Search results for: optical microscope
1367 Prevalence of Eimeria spp in Cattle in Anatolia Region, Turkey
Authors: Nermin Isik, Onur Ceylan
Abstract:
Bovine coccidiosis is a protozoan infection caused by coccidia parasites of the genus Eimeria which develops in the small and the large intestine. The aim of this study was to determine the prevalence of Eimeria spp. in cattle. This study was conducted between March 2014 and April 2015, involved 624 fecal samples of cattle. Cattle were grouped according to their age as follows: 6-12, 12-24 and >24 months. In a retrospective study from these faecal samples of cattle submitted to the University of Selcuk, Faculty of Veterinary Medicine, Laboratory of Parasitology were evaluated regarding the prevalence of Eimeria spp. In the laboratory, faecal samples were examined by Fulleborn saturated salt flotation technique and examined under a microscope for the presence of protozoan oocysts. Eimeria oocysts were found in 4.8% of all the samples. Eimeria infection was detected in 11.8%, 5.3% and 0.4% of the cattle in the age groups, respectively. This study showed that Eimeria infection was commonly seen in 6-24-month-old cattle. Further epidemiological investigation on economic significance and species composition of bovine coccidiosis needs to be pursued.Keywords: cattle, diarrhea, Eimeria spp, Turkey
Procedia PDF Downloads 3521366 [Keynote Talk]: Heavy Metals in Marine Sediments of Gulf of Izmir
Authors: E. Kam, Z. U. Yümün, D. Kurt
Abstract:
In this study, sediment samples were collected from four sampling sites located on the shores of the Gulf of İzmir. In the samples, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn concentrations were determined using inductively coupled, plasma-optical emission spectrometry (ICP-OES). The average heavy metal concentrations were: Cd < LOD (limit of detection); Co 14.145 ± 0.13 μg g−1; Cr 112.868 ± 0.89 μg g−1; Cu 34.045 ± 0.53 μg g−1; Mn 481.43 ± 7.65 μg g−1; Ni 76.538 ± 3.81 μg g−1; Pb 11.059 ± 0.53 μg g−1 and Zn 140.133 ± 1.37 μg g−1, respectively. The results were compared with the average abundances of these elements in the Earth’s crust. The measured heavy metal concentrations can serve as reference values for further studies carried out on the shores of the Aegean Sea.Keywords: heavy metal, Aegean Sea, ICP-OES, sediment
Procedia PDF Downloads 1841365 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution
Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko
Abstract:
Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking
Procedia PDF Downloads 731364 Study of the Morphological and Optical Properties of Nanometric NiO
Authors: Nassima Hamzaoui, Mostefa Ghamnia
Abstract:
Nanoscale thin films of pure and Mn-doped Nickel oxide (NiO) were prepared by dissolving nickel chloride hexahydrate (NiCl2, 6H2O) and manganese chloride tetrahydrate (MnCl2,4H2O) under experimental conditions. The resulting solution was stirred at room temperature for 30 OC minutes in order to obtain homogeneity. The solution was sprayed onto heated glass substrates. The films obtained were characterized by X-ray diffraction to verify crystallinity. Atomic force microscopy (AFM) reveals surface topographical structure. UV-visible spectroscopy shows good transparency of the NiO layers.Keywords: films, NiO, AFM, X-ray diffraction
Procedia PDF Downloads 601363 Utilization of Fishbone for the Removal of Nickel Ions from Aqueous Media
Authors: Bukunola A.Oguntade, Abdul- Azeez A. Oderinde
Abstract:
Fishbone is a type of waste generated from food and food processing industries. Fishbone wastes are usually treated as the source of organic matter for the by-production. It is a rich source of hydroxyapatite (HAP). In this study, the adsorption behavior of fishbone was examined in a batch system as an economically viable adsorbent for the removal of Ni⁺² ions from aqueous solution. The powdered fishbone was characterized using Fourier Transform Infrared (FT-IR) spectrophotometer and Scanning Electron microscope (SEM). The study investigated the influence of adsorbent dosage, solution pH, contact time, and initial metal concentration on the removal of Nickel (II) ions at room temperature. The batch kinetics study showed that the optimum adsorption of Ni(II) was 98% at pH 7, metal ion concentration of 30 mg/L. The results obtained from the experimental work showed that fishbone can be used as an adsorbent for the removal of Ni(II) ions from aqueous solution.Keywords: adsorption, aqueous media, fishbone, kinetic study
Procedia PDF Downloads 1311362 Segmental Motion of Polymer Chain at Glass Transition Probed by Single Molecule Detection
Authors: Hiroyuki Aoki
Abstract:
The glass transition phenomenon has been extensively studied for a long time. The glass transition of polymer materials is assigned to the transition of the dynamics of the chain backbone segment. However, the detailed mechanism of the transition behavior of the segmental motion is still unclear. In the current work, the single molecule detection technique was employed to reveal the trajectory of the molecular motion of the single polymer chain. The center segment of poly(butyl methacrylate) chain was labeled by a perylenediimide dye molecule and observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was analyzed near the glass transition temperature. The direct observation of the individual polymer chains revealed the intermittent behavior of the segmental motion, indicating the spatial inhomogeneity.Keywords: glass transition, molecular motion, polymer materials, single molecule
Procedia PDF Downloads 3381361 Influence of Nano-ATH on Electrical Performance of LSR for HVDC Insulation
Authors: Ju-Na Hwang, Min-Hae Park, Kee-Joe Lim
Abstract:
Many studies have been conducted on DC transmission. Of power apparatus for DC transmission, High Voltage Direct Current (HVDC) cable systems are being evaluated because of the increase in power demand and transmission distance. Therefore, dc insulation characteristics of Liquid Silicone Rubber (LSR), which has various advantages such as short curing time and the ease of maintenance, were investigated to assess its performance as a HVDC insulation material for cable joints. The electrical performance of LSR added to Nano-Aluminum Trihydrate (ATH) was confirmed by measurements of the breakdown strength and electrical conductivity. In addition, field emission scanning electron microscope (FE-SEM) was used as a means of confirmation of nano-filler dispersion state. The LSR nano-composite was prepared by compounding LSR filled nano-sized ATH filler. The DC insulation properties of LSR added to nano-sized ATH fillers were found to be superior to those of the LSR without filler.Keywords: liquid silicone rubber, nano-composite, HVDC insulation, cable joints
Procedia PDF Downloads 4621360 Mechanical Properties and Characterization of Ti–6Al–4V Alloy Diffused by Molybdenum
Authors: Alaeddine Kaouka
Abstract:
The properties and characterization of Ti-6Al-4V alloys with different contents of Mo were investigated. Microstructure characterization and hardness are considered. The alloy structure was characterized by X-ray diffraction, SEM and optical microscopy. The results showed that the addition of Mo stabilized the β-phase in the treated solution condition. The Mo element added to titanium alloys changes the lattice parameters of phases. Microstructural observations indicate an obvious reduction in the prior grain size. The hardness has increased with the increase in β-phase stability, while Young’s modulus and ductility have decreased.Keywords: characterization, mechanical properties, molybdenum, titanium alloy
Procedia PDF Downloads 2601359 One Step Green Synthesis of Silver Nanoparticles and Their Biological Activity
Authors: Samy M. Shaban, Ismail Aiad, Mohamed M. El-Sukkary, E. A. Soliman, Moshira Y. El-Awady
Abstract:
In situ and green synthesis of cubic and spherical silver nanoparticles were developed using sun light as reducing agent in the presence of newly prepared cationic surfactant which acting as capping agents. The morphology of prepared silver nanoparticle was estimated by transmission electron microscope (TEM) and the size distribution determined by dynamic light scattering (DLS). The hydrophobic chain length of the prepared surfactant effect on the stability of the prepared silver nanoparticles as clear from zeta-potential values. Also by increasing chain length of the used capping agent the amount of formed nanoparticle increase as indicated by increasing the absorbance. Both prepared surfactants and surfactants capping silver nanoparticles showed high antimicrobial activity against gram positive and gram-negative bacteria.Keywords: photosynthesis, hexaonal shapes, zetapotential, biological activity
Procedia PDF Downloads 4591358 Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin
Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat
Abstract:
Eucalyptus essential oil is extracted from Eucalyptus globulus of the Myrtaceae family and is also known as Tasmanian blue gum or blue gum. Despite the reputation earned by aromatic and medicinal plants of Algeria. The objectives of this study were: (i) the extraction of the essential oil from the leaves of Eucalyptus globulus Labill., Myrtaceae grown in Algeria, and the quantification of the yield thereof, (ii) the identification and quantification of the compounds in the essential oil obtained, and (iii) the determination of physical and chemical properties of EGEO. The chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602-1.4623 refractive index value, 0.918-0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.Keywords: chemical composition, essential oil, eucalyptol, gas chromatography
Procedia PDF Downloads 3281357 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity
Authors: Monalisa Pal, Kalyan Mandal
Abstract:
Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis
Procedia PDF Downloads 3871356 Characterization of Ethanol-Air Combustion in a Constant Volume Combustion Bomb Under Cellularity Conditions
Authors: M. Reyes, R. Sastre, P. Gabana, F. V. Tinaut
Abstract:
In this work, an optical characterization of the ethanol-air laminar combustion is presented in order to investigate the origin of the instabilities developed during the combustion, the onset of the cellular structure and the laminar burning velocity. Experimental tests of ethanol-air have been developed in an optical cylindrical constant volume combustion bomb equipped with a Schlieren technique to record the flame development and the flame front surface wrinkling. With this procedure, it is possible to obtain the flame radius and characterize the time when the instabilities are visible through the cell's apparition and the cellular structure development. Ethanol is an aliphatic alcohol with interesting characteristics to be used as a fuel in Internal Combustion Engines and can be biologically synthesized from biomass. Laminar burning velocity is an important parameter used in simulations to obtain the turbulent flame speed, whereas the flame front structure and the instabilities developed during the combustion are important to understand the transition to turbulent combustion and characterize the increment in the flame propagation speed in premixed flames. The cellular structure is spontaneously generated by volume forces, diffusional-thermal and hydrodynamic instabilities. Many authors have studied the combustion of ethanol air and mixtures of ethanol with other fuels. However, there is a lack of works that investigate the instabilities and the development of a cellular structure in ethanol flames, a few works as characterized the ethanol-air combustion instabilities in spherical flames. In the present work, a parametrical study is made by varying the fuel/air equivalence ratio (0.8-1.4), initial pressure (0.15-0.3 MPa) and initial temperature (343-373K), using a design of experiments type I-optimal. In reach mixtures, it is possible to distinguish the cellular structure formed by the hydrodynamic effect and by from the thermo-diffusive. Results show that ethanol-air flames tend to stabilize as the equivalence ratio decreases in lean mixtures and develop a cellular structure with the increment of initial pressure and temperature.Keywords: ethanol, instabilities, premixed combustion, schlieren technique, cellularity
Procedia PDF Downloads 671355 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials
Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi
Abstract:
Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance
Procedia PDF Downloads 3671354 Corrosion Inhibition of Copper in 1M HNO3 Solution by Oleic Acid
Authors: S. Nigri, R. Oumeddour, F. Djazi
Abstract:
The inhibition of the corrosion of copper in 1 M HNO3 solution by oleic acid was investigated by weight loss measurement, potentiodynamic polarization and scanning electron microscope (SEM) studies. The experimental results have showed that this compound revealed a good corrosion inhibition and the inhibition efficiency is increased with the inhibitor concentration to reach 98%. The results obtained revealed that the adsorption of the inhibitor molecule onto metal surface is found to obey Langmuir adsorption isotherm. The temperature effect on the corrosion behavior of copper in 1 M HNO3 without and with inhibitor at different concentration was studied in the temperature range from 303 to 333 K and the kinetic parameters activation such as Ea, ∆Ha and ∆Sa were evaluated. Tafel plot analysis revealed that oleic acid acts as a mixed type inhibitor. SEM analysis substantiated the formation of protective layer over the copper surface.Keywords: oleic acid, weight loss, electrochemical measurement, SEM analysis
Procedia PDF Downloads 3951353 Production and Characterization of Implant Material Produced by Using Electroless Ni Plated Al2O3-Co-Cr-Ti Powders
Authors: Ahmet Yonetken, Ayhan Erol
Abstract:
The microstructure, mechanical properties and corrosion characteristics of Ni plated %10Al2O3-%40Co-%20Cr and %10Ti powders were investigated using specimens produced by tube furnace sintering at 800-1200°C temperature. A uniform nickel layer on Al2O3-Co-Cr and Ti powders was deposited prior to sintering using electroless plating technique. A composite consisting of quintet additions, a metallic phase, Ti,Cr and Co including a ceramic phase, alumina, within a matrix of Ni has been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), corrosion behavior in acidic media were investigated to characterize the properties of the specimens. Experimental results carried out for composition (%10Al2O3-%40Co-%20Cr- %10Ti)20Ni at 1200°C suggest that the best properties as 312.18HV were obtained at 1200°C.Keywords: sintering, intermetallic, Electroless nickel plating, composite
Procedia PDF Downloads 5741352 Microplastic Concentrations in Cultured Oyster in Two Bays of Baja California, Mexico
Authors: Eduardo Antonio Lozano Hernandez, Nancy Ramirez Alvarez, Lorena Margarita Rios Mendoza, Jose Vinicio Macias Zamora, Felix Augusto Hernandez Guzman, Jose Luis Sanchez Osorio
Abstract:
Microplastics (MPs) are one of the most numerous reported wastes found in the marine ecosystem, representing one of the greatest risks for organisms that inhabit that environment due to their bioavailability. Such is the case of bivalve mollusks, since they are capable of filtering large volumes of water, which increases the risk of contamination by microplastics through the continuous exposure to these materials. This study aims to determine, quantify and characterize microplastics found in the cultured oyster Crassostrea gigas. We also analyzed if there are spatio-temporal differences in the microplastic concentration of organisms grown in two bays having quite different human population. In addition, we wanted to have an idea of the possible impact on humans via consumption of these organisms. Commercial size organisms (>6cm length; n = 15) were collected by triplicate from eight oyster farming sites in Baja California, Mexico during winter and summer. Two sites are located in Todos Santos Bay (TSB), while the other six are located in San Quintin Bay (SQB). Site selection was based on commercial concessions for oyster farming in each bay. The organisms were chemically digested with 30% KOH (w/v) and 30% H₂O₂ (v/v) to remove the organic matter and subsequently filtered using a GF/D filter. All particles considered as possible MPs were quantified according to their physical characteristics using a stereoscopic microscope. The type of synthetic polymer was determined using a FTIR-ATR microscope and using a user as well as a commercial reference library (Nicolet iN10 Thermo Scientific, Inc.) of IR spectra of plastic polymers (with a certainty ≥70% for polymers pure; ≥50% for composite polymers). Plastic microfibers were found in all the samples analyzed. However, a low incidence of MP fragments was observed in our study (approximately 9%). The synthetic polymers identified were mainly polyester and polyacrylonitrile. In addition, polyethylene, polypropylene, polystyrene, nylon, and T. elastomer. On average, the content of microplastics in organisms were higher in TSB (0.05 ± 0.01 plastic particles (pp)/g of wet weight) than found in SQB (0.02 ± 0.004 pp/g of wet weight) in the winter period. The highest concentration of MPs found in TSB coincides with the rainy season in the region, which increases the runoff from streams and wastewater discharges to the bay, as well as the larger population pressure (> 500,000 inhabitants). Otherwise, SQB is a mainly rural location, where surface runoff from streams is minimal and in addition, does not have a wastewater discharge into the bay. During the summer, no significant differences (Manne-Whitney U test; P=0.484) were observed in the concentration of MPs found in the cultured oysters of TSB and SQB, (average: 0.01 ± 0.003 pp/g and 0.01 ± 0.002 pp/g, respectively). Finally, we concluded that the consumption of oyster does not represent a risk for humans due to the low concentrations of MPs found. The concentration of MPs is influenced by the variables such as temporality, circulations dynamics of the bay and existing demographic pressure.Keywords: FTIR-ATR, Human risk, Microplastic, Oyster
Procedia PDF Downloads 1741351 Development of R³ UV Exposure for the UV Dose-Insensitive and Cost-Effective Fabrication of Biodegradable Polymer Microneedles
Authors: Sungmin Park, Gyungmok Nam, Seungpyo Woo, Young Choi, Sangheon Park, Sang-Hee Yoon
Abstract:
Puncturing human skin with microneedles is critically important for microneedle-mediate drug delivery. Despite of extensive efforts in the past decades, the scale-up fabrication of sharp-tipped and high-aspect-ratio microneedles, especially made of biodegradable polymers, is still a long way off. Here, we present a UV dose insensitive and cost-effective microfabrication method for the biodegradable polymer microneedles with sharp tips and long lengths which can pierce human skin with low insertion force. The biodegradable polymer microneedles are fabricated with the polymer solution casting where a poly(lactic-co-glycolic acid) (PLGA, 50:50) solution is coated onto a SU-8 mold prepared with a reverse, ramped, and rotational (R3) UV exposure. The R3 UV exposure is modified from the multidirectional UV exposure both to suppress UV reflection from the bottom surface without anti-reflection layers and to optimize solvent concentration in the SU-8 photoresist, therefore achieving robust (i.e., highly insensitive to UV dose) and cost-effective fabrication of biodegradable polymer microneedles. An optical model for describing the spatial distribution of UV irradiation dose of the R3 UV exposure is also developed to theoretically predict the microneedle geometry fabricated with the R3 UV exposure and also to demonstrate the insensitiveness of microneedle geometry to UV dose. In the experimental characterization, the microneedles fabricated with the R3 UV exposure are compared with those fabricated with a conventional method (i.e., multidirectional UV exposure). The R3 UV exposure-based microfabrication reduces the end-tip radius by a factor of 5.8 and the deviation from ideal aspect ratio by 74.8%, compared with conventional method-based microfabrication. The PLGA microneedles fabricated with the R3 UV exposure pierce full-thickness porcine skins successfully and are demonstrated to completely dissolve in PBS (phosphate-buffered saline). The findings of this study will lead to an explosive growth of the microneedle-mediated drug delivery market.Keywords: R³ UV exposure, optical model, UV dose, reflection, solvent concentration, biodegradable polymer microneedle
Procedia PDF Downloads 1671350 Melting and Making Zn-Based Alloys and Examine Their Biodegradable and Biocompatible Properties
Authors: Abdulrahman Sumayli
Abstract:
Natural Zinc has many significant biological functions, including developments and sustainable of bones and wound healing. Metallic zinc has recently been explored as potential biomaterials that have preferable biodegradable, biocompatible, and mechanical properties. Pure metal zinc has a preferable physical and mechanical properties for biodegradable and biocompatible applications such as density and modulus of elasticity. The aim of the research is to make different Zn-based metallic alloys and test them effectively to be used as biocompatible and biodegradable materials in the field biomedical application. Microstructure study of the as-cast alloys will be examined using SEM (scanning electron microscope) followed by X-ray diffraction investigated so as to evaluate phase constitution of the designed alloys. After that, immersion test and electrochemical test will be applied to the designed alloys so as to study bio corrosion behaviour of the proposed alloys. Finally, in vitro cytocompatibility well conducted to study biocompatibility of the made alloys.Keywords: Zn-based alloys, biodegradable and biocompatible materials, cytotoxicity test, neutron synchrotron imaging
Procedia PDF Downloads 1401349 The Relationship between Fatigue Crack Growth and Residual Stress in Rails
Authors: F. Husem, M. E. Turan, Y. Sun, H. Ahlatci, I. Tozlu
Abstract:
Residual stress and fatigue crack growth rates are important to determine mechanical behavior of rails. This study aims to make relationship between residual stress and fatigue crack growth values in rails. For this purpose, three R260 quality rails (0.6-0.8% C, 0.6-1.25 Mn) were chosen. Residual stress of samples was measured by cutting method that is related in railway standard. Then samples were machined for fatigue crack growth test and analyze was completed according to the ASTM E647 standard which gives information about parameters of rails for this test. Microstructure characterizations were examined by Light Optic Microscope (LOM). The results showed that residual stress change with fatigue crack growth rate. The sample has highest residual stress exhibits highest crack growth rate and pearlitic structure can be seen clearly for all samples by microstructure analyze.Keywords: residual stress, fatigue crack growth, R260, SEM, ASTM E647
Procedia PDF Downloads 3271348 Restoration and Conservation of Historical Textiles Using Covalently Immobilized Enzymes on Nanoparticles
Authors: Mohamed Elbehery
Abstract:
Historical textiles in the burial environment or in museums are exposed to many types of stains and dirt that are associated with historical textiles by multiple chemical bonds that cause damage to historical textiles. The cleaning process must be carried out with great care, with no irreversible damage, and sediments removed without affecting the original material of the surface being cleaned. Science and technology continue to provide innovative systems in the bio-cleaning process (using pure enzymes) of historical textiles and artistic surfaces. Lipase and α-amylase were immobilized on nanoparticles of alginate/κ-carrageenan nanoparticle complex and used in historical textiles cleaning. Preparation of nanoparticles, activation, and enzymes immobilization were characterized. Optimization of loading time and units of the two enzymes were done. It was found that, the optimum time and units of amylase were 4 hrs and 25U, respectively. While, the optimum time and units of lipase were 3 hrs and 15U, respectively. The methods used to examine the fibers using a scanning electron microscope equipped with an X-ray energy dispersal unit: SEM with EDX unit.Keywords: nanoparticles, enzymes, immobilization, textiles
Procedia PDF Downloads 991347 The Development of Micro Patterns Using Benchtop Lithography for Marine Antifouling Applications
Authors: Felicia Wong Yen Myan, James Walker
Abstract:
Development of micro topographies usually begins with the fabrication of a master stamp. Fabrication of such small structures can be technically challenging and expensive. These techniques are often used for applications where patterns only cover a small surface area (e.g. semiconductors, microfluidic channels). This research investigated the use of benchtop lithography to fabricate patterns with average widths of 50 and 100 microns on silicon wafer substrates. Further development of this method will attempt to layer patterns to create hierarchical structures. Photomasks consisted of patterns printed onto transparency films with a high resolution printer and a fully patterned 10cm by 10cm area has been successfully developed. UV exposure was carried out with a self-made array of ultraviolet LEDs that was positioned a distance above a glass diffuser. Observations under a light microscope and SEM showed that developed patterns exhibit an adequate degree of fidelity with patterns from the master stamp.Keywords: lithography, antifouling, marine, microtopography
Procedia PDF Downloads 2891346 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications
Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso
Abstract:
The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.Keywords: interferometry, MIMO RADAR, SAR, tomography
Procedia PDF Downloads 1951345 Oct to Study Efficacy of Avastin in Recurrent Wet Age Related Macular Degeneration and Persistent Diffuse DME
Authors: Srinivasarao Akuthota, Rajasekhar Pabolu, Bharathi Hepattam
Abstract:
Purpose: To assess the efficacy of intravitreal Avastin in subjects with recurrent wet AMD and persistent diffuse DME on the basis of OCT. Design: Retrospective, non-comparative, observational study,single center study. Conclusion: The study showed that intravitreal Avastin has an equivalent effect on recurrent AMD and in persistent diffuse DME.Keywords: age-related macular degeneration (AMD), diffuse diabetic retinopathy (DME), intravitreal Avastin (IVA), optical coherence tomography (OCT)
Procedia PDF Downloads 3661344 Synthesis, Characterization of Pd Nanoparticle Supported on Amine-Functionalized Graphene and Its Catalytic Activity for Suzuki Coupling Reaction
Authors: Surjyakanta Rana, Sreekantha B. Jonnalagadda
Abstract:
Synthesis of well distributed Pd nanoparticles (3 – 7 nm) on organo amine-functionalized graphene is reported, which demonstrated excellent catalytic activity towards Suzuki coupling reaction. The active material was characterized by X-ray diffraction (XRD), BET surface area, X-ray photoelectron spectra (XPS), Fourier-transfer infrared spectroscopy (FTIR), Raman spectra, Scanning electron microscope (SEM), Transmittance electron microscopy (TEM) analysis and HRTEM. FT-IR revealed that the organic amine functional group was successfully grafted onto the graphene oxide surface. The formation of palladium nanoparticles was confirmed by XPS, TEM and HRTEM techniques. The catalytic activity in the coupling reaction was superb with 100% conversion and 98 % yield and also activity remained almost unaltered up to six cycles. Typically, an extremely high turnover frequency of 185,078 h-1 is observed in the C-C Suzuki coupling reaction using organo di-amine functionalized graphene as catalyst.Keywords: Di-amine, graphene, Pd nanoparticle, suzuki coupling
Procedia PDF Downloads 3751343 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications
Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel
Abstract:
The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index
Procedia PDF Downloads 891342 Study of First Hydrogenation Kinetics at Different Temperatures of BCC Alloy 52Ti-12V-36Cr + x wt% Zr (x = 4, 8 & 12)
Authors: Ravi Prakash
Abstract:
The effects of Zr addition on kinetics and hydrogen absorption characteristics of BCC alloy 52Ti-12V-36Cr doped with x wt% of Zr (x = 0, 4, 8 & 12) was investigated. The samples have been characterized by X-ray diffraction, and activation study were made at four different temperatures- 100 oC, 200 oC, 300 oC and 400 oC. First hydrogenation kinetics of alloys were studied at 20 bar of hydrogen pressure and room temperature after giving heat treatment at different temperatures for 6 hours. Among the various Zr doped alloys studied, the composition 52Ti-12V-36Cr + 4wt% Zr shows maximum hydrogen storage capacity of 3.6wt%. Small amount of Zr shows advantageous effects on kinetics of alloy. It was also found out that alloys with the higher Zr concentration can be activated by giving heat treatment at lower temperatures. There is reduction in hydrogen storage capacity with increasing Zr content in the alloy primarily due to increasing abundance of secondary phase as established by X-Ray Diffraction and Scanning Electron Microscope results.Keywords: hydrogen storage, metal hydrides, bcc alloy, heat treatment
Procedia PDF Downloads 761341 A LED Warning Vest as Safety Smart Textile and Active Cooperation in a Working Group for Building a Normative Standard
Authors: Werner Grommes
Abstract:
The institute of occupational safety and health works in a working group for building a normative standard for illuminated warning vests and did a lot of experiments and measurements as basic work (cooperation). Intelligent car headlamps are able to suppress conventional warning vests with retro-reflective stripes as a disturbing light. Illuminated warning vests are therefore required for occupational safety. However, they must not pose any danger to the wearer or other persons. Here, the risks of the batteries (lithium types), the maximum brightness (glare) and possible interference radiation from the electronics on the implant carrier must be taken into account. The all-around visibility, as well as the required range, play an important role here. For the study, many luminance measurements of already commercially available LEDs and electroluminescent warning vests, as well as their electromagnetic interference fields and aspects of electrical safety, were measured. The results of this study showed that LED lighting is all far too bright and causes strong glare. The integrated controls with pulse modulation and switching regulators cause electromagnetic interference fields. Rechargeable lithium batteries can explode depending on the temperature range. Electroluminescence brings even more hazards. A test method was developed for the evaluation of visibility at distances of 50, 100, and 150 m, including the interview of test persons. A measuring method was developed for the detection of glare effects at close range with the assignment of the maximum permissible luminance. The electromagnetic interference fields were tested in the time and frequency ranges. A risk and hazard analysis were prepared for the use of lithium batteries. The range of values for luminance and risk analysis for lithium batteries were discussed in the standards working group. These will be integrated into the standard. This paper gives a brief overview of the topics of illuminated warning vests, which takes into account the risks and hazards for the vest wearer or othersKeywords: illuminated warning vest, optical tests and measurements, risks, hazards, optical glare effects, LED, E-light, electric luminescent
Procedia PDF Downloads 1131340 Application of Compressed Sensing Method for Compression of Quantum Data
Authors: M. Kowalski, M. Życzkowski, M. Karol
Abstract:
Current quantum key distribution systems (QKD) offer low bit rate of up to single MHz. Compared to conventional optical fiber links with multiple GHz bitrates, parameters of recent QKD systems are significantly lower. In the article we present the conception of application of the Compressed Sensing method for compression of quantum information. The compression methodology as well as the signal reconstruction method and initial results of improving the throughput of quantum information link are presented.Keywords: quantum key distribution systems, fiber optic system, compressed sensing
Procedia PDF Downloads 6941339 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis
Authors: Eric Lacoste
Abstract:
Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging
Procedia PDF Downloads 1321338 Surface Sensing of Atomic Behavior of Polymer Nanofilms via Molecular Dynamics Simulation
Authors: Ling Dai
Abstract:
Surface-sensing devices such as atomic force microscope have been widely used to characterize the surface structure and properties of nanoscale polymer films. However, using molecular dynamics simulations, we show that there is intrinsic and unavoidable inelastic deformation at polymer surfaces induced by the sensing tip. For linear chain polymers like perfluoropolyether, such tip-induced deformation derives from the differences in the atomic interactions which are atomic specie-based Van der Waals interactions, and resulting in atomic shuffling and causing inelastic alternation in both molecular structures and mechanical properties at the regions of the polymer surface. For those aromatic chain polymers like epoxy, the intrinsic deformation is depicted as the intra-chain rotation of aromatic rings and kinking of linear atomic connections. The present work highlights the need to reinterpret the data obtained from surface-sensing tests by considering this intrinsic inelastic deformation occurring at polymer surfaces.Keywords: polymer, surface, nano, molecular dynamics
Procedia PDF Downloads 356