Search results for: plate bending
530 Inactivation of Listeria innocua ATCC 33092 by Gas-Phase Plasma Treatment
Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak
Abstract:
High voltage electrical discharge plasmas are new nonthermal developing techniques used for water decontamination. To the full understanding of cell inactivation mechanisms, this study brings inactivation, recovery and cellular leakage of L. innocua cells before and after the treatment. Bacterial solution (200 mL) of L. innocua was treated in a glass reactor with a point-to-plate electrode configuration (high voltage electrode-titanium wire, was in the gas phase and grounded electrode was in the liquid phase). Argon was injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min, positive polarity and conductivity of media of 100 µS/cm were chosen to define listed parameters. With a longer treatment time inactivation was higher as well as the increase in cellular leakage. Despite total inactivation recovery of cells occurred probably because of a high leakage of proteins, compared to lower leakage of nucleic acids (DNA and RNA). In order to define mechanisms of inactivation further research is needed.Keywords: Listeria innocua ATCC 33092, inactivation, gas phase plasma, cellular leakage, recovery of cells
Procedia PDF Downloads 176529 Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow
Authors: Shu-Yang Zhang, Shun-Qi Zhang, Zhan-Xi Wang, Xian-Sheng Qin
Abstract:
Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely.Keywords: piezoelectric smart structures, aerodynamic, geometric nonlinearity, finite element analysis
Procedia PDF Downloads 389528 Application of Digital Image Correlation Technique on Vacuum Assisted Resin Transfer Molding Process and Performance Evaluation of the Produced Materials
Authors: Dingding Chen, Kazuo Arakawa, Masakazu Uchino, Changheng Xu
Abstract:
Vacuum assisted resin transfer moulding (VARTM) is a promising manufacture process for making large and complex fiber reinforced composite structures. However, the complexity of the flow of the resin in the infusion stage usually leads to nonuniform property distribution of the produced composite part. In order to control the flow of the resin, the situation of flow should be mastered. For the safety of the usage of the produced composite in practice, the understanding of the property distribution is essential. In this paper, we did some trials on monitoring the resin infusion stage and evaluation for the fiber volume fraction distribution of the VARTM produced composite using the digital image correlation methods. The results show that 3D-DIC is valid on monitoring the resin infusion stage and it is possible to use 2D-DIC to estimate the distribution of the fiber volume fraction on a FRP plate.Keywords: digital image correlation, VARTM, FRP, fiber volume fraction
Procedia PDF Downloads 342527 Bending Tests for the Axial Load Identifications in Space Structures with Unknown Boundary Conditions
Authors: M. Bonopera, N. Tullini, C. C. Chen, T. K. Lin, K. C. Chang
Abstract:
This paper presents the extension of a static method for the axial load identifications in prismatic beam-columns with uncertain length and unknown boundary conditions belonging to generic space structures, such as columns of space frames or struts and ties of space trusses. The non-destructive method requires the knowledge of the beam-column flexural rigidity only. Flexural displacements are measured at five cross sections along the beam-column subjected to an additional vertical load at the mid-span. Unlike analogous dynamic methods, any set of experimental data may be used in the identification procedure. The method is verified by means of many numerical and experimental tests on beam-columns having unknown boundary conditions and different slenderness belonging to three different space prototypes in small-scale. Excellent estimates of the tensile and compressive forces are obtained for the elements with higher slenderness and when the greatest possible distance between sensors is adopted. Moreover, the application of larger values of the vertical load and very accurate displacement measurements are required. The method could be an efficacious technique in-situ, considering that safety inspections will become increasingly important in the near future, especially because of the improvement of the material properties that allowed designing space structures composed of beam-columns with higher slenderness.Keywords: force identification, in-situ test, space structure, static test
Procedia PDF Downloads 245526 Investigating Jacket-Type Offshore Structures Failure Probability by Applying the Reliability Analyses Methods
Authors: Majid Samiee Zonoozian
Abstract:
For such important constructions as jacket type platforms, scrupulous attention in analysis, design and calculation processes is needed. The reliability assessment method has been established into an extensively used method to behavior safety calculation of jacket platforms. In the present study, a methodology for the reliability calculation of an offshore jacket platform in contradiction of the extreme wave loading state is available. Therefore, sensitivity analyses are applied to acquire the nonlinear response of jacket-type platforms against extreme waves. The jacket structure is modeled by applying a nonlinear finite-element model with regards to the tubular members' behave. The probability of a member’s failure under extreme wave loading is figured by a finite-element reliability code. The FORM and SORM approaches are applied for the calculation of safety directories and reliability indexes have been detected. A case study for a fixed jacket-type structure positioned in the Persian Gulf is studied by means of the planned method. Furthermore, to define the failure standards, equations suggested by the 21st version of the API RP 2A-WSD for The jacket-type structures’ tubular members designing by applying the mixed axial bending and axial pressure. Consequently, the effect of wave Loades in the reliability index was considered.Keywords: Jacket-Type structure, reliability, failure probability, tubular members
Procedia PDF Downloads 172525 Virulence Factors and Drug Resistance of Enterococci Species Isolated from the Intensive Care Units of Assiut University Hospitals, Egypt
Authors: Nahla Elsherbiny, Ahmed Ahmed, Hamada Mohammed, Mohamed Ali
Abstract:
Background: The enterococci may be considered as opportunistic agents particularly in immunocompromised patients. It is one of the top three pathogens causing many healthcare associated infections (HAIs). Resistance to several commonly used antimicrobial agents is a remarkable characteristic of most species which may carry various genes contributing to virulence. Objectives: to determine the prevalence of enterococci species in different intensive care units (ICUs) causing health care-associated infections (HAIs), intestinal carriage and environmental contamination. Also, to study the antimicrobial susceptibility pattern of the isolates with special reference to vancomycin resistance. In addition to phenotypic and genotypic detection of gelatinase, cytolysin and biofilm formation among isolates. Patients and Methods: This study was carried out in the infection control laboratory at Assiut University Hospitals over a period of one year. Clinical samples were collected from 285 patients with various (HAIs) acquired after admission to different ICUs. Rectal swabs were taken from 14 cases for detection of enterococci carriage. In addition, 1377 environmental samples were collected from the surroundings of the patients. Identification was done by conventional bacteriological methods and confirmed by analytical profile index (API). Antimicrobial sensitivity testing was performed by Kirby Bauer disc diffusion method and detection of vancomycin resistance was done by agar screen method. For the isolates, phenotypic detection of cytolysin, gelatinase production and detection of biofilm by tube method, Congo red method and microtiter plate. We performed polymerase chain reaction (PCR) for detection of some virulence genes (gelE, cylA, vanA, vanB and esp). Results: Enterococci caused 10.5% of the HAIs. Respiratory tract infection was the predominant type (86.7%). The commonest species were E.gallinarum (36.7%), E.casseliflavus (30%), E.faecalis (30%), and E.durans (3.4 %). Vancomycin resistance was detected in a total of 40% (12/30) of those isolates. The risk factors associated with acquiring vancomycin resistant enterococci (VRE) were immune suppression (P= 0.031) and artificial feeding (P= 0.008). For the rectal swabs, enterococci species were detected in 71.4% of samples with the predominance of E. casseliflavus (50%). Most of the isolates were vancomycin resistant (70%). Out of a total 1377 environmental samples, 577 (42%) samples were contaminated with different microorganisms. Enterococci were detected in 1.7% (10/577) of total contaminated samples, 50% of which were vancomycin resistant. All isolates were resistant to penicillin, ampicillin, oxacillin, ciprofloxacin, amikacin, erythromycin, clindamycin and trimethoprim-sulfamethaxazole. For the remaining antibiotics, variable percentages of resistance were reported. Cytolysin and gelatinase were detected phenotypically in 16% and 48 % of the isolates respectively. The microtiter plate method showed the highest percentages of detection of biofilm among all isolated species (100%). The studied virulence genes gelE, esp, vanA and vanB were detected in 62%, 12%, 2% and 12% respectively, while cylA gene was not detected in any isolates. Conclusions: A significant percentage of enterococci was isolated from patients and environments in the ICUs. Many virulence factors were detected phenotypically and genotypically among isolates. The high percentage of resistance, coupled with the risk of cross transmission to other patients make enterococci infections a significant infection control issue in hospitals.Keywords: antimicrobial resistance, enterococci, ICUs, virulence factors
Procedia PDF Downloads 285524 Numerical Investigation for External Strengthening of Dapped-End Beams
Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah
Abstract:
The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.Keywords: dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation
Procedia PDF Downloads 117523 Experimental Investigation of Air Gap Membrane Distillation System with Heat Recovery
Authors: Yasser Elhenaw, A. Farag, Mohamed El-Ghandour, M. Shatat, G. H. Moustafa
Abstract:
This study investigates the performance of two spiral-wound Air Gap Membrane Distillation (AGMD) units. These units are connected in two different configurations in order to be tested and compared experimentally. In AGMD, the coolant water is used to condensate water vapor leaving membrane via condensing plate. The rejected cooling water has a relativity high temperature which can be used, depending on operation parameters, to increase the thermal efficiency and water productivity. In the first configuration, the seawater feed flows parallel and equally through both units then rejected. The coolant water is divided into the two units, and the heat source is divided into the two heat exchangers. In the second one, only the feed of the first unit is heated while the cooling rejected from the unit is used in heating the feed to the second. The performance of the system, estimated by the water productivity as well as the Gain Output Ratio (GOR), is measured for the two configurations at different feed flow rates, temperatures and salinities. The results show that at steady state condition, the heat recovery configurations lead to an increase in water productivity by 25%.Keywords: membrane distillation, heat transfer, heat recovery, desalination
Procedia PDF Downloads 267522 Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method
Authors: Uchechukwu Vincent Okpala
Abstract:
Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications.Keywords: doping, sol-gel, velvet tamarind, ZnS.
Procedia PDF Downloads 47521 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip
Authors: Rama Bhargava, Mania Goyal
Abstract:
The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.Keywords: viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM
Procedia PDF Downloads 313520 Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials
Authors: Barry Hojjatie
Abstract:
Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm.Keywords: ceramis, biaxial, flexure test, uniaxial
Procedia PDF Downloads 155519 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education
Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim
Abstract:
The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.Keywords: corona discharge, Tesla coil, high voltage application, high voltage education
Procedia PDF Downloads 328518 Comparative Fracture Parameters of Khaya ivorensis and Magnolia obovata: Outlooks for the Development of Sustainable Mobility Materials
Authors: Riccardo Houngbegnon, Loic Chrislin Nguedjio, Valery Doko, José Xavier, Miran Merhar, Rostand Moutou Pitti
Abstract:
Against a backdrop of heightened awareness of environmental impact and the reduction of space debris, the use of sustainable materials for mobility applications is emerging as a promising solution to minimize the environmental footprint of our technologies. Among recent innovative developments in the use of wood, the Japanese species Magnolia obovata attracted particular interest when it was used in the design of the first wooden satellite launched in November 2024. The aim of this project is to explore new species that could replace M. obovata in a mobile context. Khaya ivorensis, a tropical African species, was selected and compared to M. obovata in terms of resistance to cracking, a key criterion in the durability of mobility infrastructures. Prior to the cracking tests, K. ivorensis and M. obovata were characterized to determine their basic mechanical properties. The results presented here relate to this characterization phase, in particular the four-point bending, compression and BING tests, which provided us with strengths and moduli. These results were compared with those found in the literature, which allowed us to observe a number of differences. CHARPY resilience tests were also performed and compare to critical energy release rate in order to estimate the ability of the two species to absorb energy, particularly following impacts and various shocks.Keywords: energy release rate, Khaya ivorensis, magnolia obovata, wood for mobility
Procedia PDF Downloads 8517 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments
Authors: A. Kampker, K. Kreisköther, C. Reinders
Abstract:
Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing
Procedia PDF Downloads 255516 Structural Performance Evaluation of Segmented Wind Turbine Blade Through Finite Element Simulation
Authors: Chandrashekhar Bhat, Dilifa Jossley Noronha, Faber A. Saldana
Abstract:
Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.Keywords: modularization, fatigue, cohesive zone modeling, wind turbine blade
Procedia PDF Downloads 449515 A Prospective Evaluation of Thermal Radiation Effects on Magneto-Hydrodynamic Transport of a Nanofluid Traversing a Spongy Medium
Authors: Azad Hussain, Shoaib Ali, M. Y. Malik, Saba Nazir, Sarmad Jamal
Abstract:
This article reports a fundamental numerical investigation to analyze the impact of thermal radiations on MHD flow of differential type nanofluid past a porous plate. Here, viscosity is taken as function of temperature. Energy equation is deliberated in the existence of viscous dissipation. The mathematical terminologies of nano concentration, velocity and temperature are first cast into dimensionless expressions via suitable conversions and then solved by using Shooting technique to obtain the numerical solutions. Graphs has been plotted to check the convergence of constructed solutions. At the end, the influence of effective parameters on nanoparticle concentration, velocity and temperature fields are also deliberated in a comprehensive way. Moreover, the physical measures of engineering importance such as the Sherwood number, Skin friction and Nusselt number are also calculated. It is perceived that the thermal radiation enhances the temperature for both Vogel's and Reynolds' models but the normal stress parameter causes a reduction in temperature profile.Keywords: MHD flow, differential type nanofluid, Porous medium, variable viscosity, thermal radiation
Procedia PDF Downloads 243514 A Finite Element Model to Study the Behaviour of Corroded Reinforced Concrete Beams Repaired with near Surface Mounted Technique
Authors: B. Almassri, F. Almahmoud, R. Francois
Abstract:
Near surface mounted reinforcement (NSM) technique is one of the promising techniques used nowadays to strengthen reinforced concrete (RC) structures. In the NSM technique, the Carbon Fibre Reinforced Polymer (CFRP) rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive. This paper studies the non-classical mode of failure ‘the separation of concrete cover’ according to experimental and numerical FE modelling results. Experimental results and numerical modelling results of a 3D finite element (FE) model using the commercial software Abaqus and 2D FE model FEMIX were obtained on two beams, one corroded (25 years of corrosion procedure) and one control (A1CL3-R and A1T-R) were each repaired in bending using NSM CFRP rod and were then tested up to failure. The results showed that the NSM technique increased the overall capacity of control and corroded beams despite a non-classical mode of failure with separation of the concrete cover occurring in the corroded beam due to damage induced by corrosion. Another FE model used external steel stirrups around the repaired corroded beam A1CL3-R which failed with the separation of concrete cover, this model showed a change in the mode of failure form a non-classical mode of failure by the separation of concrete cover to the same mode of failure of the repaired control beam by the crushing of compressed concrete.Keywords: corrosion, repair, Reinforced Concrete, FEM, CFRP, FEMIX
Procedia PDF Downloads 165513 Evaluation of Antioxidant and Antimicrobial Potential of Rutin in Cheddar Cheese
Authors: Haroon Jamshaid Qazi, Namrah Wahid, Sanaullah Iqbal, Raheel Suleman
Abstract:
The aim of the current study was to evaluate the antioxidant and antimicrobial potential of Rutin in cheddar cheese. The study was conducted by adding the Rutin in the cheddar cheese in different concentrations according to experimental design, i.e., T1 (20 ppm Rutin), T2 (40 ppm Rutin), T3 (60 ppm Rutin), T4 (80 ppm Rutin). BHT was taken as a positive control at a concentration of 200 ppm, and negative control had neither Rutin nor BHT. The ripening time for cheeses was 90 days at a temperature of 8°C. The results of the various antioxidants assays (Total phenolic contents (TPC) and Antioxidant activity (AA), with storage stability tests (Anisidine value (AV) and Thiobarbituric acid value (TBARS)) performed during different storage intervals 0, 30, 60 and 90 days exhibited that AA in linoleic acid and TPC were significantly (p < 0.05) increased by the addition of rutin to cheese at all concentrations. Moreover, significant reduction in the TBARS values was also observed during the storage period. Rutin also showed a good potential to inhibit the microbial proliferation in the treated samples of cheese. There was a significant decreasing trend seen in total plate count and yeasts and molds count. The sensorial attributes i.e., color, flavor, odor and overall acceptability were increased after adding Rutin to cheddar cheese.Keywords: cheddar cheese, Rutin, antioxidant, antimicrobial
Procedia PDF Downloads 185512 Life Cycle Cost Evaluation of Structures with Hysteretic Dampers
Authors: Jinkoo Kim, Hyungoo Kang, Hyungjun Shin
Abstract:
In this study, a hybrid energy dissipation device is developed by combining a steel slit plate and friction pads to be used for seismic retrofit of structures, and its effectiveness is investigated by comparing the life cycle costs of the structure before and after the retrofit. The seismic energy dissipation capability of the dampers is confirmed by cyclic loading tests. The probabilities of reaching various damage states are obtained by fragility analysis, and the life cycle costs of the model structures are computed using the PACT (Performance Assessment Calculation Tool) program based on FEMA P-58 methodology. The fragility analysis shows that the probabilities of reaching limit states are minimized by the seismic retrofit with hybrid dampers and increasing column size. The seismic retrofit with increasing column size and hybrid dampers results in the lowest repair cost and shortest repair time.Keywords: slit dampers, friction dampers, seismic retrofit, life cycle cost, FEMA P-58, PACT
Procedia PDF Downloads 326511 Review of Affected Parameters on Flexural Behavior of Hollow Concrete Beams Reinforced by Steel/GFRP Rebars
Authors: Shahrad Ebrahimzadeh
Abstract:
Nowadays, the main efforts of the researchers aim to constantly evolve new, optimized and efficient construction materials and methods related to reinforced concrete beams. Due to the fewer applied materials and offering a higher structural efficiency compared to solid concrete beams with the same concrete area, hollow reinforced concrete beams (HRCB) internally reinforced with steel rebars have been employed extensively for bridge structural members and high-rise buildings. Many experimental studies have been conducted to investigate the behavior of hollow beams subjected to bending loading and found that the structural performance of HRCBs is critically affected by many design parameters. While the proper design of the HRCBs demonstrated comparable behavior to solid sections, inappropriate design leads beams to be extremely prone to brittle failure. Another potential issue that needs to be further investigated is the replacement of steel bars with suitable materials due to their susceptibility to corrosion. Hence, to develop a reliable construction system, the application of GFRP bars as a non-corroding material has been utilized. Furthermore, this study aims to critically review the different design parameters that affect the flexural performance of the HRCBs and recognize the gaps of knowledge in the better design and more effective use of this construction system.Keywords: design parameters, experimental investigations, hollow reinforced concrete beams, steel, GFRP, flexural strength
Procedia PDF Downloads 202510 Smart Energy Storage: W₁₈O₄₉ NW/Ti₃C₂Tₓ Composite-Enabled All Solid State Flexible Electrochromic Supercapacitors
Authors: Muhammad Hassan, Kemal Celebi
Abstract:
Developing a highly efficient electrochromic energy storage device with sufficient color fluctuation and significant electrochemical performance is highly desirable for practical energy-saving applications. Here, to achieve a highly stable material with a large electrochemical storage capacity, a W₁₈O₄₉ NW/Ti₃C₂Tₓ composite has been fabricated and deposited on a pre-assembled Ag and W₁₈O₄₉ NW conductive network by Langmuir-Blodgett technique. The resulting hybrid electrode composed of 15 layers of W₁₈O₄₉ NW/Ti₃C₂Tₓ exhibits an areal capacitance of 125 mF/cm², with a fast and reversible switching response. An optical modulation of 98.2% can be maintained at a current density of 5 mAcm⁻². Using this electrode, we fabricated a bifunctional symmetric electrochromic supercapacitor device having an energy density of 10.26 μWh/cm² and a power density of 0.605 mW/cm², with high capacity retention and full columbic efficiency over 4000 charge-discharge cycles. Meanwhile, the device displays remarkable electrochromic characteristics, including fast switching time (5 s for coloring and 7 s for bleaching) and a significant coloration efficiency of 116 cm²/C with good optical modulation stability. In addition, the device exhibits remarkable mechanical flexibility and fast switching while being stable over 100 bending cycles, which is promising for real-world applications.Keywords: MXene, nanowires, supercapacitor, ion diffusion, electrochromic, coloration efficiency
Procedia PDF Downloads 76509 Internal Leakage Analysis from Pd to Pc Port Direction in ECV Body Used in External Variable Type A/C Compressor
Authors: M. Iqbal Mahmud, Haeng Muk Cho, Seo Hyun Sang, Wang Wen Hai, Chang Heon Yi, Man Ik Hwang, Dae Hoon Kang
Abstract:
Solenoid operated electromagnetic control valve (ECV) playing an important role for car’s air conditioning control system. ECV is used in external variable displacement swash plate type compressor and controls the entire air conditioning system by means of a pulse width modulation (PWM) input signal supplying from an external source (controller). Complete form of ECV contains number of internal features like valve body, core, valve guide, plunger, guide pin, plunger spring, bellows etc. While designing the ECV; dimensions of different internal items must meet the standard requirements as it is quite challenging. In this research paper, especially the dimensioning of ECV body and its three pressure ports through which the air/refrigerant passes are considered. Here internal leakage test analysis of ECV body is being carried out from its discharge port (Pd) to crankcase port (Pc) when the guide valve is placed inside it. The experiments have made both in ordinary and digital system using different assumptions and thereafter compare the results.Keywords: electromagnetic control valve (ECV), leakage, pressure port, valve body, valve guide
Procedia PDF Downloads 410508 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon
Authors: M. Salmanpour, O. Nourani Zonouz
Abstract:
In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation
Procedia PDF Downloads 471507 Investigation of Steel-Concrete Composite Bridges under Blasting Loads Based on Slope Reflection
Authors: Yuan Li, Yitao Han, Zhao Zhu
Abstract:
In this paper, the effect of blasting loads on steel-concrete composite bridges has been investigated considering the slope reflection effect. Reasonable values of girder size, plate thickness, stiffening rib, and other design parameters were selected according to design specifications. Modified RHT (Riedel-Hiermaier-Thoma) was used as constitutive relation in analyses. In order to simulate the slope reflection effect, the slope of the bridge was precisely built in the model. Different blasting conditions, including top, middle, and bottom explosions, were simulated. The multi-Euler domain method based on fully coupled Lagrange and Euler models was adopted for the structural analysis of the explosion process using commercial software AUTODYN. The obtained results showed that explosion overpressure was increased by 3006, 879, and 449kPa, corresponding to explosions occurring at the top, middle, and bottom of the slope, respectively. At the same time, due to energy accumulation and transmission dissipation caused by slope reflection, the corresponding yield lengths of steel beams were increased by 8, 0, and 5m, respectively.Keywords: steel-concrete composite bridge, explosion damage, slope reflection, blasting loads, RHT
Procedia PDF Downloads 96506 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport
Authors: Dominic Wentworth-Linton, Shian Gao
Abstract:
This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.Keywords: CFD simulation, Internal combustion engine, Intake system, Dynamometer test
Procedia PDF Downloads 283505 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner
Authors: Loke Kean Koay, Mani Maran Ratnam
Abstract:
A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.Keywords: torsional scanner, design optimization, computer-aided design, magnet position variation
Procedia PDF Downloads 366504 A Discrete Element Method-Based Simulation of Toppling Failure Considering Block Interaction
Authors: Hooman Dabirmanesh, Attila M. Zsaki
Abstract:
The toppling failure mode in a rock mass is considerably different from the most common sliding failure type along an existing or an induced slip plane. Block toppling is observed in a rock mass which consists of both a widely-spaced basal cross-joint set and a closely-spaced discontinuity set dipping into the slope. For this case, failure occurs when the structure cannot bear the tensile portion of bending stress, and the columns or blocks overturn by their own weight. This paper presents a particle-based discrete element model of rock blocks subjected to a toppling failure where geometric conditions and interaction among blocks are investigated. A series of parametric studies have been conducted on particles’ size, arrangement and bond contact among of particles which are made the blocks. Firstly, a numerical investigation on a one-block system was verified. Afterward, a slope consisting of multi-blocks was developed to study toppling failure and interaction forces between blocks. The results show that the formation of blocks, especially between the block and basal plane surface, can change the process of failure. The results also demonstrate that the initial configuration of particles used to form the blocks has a significant role in achieving accurate simulation results. The size of particles and bond contacts have a considerable influence to change the progress of toppling failure.Keywords: block toppling failure, contact interaction, discrete element, particle size, random generation
Procedia PDF Downloads 201503 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling
Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad
Abstract:
A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.Keywords: softening, high-pressure, polystyrene, CO₂ diffusions
Procedia PDF Downloads 127502 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel
Authors: Sanjeev Kumar, S. K. Nath
Abstract:
Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.Keywords: HAZ simulation, mechanical properties, peak temperature, ship hull steel, weldability
Procedia PDF Downloads 561501 Composite Laminate and Thin-Walled Beam Correlations for Aircraft Wing Box Design
Authors: S. J. M. Mohd Saleh, S. Guo
Abstract:
Composite materials have become an important option for the primary structure of aircraft due to their design flexibility and ability to improve the overall performance. At present, the option for composite usage in aircraft component is largely based on experience, knowledge, benchmarking and partly market driven. An inevitable iterative design during the design stage and validation process will increase the development time and cost. This paper aims at presenting the correlation between laminate and composite thin-wall beam structure, which contains the theoretical and numerical investigations on stiffness estimation of composite aerostructures with applications to aircraft wings. Classical laminate theory and thin-walled beam theory were applied to define the correlation between 1-dimensional composite laminate and 2-dimensional composite beam structure, respectively. Then FE model was created to represent the 3-dimensional structure. A detailed study on stiffness matrix of composite laminates has been carried out to understand the effects of stacking sequence on the coupling between extension, shear, bending and torsional deformation of wing box structures for 1-dimensional, 2-dimensional and 3-dimensional structures. Relationships amongst composite laminates and composite wing box structures of the same material have been developed in this study. These correlations will be guidelines for the design engineers to predict the stiffness of the wing box structure during the material selection process and laminate design stage.Keywords: aircraft design, aircraft structures, classical lamination theory, composite structures, laminate theory, structural design, thin-walled beam theory, wing box design
Procedia PDF Downloads 233