Search results for: predictive mining
1096 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks
Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka
Abstract:
Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management
Procedia PDF Downloads 681095 Big Data: Appearance and Disappearance
Authors: James Moir
Abstract:
The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.Keywords: big data, appearance, disappearance, surface, epistemology
Procedia PDF Downloads 4221094 Teaching Strategies and Prejudice toward Immigrant and Disabled Students
Authors: M. Pellerone, S. G. Razza, L. Miano, A. Miccichè, M. Adamo
Abstract:
The teacher’s attitude plays a decisive role in promoting the development of the non-native or disabled student and counteracting hypothetical negative attitudes and prejudice towards those who are “different”.The objective of the present research is to measure the relationship between teachers’ prejudices towards disabled and/or immigrant students as predictors of teaching-learning strategies. A cross-sectional study involved 200 Italian female teachers who completed an anamnestic questionnaire, the Assessment Teaching Scale, the Italian Modern and Classical Prejudices Scale towards people with ID, and the Pettigrew and Meertens’ Blatant Subtle Prejudice Scale. Confirming research hypotheses, data underlines the predictive role of prejudice on teaching strategies, and in particular on the socio-emotional and communicative-relational dimensions. Results underline that general training appears necessary, especially for younger generations of teachers.Keywords: disabled students, immigrant students, instructional competence, prejudice, teachers
Procedia PDF Downloads 731093 A Word-to-Vector Formulation for Word Representation
Authors: Sandra Rizkallah, Amir F. Atiya
Abstract:
This work presents a novel word to vector representation that is based on embedding the words into a sphere, whereby the dot product of the corresponding vectors represents the similarity between any two words. Embedding the vectors into a sphere enabled us to take into consideration the antonymity between words, not only the synonymity, because of the suitability to handle the polarity nature of words. For example, a word and its antonym can be represented as a vector and its negative. Moreover, we have managed to extract an adequate vocabulary. The obtained results show that the proposed approach can capture the essence of the language, and can be generalized to estimate a correct similarity of any new pair of words.Keywords: natural language processing, word to vector, text similarity, text mining
Procedia PDF Downloads 2761092 Development of a Rating Scale for Elementary EFL Writing
Authors: Mohammed S. Assiri
Abstract:
In EFL programs, rating scales used in writing assessment are often constructed by intuition. Intuition-based scales tend to provide inaccurate and divisive ratings of learners’ writing performance. Hence, following an empirical approach, this study attempted to develop a rating scale for elementary-level writing at an EFL program in Saudi Arabia. Towards this goal, 98 students’ essays were scored and then coded using comprehensive taxonomy of writing constructs and their measures. An automatic linear modeling was run to find out which measures would best predict essay scores. A nonparametric ANOVA, the Kruskal-Wallis test, was then used to determine which measures could best differentiate among scoring levels. Findings indicated that there were certain measures that could serve as either good predictors of essay scores or differentiators among scoring levels, or both. The main conclusion was that a rating scale can be empirically developed using predictive and discriminative statistical tests.Keywords: analytic scoring, rating scales, writing assessment, writing constructs, writing performance
Procedia PDF Downloads 4631091 Prediction of Childbearing Orientations According to Couples' Sexual Review Component
Authors: Razieh Rezaeekalantari
Abstract:
Objective: The purpose of this study was to investigate the prediction of parenting orientations in terms of the components of couples' sexual review. Methods: This was a descriptive correlational research method. The population consisted of 500 couples referring to Sari Health Center. Two hundred and fifteen (215) people were selected randomly by using Krejcie-Morgan-sample-size-table. For data collection, the childbearing orientations scale and the Multidimensional Sexual Self-Concept Questionnaire were used. Result: For data analysis, the mean and standard deviation were used and to analyze the research hypothesis regression correlation and inferential statistics were used. Conclusion: The findings indicate that there is not a significant relationship between the tendency to childbearing and the predictive value of sexual review (r = 0.84) with significant level (sig = 219.19) (P < 0.05). So, with 95% confidence, we conclude that there is not a meaningful relationship between sexual orientation and tendency to child-rearing.Keywords: couples referring, health center, sexual review component, parenting orientations
Procedia PDF Downloads 2211090 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques
Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan
Abstract:
A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104
Procedia PDF Downloads 5921089 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1781088 Factors Predicting Preventive Behavior for Osteoporosis in University Students
Authors: Thachamon Sinsoongsud, Noppawan Piaseu
Abstract:
This predictive study was aimed to 1) describe self efficacy for risk reduction and preventive behavior for osteoporosis, and 2) examine factors predicting preventive behavior for osteoporosis in nursing students. Through purposive sampling, the sample included 746 nursing students in a public university in Bangkok, Thailand. Data were collected by a self-reported questionnaire on self efficacy and preventive behavior for osteoporosis. Data were analyzed using descriptive statistics and multiple regression analysis with stepwise method. Results revealed that majority of the students were female (98.3%) with mean age of 19.86 + 1.26 years. The students had self efficacy and preventive behavior for osteoporosis at moderate level. Self efficacy and level of education could together predicted 35.2% variance of preventive behavior for osteoporosis (p< .001). Results suggest approaches for promoting preventive behavior for osteoporosis through enhancing self efficacy among nursing students in a public university in Bangkok, Thailand.Keywords: osteoporosis, self-efficacy, preventive behavior, nursing students
Procedia PDF Downloads 3801087 War and Surgery: A Comparative Analysis of Postoperative Complications, Outcomes, and Risk Factors in Conflict and Safe Zones across Sudan, with a Proposed Predictive Model for Severity
Authors: Alaa Ashraf Khaleel Abdallah
Abstract:
Background: The global landscape has witnessed an alarming rise in armed conflicts, further devastating populations through enforced displacement, compromised infrastructure, and strained healthcare systems. In Sudan, the situation is particularly dire, with conflict exacerbating shortages in medical supplies and personnel, pushing the already fragile healthcare system into crisis, especially affecting surgical care. Initially, war impacts were significant in conflict zones like Khartoum, but since mid-April 2023, the entire country has descended into chaos. Weak monitoring and health information systems hinder accurate assessment of surgical care in conflict zones, leading to inadequate resource allocation, suboptimal care, and missed opportunities for global learning. This study investigates the impact of the Sudanese conflict on postoperative complications, exploring prevalence, types, outcomes, and psychological effects in conflict and safe areas. Methods: Conducted across 10 Sudanese states—5 in conflict zones such as Khartoum and West Darfur, and 5 in safer regions like River Nile and Kassala—this study analyzed data from 1,457 patients who underwent surgery post-April 2023. Data were collected using a pretested, mixed-mode questionnaire that incorporated elements from validated frameworks and tailored questions specific to the study's context. Hospital records and surgical logs were also used, with data analyzed via SPSS. Results: The overall prevalence of postoperative complications was 35.89%, with a higher rate in conflict zones (57.5%) compared to safe areas (26.4%). Surgical site infections predominated in conflict zones (24.7%) and higher than its prevalence in safe areas, and while fever was prevalent in safer regions even though much less compared to conflict areas, bleeding from surgical site was very frequent in conflict areas. Most patients recovered within two months at a rate higher in safe areas, but most of them required further medical or surgical management within the first month, but psychological impacts were more pronounced in conflict zones with 22.22% reported anxiety among injuries patients, and 20.6% experienced depression, 13.5% and 16.9% respectively, in those had surgeries for other medical conditions, compared to 0.22%anxiety rates and 8.1%for depression in safer regions. Risk factors included age, travel to conflict zones, access to care, delays, and comorbidities. Conclusion: Strengthening healthcare systems and ensuring accessible surgical care are critical in both conflict and safe areas. Specific attention must be given to addressing patient suffering and demographic shifts caused by armed conflict. Further research is needed to refine the predictive model for postoperative complications in conflict zones.Keywords: postoperative complications, conflict zones, risk factors, surgical outcomes, Sudan
Procedia PDF Downloads 131086 Structural Analysis and Modelling in an Evolving Iron Ore Operation
Authors: Sameh Shahin, Nannang Arrys
Abstract:
Optimizing pit slope stability and reducing strip ratio of a mining operation are two key tasks in geotechnical engineering. With a growing demand for minerals and an increasing cost associated with extraction, companies are constantly re-evaluating the viability of mineral deposits and challenging their geological understanding. Within Rio Tinto Iron Ore, the Structural Geology (SG) team investigate and collect critical data, such as point based orientations, mapping and geological inferences from adjacent pits to re-model deposits where previous interpretations have failed to account for structurally controlled slope failures. Utilizing innovative data collection methods and data-driven investigation, SG aims to address the root causes of slope instability. Committing to a resource grid drill campaign as the primary source of data collection will often bias data collection to a specific orientation and significantly reduce the capability to identify and qualify complexity. Consequently, these limitations make it difficult to construct a realistic and coherent structural model that identifies adverse structural domains. Without the consideration of complexity and the capability of capturing these structural domains, mining operations run the risk of inadequately designed slopes that may fail and potentially harm people. Regional structural trends have been considered in conjunction with surface and in-pit mapping data to model multi-batter fold structures that were absent from previous iterations of the structural model. The risk is evident in newly identified dip-slope and rock-mass controlled sectors of the geotechnical design rather than a ubiquitous dip-slope sector across the pit. The reward is two-fold: 1) providing sectors of rock-mass controlled design in previously interpreted structurally controlled domains and 2) the opportunity to optimize the slope angle for mineral recovery and reduced strip ratio. Furthermore, a resulting high confidence model with structures and geometries that can account for historic slope instabilities in structurally controlled domains where design assumptions failed.Keywords: structural geology, geotechnical design, optimization, slope stability, risk mitigation
Procedia PDF Downloads 491085 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)
Authors: Mahacine Amrani
Abstract:
This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.Keywords: process performance, model, wavelets, Haar, Moroccan
Procedia PDF Downloads 3181084 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function
Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio
Abstract:
Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).Keywords: algorithm, diabetes, laboratory medicine, non-invasive
Procedia PDF Downloads 351083 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours
Authors: Charlotte Entwistle, Ryan Boyd
Abstract:
Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data
Procedia PDF Downloads 3531082 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics
Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni
Abstract:
The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection
Procedia PDF Downloads 2901081 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 3301080 Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices
Authors: Esmat Mohammadinasab
Abstract:
The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated.Keywords: topological indices, quantum descriptors, DFT method, nanotubes
Procedia PDF Downloads 3371079 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 681078 Comparison of Selected Pier-Scour Equations for Wide Piers Using Field Data
Authors: Nordila Ahmad, Thamer Mohammad, Bruce W. Melville, Zuliziana Suif
Abstract:
Current methods for predicting local scour at wide bridge piers, were developed on the basis of laboratory studies and very limited scour prediction were tested with field data. Laboratory wide pier scour equation from previous findings with field data were presented. A wide range of field data were used and it consists of both live-bed and clear-water scour. A method for assessing the quality of the data was developed and applied to the data set. Three other wide pier-scour equations from the literature were used to compare the performance of each predictive method. The best-performing scour equation were analyzed using statistical analysis. Comparisons of computed and observed scour depths indicate that the equation from the previous publication produced the smallest discrepancy ratio and RMSE value when compared with the large amount of laboratory and field data.Keywords: field data, local scour, scour equation, wide piers
Procedia PDF Downloads 4151077 Procalcitonin and Other Biomarkers in Sepsis Patients: A Prospective Study
Authors: Neda Valizadeh, Soudabeh Shafiee Ardestani, Arvin Najafi
Abstract:
Objectives: The aim of this study is to evaluate the association of mid-regional pro-atrial natriuretic peptide (MRproANP), procalcitonin (PCT), proendothelin-1 (proET-1) levels with sepsis severity in Emergency ward patients. Materials and Methods: We assessed the predictive value of MRproANP, PCT, copeptin, and proET-1 in early sepsis among patients referring to the emergency ward with a suspected sepsis. Results-132 patients were enrolled in this study. 45 (34%) patients had a final diagnosis of sepsis. A higher percentage of patients with definite sepsis had systemic inflammatory response syndrome (SIRS) criteria at initial visit in comparison with no-sepsis patients (P<0.05) and were admitted to the hospital (P<0.05). PCT levels were higher in sepsis patients [P<0.05]. There was no significant differences for MRproANP or proET-1 in sepsis patients (P=0.47). Conclusion: A combination of SIRS criteria and PCT levels is beneficial for the early sepsis diagnosis in emergency ward patients with a suspicious infection disease.Keywords: emergency, prolactin, sepsis, biomarkers
Procedia PDF Downloads 4401076 An Empirical Investigation of Big Data Analytics: The Financial Performance of Users versus Vendors
Authors: Evisa Mitrou, Nicholas Tsitsianis, Supriya Shinde
Abstract:
In the age of digitisation and globalisation, businesses have shifted online and are investing in big data analytics (BDA) to respond to changing market conditions and sustain their performance. Our study shifts the focus from the adoption of BDA to the impact of BDA on financial performance. We explore the financial performance of both BDA-vendors (business-to-business) and BDA-clients (business-to-customer). We distinguish between the five BDA-technologies (big-data-as-a-service (BDaaS), descriptive, diagnostic, predictive, and prescriptive analytics) and discuss them individually. Further, we use four perspectives (internal business process, learning and growth, customer, and finance) and discuss the significance of how each of the five BDA-technologies affects the performance measures of these four perspectives. We also present the analysis of employee engagement, average turnover, average net income, and average net assets for BDA-clients and BDA-vendors. Our study also explores the effect of the COVID-19 pandemic on business continuity for both BDA-vendors and BDA-clients.Keywords: BDA-clients, BDA-vendors, big data analytics, financial performance
Procedia PDF Downloads 1251075 Modernization of Translation Studies Curriculum at Higher Education Level in Armenia
Authors: A. Vahanyan
Abstract:
The paper touches upon the problem of revision and modernization of the current curriculum on translation studies at the Armenian Higher Education Institutions (HEIs). In the contemporary world where quality and speed of services provided are mostly valued, certain higher education centers in Armenia though do not demonstrate enough flexibility in terms of the revision and amendment of courses taught. This issue is present for various curricula at the university level and Translation Studies related curriculum, in particular. Technological innovations that are of great help for translators have been long ago smoothly implemented into the global Translation Industry. According to the European Master's in Translation (EMT) framework, translation service provision comprises linguistic, intercultural, information mining, thematic, and technological competencies. Therefore, to form the competencies mentioned above, the curriculum should be seriously restructured to meet the modern education and job market requirements, relevant courses should be proposed. New courses, in particular, should focus on the formation of technological competences. These suggestions have been made upon the author’s research of the problem across various HEIs in Armenia. The updated curricula should include courses aimed at familiarization with various computer-assisted translation (CAT) tools (MemoQ, Trados, OmegaT, Wordfast, etc.) in the translation process, creation of glossaries and termbases compatible with different platforms), which will ensure consistency in translation of similar texts and speeding up the translation process itself. Another aspect that may be strengthened via curriculum modification is the introduction of interdisciplinary and Project-Based Learning courses, which will enable info mining and thematic competences, which are of great importance as well. Of course, the amendment of the existing curriculum with the mentioned courses will require corresponding faculty development via training, workshops, and seminars. Finally, the provision of extensive internship with translation agencies is strongly recommended as it will ensure the synthesis of theoretical background and practical skills highly required for the specific area. Summing up, restructuring and modernization of the existing curricula on Translation Studies should focus on three major aspects, i.e., introduction of new courses that meet the global quality standards of education, professional development for faculty, and integration of extensive internship supervised by experts in the field.Keywords: competencies, curriculum, modernization, technical literacy, translation studies
Procedia PDF Downloads 1311074 Association of Major Histocompatibility Complex with Cell Mediated Immunity
Authors: Atefeh Esmailnejad, Gholamreza Nikbakht Brujeni
Abstract:
Major histocompatibility complex (MHC) is one of the best characterized genetic regions associated with immune responses and controlling disease resistance in chicken. Association of the MHC with a wide range of immune responses makes it a valuable predictive factor for the disease pathogenesis and outcome. In this study, the association of MHC with cell-mediated immune responses was analyzed in commercial broiler chicken. The tandem repeat LEI0258 was applied to investigate the MHC polymorphism. Cell-mediated immune response was evaluated by peripheral blood lymphocyte proliferation assay using MTT method. Association study revealed a significant influence of MHC alleles on cellular immune responses in this population. Alleles 385 and 448 bp were associated with elevated cell-mediated immunity. Haplotypes associated with improved immune responses could be considered as candidate markers for disease resistance and applied to breeding strategies.Keywords: MHC, cell-mediated immunity, broiler, chicken
Procedia PDF Downloads 1451073 Representation Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction
Procedia PDF Downloads 4301072 User Experience and Impact of AI Features in AutoCAD
Authors: Sarah Alnafea, Basmah Alalsheikh, Hadab Alkathiri
Abstract:
For over 30 years, AutoCAD, a powerful CAD software developed by Autodesk, has been an imperative need for design in industries such as engineering, building, and architecture. With the emerge of advanced technology, AutoCAD has undergone a revolutionary change with the involvement of artificial intelligence capabilities that have enhanced the productivity and efficiency at work and quality in the design for the users. This paper investigates the role AI in AutoCAD, especially in intelligent automation, generative design, automated design ideas, natural language processing, and predictive analytics. To identify further, A survey among users was also conducted to assess the adoption and satisfaction of AI features and identify areas for improvement. The Competitive standing of AutoCAD is further crosschecked against other AI-enabled CAD software packages, including SolidWorks, Fusion 360, and Rhino.In this paper, an overview of the current impacts of AI in AutoCAD is given, along with some recommendations for the future road of AI development to meet users’ requirementsKeywords: artificail inteligence, natural language proccesing, intelligent automation, generative design
Procedia PDF Downloads 51071 Translation and Validation of the Thai Version of the Japanese Sleep Questionnaire for Preschoolers
Authors: Natcha Lueangapapong, Chariya Chuthapisith, Lunliya Thampratankul
Abstract:
Background: There is a need to find an appropriate tool to help healthcare providers determine sleep problems in children for early diagnosis and management. The Japanese Sleep Questionnaire for Preschoolers (JSQ-P) is a parent-reported sleep questionnaire that has good psychometric properties and can be used in the context of Asian culture, which is likely suitable for Thai children. Objectives: This study aimed to translate and validate the Japanese Sleep Questionnaire for Preschoolers (JSQ-P) into a Thai version and to evaluate factors associated with sleep disorders in preschoolers. Methods: After approval by the original developer, the cross-cultural adaptation process of JSQ-P was performed, including forward translation, reconciliation, backward translation, and final approval of the Thai version of JSQ-P (TH-JSQ-P) by the original creator. This study was conducted between March 2021 and February 2022. The TH-JSQ-P was completed by 2,613 guardians whose children were aged 2-6 years twice in 10-14 days to assess its reliability and validity. Content validity was measured by an index of item-objective congruence (IOC) and a content validity index (CVI). Face validity, content validity, structural validity, construct validity (discriminant validity), criterion validity and predictive validity were assessed. The sensitivity and specificity of the TH-JSQ-P were also measured by using a total JSQ-P score cutoff point 84, recommended by the original JSQ-P and each subscale score among the clinical samples of obstructive sleep apnea syndrome. Results: Internal consistency reliability, evaluated by Cronbach’s α coefficient, showed acceptable reliability in all subscales of JSQ-P. It also had good test-retest reliability, as the intraclass correlation coefficient (ICC) for all items ranged between 0.42-0.84. The content validity was acceptable. For structural validity, our results indicated that the final factor solution for the Th-JSQ-P was comparable to the original JSQ-P. For construct validity, age group was one of the clinical parameters associated with some sleep problems. In detail, parasomnias, insomnia, daytime excessive sleepiness and sleep habits significantly decreased when the children got older; on the other hand, insufficient sleep was significantly increased with age. For criterion validity, all subscales showed a correlation with the Epworth Sleepiness Scale (r = -0.049-0.349). In predictive validity, the Epworth Sleepiness Scale was significantly a strong factor that correlated to sleep problems in all subscales of JSQ-P except in the subscale of sleep habit. The sensitivity and specificity of the total JSQ-P score were 0.72 and 0.66, respectively. Conclusion: The Thai version of JSQ-P has good internal consistency reliability and test-retest reliability. It passed 6 validity tests, and this can be used to evaluate sleep problems in preschool children in Thailand. Furthermore, it has satisfactory general psychometric properties and good reliability and validity. The data collected in examining the sensitivity of the Thai version revealed that the JSQ-P could detect differences in sleep problems among children with obstructive sleep apnea syndrome. This confirmed that the measure is sensitive and can be used to discriminate sleep problems among different children.Keywords: preschooler, questionnaire, validation, Thai version
Procedia PDF Downloads 1051070 Multi-Cluster Overlapping K-Means Extension Algorithm (MCOKE)
Authors: Said Baadel, Fadi Thabtah, Joan Lu
Abstract:
Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper, we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold to be defined as a priority which can be difficult to determine by novice users.Keywords: data mining, k-means, MCOKE, overlapping
Procedia PDF Downloads 5761069 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 1541068 Utilize 5G Mobile Connection as a Node in the Proof of Authority Blockchain Used for Microtransaction
Authors: Frode van der Laak
Abstract:
The paper contributes to the feasibility of using a 5G mobile connection as a node for a Proof of Authority (PoA) blockchain, which is used for microtransactions at the same time. It uses the phone number identity of the users that are linked to the crypto wallet address. It also proposed a consensus protocol based on Proof-of-Authority (PoA) blockchain; PoA is a permission blockchain where consensus is achieved through a set of designated authority rather than through mining, as is the case with a Proof of Work (PoW) blockchain. This report will first explain the concept of a PoA blockchain and how it works. It will then discuss the potential benefits and challenges of using a 5G mobile connection as a node in such a blockchain, and finally, the main open problem statement and proposed solutions with the requirements.Keywords: 5G, mobile, connection, node, PoA, blockchain, microtransaction
Procedia PDF Downloads 991067 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension
Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe
Abstract:
The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.Keywords: neural network, hypertension, data set, training set, supervised learning
Procedia PDF Downloads 394