to facilitate the prevention of musculoskeletal disorders in the long term. The system allows the combination of different wearable sensors, placed on different limbs, to be used for data collection and evaluation by a software solution, according to the needs and requirements in each individual working environment. This is done in a non-disruptive manner for both the occupational health expert and the workers. The creation of this solution allows us to attend different research activities that require, as an essential starting point, the recording of data with ergonomic value of very diverse origin, especially in real work environments. The software platform is here presented with a complimentary smart clothing system for data acquisition, comprised of a T-shirt containing inertial measurement units (IMU), a vest sensorized with textile electronics, a wireless electrocardiogram (ECG) and thoracic electrical bio-impedance (TEB) recorder and a glove sensorized with variable resistors, dependent on the angular position of the wrist. The collected data is processed in real-time through a mobile application software solution, implemented in commercially available Android-based smartphones and tablet platforms. Based on the collection of this information and its analysis, real-time risk assessment and feedback about postural improvement is possible, adapted to different contexts. The result is a tool which provides added value to ergonomists and occupational health agents, as in situ analysis of postural behavior can assist in a quantitative manner in the evaluation of work techniques and the occupational environment.Keywords: ergonomics, mobile technologies, risk assessment, smart textiles
Procedia PDF Downloads 11725076 Active Learning through a Game Format: Implementation of a Nutrition Board Game in Diabetes Training for Healthcare Professionals
Authors: Li Jiuen Ong, Magdalin Cheong, Sri Rahayu, Lek Alexander, Pei Ting Tan
Abstract:
Background: Previous programme evaluations from the diabetes training programme conducted in Changi General Hospital revealed that healthcare professionals (HCPs) are keen to receive advance diabetes training and education, specifically in medical, nutritional therapy. HCPs also expressed a preference for interactive activities over didactic teaching methods to enhance their learning. Since the War on Diabetes was initiated by MOH in 2016, HCPs are challenged to be actively involved in continuous education to be better equipped to reduce the growing burden of diabetes. Hence, streamlining training to incorporate an element of fun is of utmost importance. Aim: The nutrition programme incorporates game play using an interactive board game that aims to provide a more conducive and less stressful environment for learning. The board game could be adapted for training of community HCPs, health ambassadors or caregivers to cope with the increasing demand of diabetes care in the hospital and community setting. Methodology: Stages for game’s conception (Jaffe, 2001) were adopted in the development of the interactive board game ‘Sweet Score™ ’ Nutrition concepts and topics in diabetes self-management are embedded into the game elements of varying levels of difficulty (‘Easy,’ ‘Medium,’ ‘Hard’) including activities such as a) Drawing/ sculpting (Pictionary-like) b)Facts/ Knowledge (MCQs/ True or False) Word definition) c) Performing/ Charades To study the effects of game play on knowledge acquisition and perceived experiences, participants were randomised into two groups, i.e., lecture group (control) and game group (intervention), to test the difference. Results: Participants in both groups (control group, n= 14; intervention group, n= 13) attempted a pre and post workshop quiz to assess the effectiveness of knowledge acquisition. The scores were analysed using paired T-test. There was an improvement of quiz scores after attending the game play (mean difference: 4.3, SD: 2.0, P<0.001) and the lecture (mean difference: 3.4, SD: 2.1, P<0.001). However, there was no significance difference in the improvement of quiz scores between gameplay and lecture (mean difference: 0.9, 95%CI: -0.8 to 2.5, P=0.280). This suggests that gameplay may be as effective as a lecture in terms of knowledge transfer. All the13 HCPs who participated in the game rated 4 out of 5 on the likert scale for the favourable learning experience and relevance of learning to their job, whereas only 8 out of 14 HCPs in the lecture reported a high rating in both aspects. 16. Conclusion: There is no known board game currently designed for diabetes training for HCPs.Evaluative data from future training can provide insights and direction to improve the game format and cover other aspects of diabetes management such as self-care, exercise, medications and insulin management. Further testing of the board game to ensure learning objectives are met is important and can assist in the development of awell-designed digital game as an alternative training approach during the COVID-19 pandemic. Learning through gameplay increases opportunities for HCPs to bond, interact and learn through games in a relaxed social setting and potentially brings more joy to the workplace.Keywords: active learning, game, diabetes, nutrition
Procedia PDF Downloads 17425075 Access to Health Data in Medical Records in Indonesia in Terms of Personal Data Protection Principles: The Limitation and Its Implication
Authors: Anny Retnowati, Elisabeth Sundari
Abstract:
This research aims to elaborate the meaning of personal data protection principles on patient access to health data in medical records in Indonesia and its implications. The method uses normative legal research by examining health law in Indonesia regarding the patient's right to access their health data in medical records. The data will be analysed qualitatively using the interpretation method to elaborate on the limitation of the meaning of personal data protection principles on patients' access to their data in medical records. The results show that patients only have the right to obtain copies of their health data in medical records. There is no right to inspect directly at any time. Indonesian health law limits the principle of patients' right to broad access to their health data in medical records. This restriction has implications for the reduction of personal data protection as part of human rights. This research contribute to show that a limitaion of personal data protection may abuse the human rights.Keywords: access, health data, medical records, personal data, protection
Procedia PDF Downloads 9325074 Conceptualizing the Knowledge to Manage and Utilize Data Assets in the Context of Digitization: Case Studies of Multinational Industrial Enterprises
Authors: Martin Böhmer, Agatha Dabrowski, Boris Otto
Abstract:
The trend of digitization significantly changes the role of data for enterprises. Data turn from an enabler to an intangible organizational asset that requires management and qualifies as a tradeable good. The idea of a networked economy has gained momentum in the data domain as collaborative approaches for data management emerge. Traditional organizational knowledge consequently needs to be extended by comprehensive knowledge about data. The knowledge about data is vital for organizations to ensure that data quality requirements are met and data can be effectively utilized and sovereignly governed. As this specific knowledge has been paid little attention to so far by academics, the aim of the research presented in this paper is to conceptualize it by proposing a “data knowledge model”. Relevant model entities have been identified based on a design science research (DSR) approach that iteratively integrates insights of various industry case studies and literature research.Keywords: data management, digitization, industry 4.0, knowledge engineering, metamodel
Procedia PDF Downloads 35625073 Corporate Voluntary Greenhouse Gas Emission Reporting in United Kingdom: Insights from Institutional and Upper Echelons Theories
Authors: Lyton Chithambo
Abstract:
This paper reports the results of an investigation into the extent to which various stakeholder pressures influence voluntary disclosure of greenhouse-gas (GHG) emissions in the United Kingdom (UK). The study, which is grounded on institutional theory, also borrows from the insights of upper echelons theory and examines whether specific managerial (chief executive officer) characteristics explain and moderates various stakeholder pressures in explaining GHG voluntary disclosure. Data were obtained from the 2011 annual and sustainability reports of a sample of 216 UK companies on the FTSE350 index listed on the London Stock Exchange. Generally the results suggest that there is no substantial shareholder and employee pressure on a firm to disclose GHG information but there is significant positive pressure from the market status of a firm with those firms with more market share disclosing more GHG information. Consistent with the predictions of institutional theory, we found evidence that coercive pressure i.e. regulatory pressure and mimetic pressures emanating in some industries notably industrials and consumer services have a significant positive influence on firms’ GHG disclosure decisions. Besides, creditor pressure also had a significant negative relationship with GHG disclosure. While CEO age had a direct negative effect on GHG voluntary disclosure, its moderation effect on stakeholder pressure influence on GHG disclosure was only significant on regulatory pressure. The results have important implications for both policy makers and company boards strategizing to reign in their GHG emissions.Keywords: greenhouse gases, voluntary disclosure, upper echelons theory, institution theory
Procedia PDF Downloads 23325072 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles
Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan
Abstract:
Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks
Procedia PDF Downloads 54