Search results for: nursing interventions classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4633

Search results for: nursing interventions classification

3673 Social Impact Bonds in the US Context

Authors: Paula M. Lantz

Abstract:

In the United States, significant socioeconomic and racial inequalities exist in many population-based indicators of health and social welfare. Although a number of effective prevention programs and interventions are available, local and state governments often do not pursue prevention in the face of budgetary constraints and more acute problems. There is growing interest in and excitement about Pay for Success” (PFS) strategies, also referred to as social impact bonds, as an approach to financing and implementing promising prevention programs and services that help the public sector either save money or achieve greater value for an investment. The PFS finance model implements evidence-based interventions using capital from investors who only receive a return on their investment from the government if agreed-upon, measurable outcomes are achieved. This paper discusses the current landscape regarding social impact bonds in the U.S., and their potential and challenges in addressing serious health and social problems. The paper presents an analysis of a number of social science issues that are fundamental to the potential for social impact bonds to successfully address social inequalities in health and social welfare. This includes: a) the economics of the intervention and a potential public payout; b) organizational and management issues in intervention implementation; c) evaluation research design and methods; d) legal/regulatory issues in public payouts to investors; e) ethical issues in the design of social impact bond deals and their evaluation; and f) political issues. Despite significant challenges in the U.S. context, there is great potential for social impact bonds as a type of social impact investing to encourage private investments in evidence-based interventions that address important public health and social problems in underserved populations and provide a return on investment.

Keywords: pay for success, public/private partnerships, social impact bonds, social impact investing

Procedia PDF Downloads 300
3672 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 86
3671 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: segmentation, road signs, characters, classification

Procedia PDF Downloads 444
3670 The Development of Clinical Nursing Practice Guidelines for Preventing of Infection during Intubation in Patients with Suspected or Confirmed COVID-19

Authors: Sarinra Thongmee, Krittaporn Prakobsaeng, Adithep Mingsuan, Chanyapak Polkhet, Supattra Wongsuk

Abstract:

The purposes of this research and developmentwasto develop and evaluation of the clinical nursingpractice guideline (CNPG) for the prevention infection during intubation in patient with suspected or confirmedCOVID-19 patient. This study was developed by using the evidencebased practice model of Soukup (2000) asa conceptual framework. The study consisted of 4 steps: 1) situational analysis of intubation service in patientswith confirmed COVID-19; 2) development of the CNPG; 3) apply the NPG to trial; and 4) evaluation of the CNPG. The sample consisted of 52 nurse anesthetists and 25 infected or suspected COVID-19 patients. The research instrument consisted of 1) the CNPG, which was developed by the researchers; 2) the nurses anesthetist opinion questionnaire to the guideline; 3) the evaluation practice form; and 4) the nurse anesthetist knowledge test on nursing care of patients infected with COVID-19. Data were analyzed by using descriptive statistics, and Wilcoxon matched-pairs signed rank test. The results revealed this developed CNPG consists of 4 sections: 1)the CNPG for airborne precautions2) the preparation of anesthetic and intubation equipments3) the roles and duties of the intubation team, 4) the guidelines for intubation in suspected or confirmed COVID-19 patients. The results of CNPG use found that 1)the provider: using NPG in providers revealed that nurse anesthetist had a higher mean of knowledge scores than before using CNPG statistically significant at the 0.05 level (p<0.01) and able to follow the NPG 100% inall activities. The anesthetic team was not infected with COVID-19 from intubation outside the operating room. 2)the client: the patient was safe, with no complications from intubation. Summary CNPG to prevent infection during reintubation of suspected or confirmedCOVID-19patient was appropriate and applicable to practice.

Keywords: clinical nursing practice guideline, prevention of infection, endotracheal intubation, COVID-19

Procedia PDF Downloads 153
3669 Sentiment Analysis of Consumers’ Perceptions on Social Media about the Main Mobile Providers in Jamaica

Authors: Sherrene Bogle, Verlia Bogle, Tyrone Anderson

Abstract:

In recent years, organizations have become increasingly interested in the possibility of analyzing social media as a means of gaining meaningful feedback about their products and services. The aspect based sentiment analysis approach is used to predict the sentiment for Twitter datasets for Digicel and Lime, the main mobile companies in Jamaica, using supervised learning classification techniques. The results indicate an average of 82.2 percent accuracy in classifying tweets when comparing three separate classification algorithms against the purported baseline of 70 percent and an average root mean squared error of 0.31. These results indicate that the analysis of sentiment on social media in order to gain customer feedback can be a viable solution for mobile companies looking to improve business performance.

Keywords: machine learning, sentiment analysis, social media, supervised learning

Procedia PDF Downloads 444
3668 The Impact of Non-Surgical and Non-Medical Interventions on the Treatment of Infertile Women with Ovarian Reserve Below One and Early Menopause Symptoms

Authors: Flora Tajiki

Abstract:

This study investigates the effectiveness of non-surgical and non-medical interventions in treating infertile women with severely diminished ovarian reserve (below one), low Anti-Müllerian Hormone (AMH) levels, and symptoms of early menopause. The intervention included yoga, sunlight exposure, vitamin and mineral supplementation, relaxation techniques, and daily prayers performed both before sleep and upon waking. These methods were applied to women who had shown poor response to high-dose fertility treatments, such as IVF and microinjection cycles, leading to low-quality egg production. The focus was on women with severely reduced ovarian reserve and early menopause symptoms, some of whom continued to experience relatively regular menstrual cycles despite the onset of these symptoms. This treatment was aimed at women for whom conventional fertility methods had been ineffective. The study sample consisted of 120 married women, aged 25 to 45, from the provinces of Tehran, Alborz, and western Iran, with 35 participants completing the intervention. Individual factors such as residence, education, employment status, marriage duration, family infertility history, and previous infertility treatments were examined, with income considered as a contextual variable. The results indicate that AMH may not be a definitive marker of ovarian reserve, as lifestyle modifications, such as those implemented in this study, were associated with increased AMH levels, the return of regular menstrual cycles, and successful pregnancies. No short- or long-term complications were reported during the two-year follow-up, highlighting the potential benefits of non-surgical interventions for women with early menopause symptoms and diminished ovarian reserve.

Keywords: anti-müllerian hormone, infertility, ovarian reserve, early menopause, fertility, women’s health, lifestyle modification, pregnancy

Procedia PDF Downloads 24
3667 Delegation or Assignment: Registered Nurses’ Ambiguity in Interpreting Their Scope of Practice in Long Term Care Settings

Authors: D. Mulligan, D. Casey

Abstract:

Introductory Statement: Delegation is when a registered nurse (RN) transfers a task or activity that is normally within their scope of practice to another person (delegatee). RN delegation is common practice with unregistered staff, e.g., student nurses and health care assistants (HCAs). As the role of the HCA is increasingly embedded as a direct care and support role, especially in long-term residential care for older adults, there is RN uncertainty as to their role as a delegator. The assignment is when a task is transferred to a person that is within the role specification of the delegatee. RNs in long-term care (LTC) for older people are increasingly working in teams where there are less RNs and more HCAs providing direct care to the residents. The RN is responsible and accountable for their decision to delegate and assign tasks to HCAs. In an interpretive, multiple case studies to explore how delegation of tasks by RNs to HCAs occurred in long-term care settings in Ireland the importance of the RN understanding their scope of practice emerged. Methodology: Focus group interviews and individual interviews were undertaken as part of a multiple case study. Both cases, anonymized as Case A and Case B, were within the public health service in Ireland. The case study sites were long-term care settings for older adults located in different social care divisions, and in different geographical areas. Four focus group interviews with staff nurses and three individual interviews with CNMs were undertaken. The interactive data analysis approach was the analytical framework used, with within-case and cross-case analysis. The theoretical lens of organizational role theory, applying the role episode model (REM), was used to understand, interpret, and explain the findings. Study Findings: RNs and CNMs understood the role of the nurse regulator and the scope of practice. RNs understood that the RN was accountable for the care and support provided to residents. However, RNs and CNM2s could not describe delegation in the context of their scope of practice. In both cases, the RNs did not have a standardized process for assessing HCA competence to undertake nursing tasks or interventions. RNs did not routinely supervise HCAs. Tasks were assigned and not delegated. There were differences between the cases in relation to understanding which nursing tasks required delegation. HCAs in Case A undertook clinical vital sign assessments and documentation. HCAs in Case B did not routinely undertake these activities. Delegation and assignment were influenced by the organizational factors, e.g., model of care, absence of delegation policies, inadequate RN education on delegation, and a lack of RN and HCA role clarity. Concluding Statement: Nurse staffing levels and skill mix in long-term care settings continue to change with more HCAs providing more direct care and support. With decreasing RN staffing levels RNs will be required to delegate and assign more direct care to HCAs. There is a requirement to distinguish between RN assignment and delegation at policy, regulation, and organizational levels.

Keywords: assignment, delegation, registered nurse, scope of practice

Procedia PDF Downloads 153
3666 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 134
3665 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation

Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian

Abstract:

The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.

Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction

Procedia PDF Downloads 99
3664 Assessment of the Situation and the Cause of Junk Food Consumption in Iranians: A Qualitative Study

Authors: A. Rezazadeh, B Damari, S. Riazi-Esfahani, M. Hajian

Abstract:

The consumption of junk food in Iran is alarmingly increasing. This study aimed to investigate the influencing factors of junk food consumption and amendable interventions that are criticized and approved by stakeholders, in order to presented to health policy makers. The articles and documents related to the content of study were collected by using the appropriate key words such as junk food, carbonated beverage, chocolate, candy, sweets, industrial fruit juices, potato chips, French fries, puffed corn, cakes, biscuits, sandwiches, prepared foods and popsicles, ice cream, bar, chewing gum, pastilles and snack, in scholar.google.com, pubmed.com, eric.ed.gov, cochrane.org, magiran.com, medlib.ir, irandoc.ac.ir, who.int, iranmedex.com, sid.ir, pubmed.org and sciencedirect.com databases. The main key points were extracted and included in a checklist and qualitatively analyzed. Then a summarized abstract was prepared in a format of a questionnaire to be presented to stakeholders. The design of this was qualitative (Delphi). According to this method, a questionnaire was prepared based on reviewing the articles and documents and it was emailed to stakeholders, who were asked to prioritize and choose the main problems and effective interventions. After three rounds, consensus was obtained.            Studies revealed high consumption of junk foods in the Iranian population, especially in children and adolescents. The most important affecting factors include availability, low price, media advertisements, preference of fast foods taste, the variety of the packages and their attractiveness, low awareness and changing in lifestyle. Main interventions recommended by stakeholders include developing a protective environment, educational interventions, increasing healthy food access and controlling media advertisements and putting pressure from the Industry and Mining Ministry on producers to produce healthy snacks. According to the findings, the results of this study may be proposed to public health policymakers as an advocacy paper and to be integrated in the interventional programs of Health and Education ministries and the media. Also, implementation of supportive meetings with the producers of alternative healthy products is suggested.

Keywords: junk foods, situation, qualitative study, Iran

Procedia PDF Downloads 259
3663 Classification Rule Discovery by Using Parallel Ant Colony Optimization

Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan

Abstract:

Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.

Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery

Procedia PDF Downloads 295
3662 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 392
3661 'Sit Down, Breathe, and Feel What?' Bringing a Contemplative Intervention into a Public Urban Middle School

Authors: Lunthita M. Duthely, John T. Avella, John Ganapati Coleman

Abstract:

For as many as one in three adolescents living in the United States, the adolescent years is a period of low well-being and mental health challenges—from depressive symptoms to mild to moderate psychological diagnoses. Longitudinal population health studies demonstrated that these challenges persist in young adulthood, and beyond. The positive psychology (PS) approach is a more preventative approach to well-being, which contrasts the traditional, deficits approach to curing mental illness. The research among adult populations formed the basis for PS studies among adolescents. The empirical evidence for the effectiveness of PS interventions exists for both adult and youth populations. Positive Psychology interventions target individuals’ strengths, such as hope and optimism, and positive emotions, such as gratitude. Positive psychology interventions such as increasing gratitude, proved effective in many outcomes among youth, including psychological, social, and academically-related outcomes. Although gratitude-inducing studies have been conducted for the past decade in the United States, few studies have been conducted among samples of urban youth, particularly youth of diverse cultural backgrounds. For nearly two decades, the secular practice of meditation has been tested among adults and more recently among youth, focused mostly among clinical samples. The field of Contemplative Sciences explores practices such as Hatha Yoga, Tai Chi, and Meditation, as preventative practices among children and adolescents. A more recent initiative is to explore Contemplative Practices in the school environment. Contemplative Practices yield a variety of positive outcomes, including academic, social, psychological, physiological, and neurological changes among children and adolescents. Again, few studies were conducted among adolescents of diverse cultural backgrounds. The purpose of this doctoral dissertation research study was to test a gratitude-meditation intervention among middle school students attending a public charter school, located in an urban region of Metropolitan Miami. The objective of this presentation is to summarize the challenges and success of bringing a positive psychology and meditation intervention into an urban middle school. Also, the most recent findings on positive psychology and meditation interventions conducted in school environments will be presented as well.

Keywords: adolescents, contemplative intervention, gratitude, secular meditation, positive psychology, school engagement, Sri Chinmoy

Procedia PDF Downloads 396
3660 Effect of Family-Based DOTS Support Program on Adherence to Health Behaviors among Patients with Pulmonary Tuberculosis in Bandung, Indonesia

Authors: D. I. Yani, S. Isaramalai, C. Kritpracha

Abstract:

Adherence to health behaviors is essential to achieve successful TB treatment. This study aimed to examine the effect of a family-based DOTS support program on adherence to health behaviors in patients with pulmonary TB. Sixty TB patients and their families were selected using cluster randomization of community health centers. The subjects were assigned into a control group, who received the routine care, and an experimental group, who received both routine care and care from the family-based DOTS support program. Paired t-test and the independent t-test were applied. The total score of adherence to health behaviors in the experimental group was significantly higher after receiving care from the family-based DOTS support program than the pretest score (t = -10.34, p < .001). Suggestions were made to expand the application of this program in various contexts and to extend knowledge for nursing practices and research.

Keywords: self-care deficit nursing theory, family-based DOTS program, pulmonary tuberculosis, adherence, health behaviors

Procedia PDF Downloads 464
3659 Neuropsychological Disabilities in Executive Functions and Visuospatial Skills of Juvenile Offenders in a Half-Open Program in Santiago De Chile

Authors: Gabriel Sepulveda Navarro

Abstract:

Traditional interventions for young offenders are necessary but not sufficient to tackle the multiple causes of juvenile crime. For instance, interventions offered to young offenders often are verbally mediated and dialogue based, requiring important metacognitive abilities as well as abstract thinking, assuming average performance in a wide variety of skills. It seems necessary to assess a broader set of abilities and functions in order to increase the efficiency of interventions while addressing offending. In order to clarify these assumptions, Stroop Test, as well as Rey-Osterrieth Complex Figure Test were applied to juvenile offenders tried and sentenced for violent crimes in Santiago de Chile. A random sample was drawn from La Cisterna Half-Open Program, consisting of 50 young males between 18 and 24 years old, residing in different districts of Santiago de Chile. The analysis of results suggests a disproportionately elevated incidence of impairments in executive functions and visuospatial skills. As an outcome, over 40% of the sample shows a significant low performance in both assessments, exceeding four times the same prevalence rates among young people in the general population. While executive functions entail working memory (being able to keep information and use it in some way), cognitive flexibility (to think about something in more than one way) and inhibitory control (being able to self-control, ignore distractions and delay immediate gratification), visuospatial skills permit to orientate and organize a planned conduct. All of these abilities are fundamental to the skill of avoiding violent behaviour and abiding by social rules. Understanding the relevance of neurodevelopmental impairments in the onset of violent and criminal behaviour, as well as recidivism, eventually may guide the deployment of a more comprehensive assessment and treatment for juvenile offenders.

Keywords: executive functions, half-open program, juvenile offenders, neurodisabilities, visuospatial skills

Procedia PDF Downloads 148
3658 Importance of Infrastucture Delivery and Management in South Africa

Authors: Onyeka Nkwonta, Theo Haupt, Karana Padayachee

Abstract:

This study aims primarily to identify potential causes of the bottlenecks in the public sector that affect delivery and formulate evidence-based interventions to improve delivery and management of infrastructure projects. An initial literature review was carried out on infrastructural development and delivery in South Africa, with the aim to formulate evidence-based interventions to improve delivery within the sector. The infrastructure delivery management model was developed to map out best practice delivery processes. These will become the backbone on which improvement initiatives that will be developed within participating stakeholders. The model will, in turn, support a range of methodologies, including the risk system and a knowledge management framework. It will also look at key challenges facing departments with the ability to ensure knowledge and skills transfer at various sectors. The research is limited because the findings were based on existing literature. This study adopted an indirect approach for infrastructure management by focussing on the challenges faced and approaches adopted to overcome these challenges. This may narrow the consideration of some of the viewpoints, thereby limiting the richness of experience available to this research.

Keywords: infrastructure, management, challenges, South Africa

Procedia PDF Downloads 138
3657 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring

Procedia PDF Downloads 555
3656 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 358
3655 Investigating Activity Recognition Using 9-Axis Sensors and Filters in Wearable Devices

Authors: Jun Gil Ahn, Jong Kang Park, Jong Tae Kim

Abstract:

In this paper, we analyze major components of activity recognition (AR) in wearable device with 9-axis sensors and sensor fusion filters. 9-axis sensors commonly include 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. We chose sensor fusion filters as Kalman filter and Direction Cosine Matrix (DCM) filter. We also construct sensor fusion data from each activity sensor data and perform classification by accuracy of AR using Naïve Bayes and SVM. According to the classification results, we observed that the DCM filter and the specific combination of the sensing axes are more effective for AR in wearable devices while classifying walking, running, ascending and descending.

Keywords: accelerometer, activity recognition, directiona cosine matrix filter, gyroscope, Kalman filter, magnetometer

Procedia PDF Downloads 333
3654 Self-Inflicted Major Trauma: Inpatient Mental Health Management and Patient Outcomes

Authors: M. Walmsley, S. Elmatarri, S. Mannion

Abstract:

Introduction: Self-inflicted injury is a recognised cause of major trauma in adults and is an independent indicator of a reduced functional outcome compared to non-intentional major trauma. There is little literature available on the inpatient mental health (MH) management of this vulnerable group. A retrospective review was conducted of inpatient MH management of major trauma patients admitted to a UK regional Major Trauma Centre (MTC). Their outcomes were compared to all major trauma patients. This group of patients required multiple MH interventions whilst on the Major Trauma Ward (MTW) and a had worse functional outcome compared to non-intentional trauma. Method: The national TARN (Trauma Audit and Research Network) database was used to identify patients admitted to a regional MTC over a 2-year period from June 2018 to July 2020. Patients with an ISS (Injury Severity Score) of greater than 15 with a mechanism of either self-harm or high-risk behavior were included for further analysis. Inpatient medical notes were reviewed for MH interventions on the MTW. Further outcomes, including mortality, length of stay (LOS) and Glasgow Outcome Score (GOS) were compared with all major trauma patients for the same time period. Results: A total of 60 patients were identified in the time period and of those, 27 spent time on the MTW. A total of 23 (85%) had a prior MH diagnosis, with 11 (41%) under the care of secondary MH services. Adequate inpatient records for review were available for 24 patients. During their inpatient stay, 8 (33%) were reviewed on the ward by the inpatient MH team. There were 10 interventions required for 6 (25%) patients on the MTW including, sections under the Mental Health Act, transfer to specialist MH facility, pharmacological sedation and security being called to the MTW. When compared to all major trauma patients, those admitted due to self-harm or high-risk behavior had a statistically significantly higher ISS (31.43 vs 24.22, p=0.0001) and LOS (23.51d vs 16.06d, p=0.002). Functional outcomes using the GOS were reduced in this group of patients, GOS 5 (low disability) (51.66% vs. 61.01%) and they additionally had a higher level of mortality, GOS 1 (15.00% vs 11.67%). Discussion: Intentional self-harm is a recognised cause of major trauma in adults and this patient group sustains more severe injuries, requiring a longer hospital stay with worse outcomes compared to all major trauma patients. Inpatient MH interventions are required for a significant proportion of these patients and therefore, there needs to be a close relationship with MH services. There is limited available evidence for how this patient group is best managed as an inpatient to aid their recovery and further work is needed on how outcomes in this vulnerable group can be improved.

Keywords: adult major trauma, attempted suicide, self-inflicted major trauma, inpatient management

Procedia PDF Downloads 182
3653 The Relationship between the Skill Mix Model and Patient Mortality: A Systematic Review

Authors: Yi-Fung Lin, Shiow-Ching Shun, Wen-Yu Hu

Abstract:

Background: A skill mix model is regarded as one of the most effective methods of reducing nursing shortages, as well as easing nursing staff workloads and labor costs. Although this model shows several benefits for the health workforce, the relationship between the optimal model of skill mix and the patient mortality rate remains to be discovered. Objectives: This review aimed to explore the relationship between the skill mix model and patient mortality rate in acute care hospitals. Data Sources: A systematic search of the PubMed, Web of Science, Embase, and Cochrane Library databases and researchers retrieved studies published between January 1986 and March 2022. Review methods: Two independent reviewers screened the titles and abstracts based on selection criteria, extracted the data, and performed critical appraisals using the STROBE checklist of each included study. The studies focused on adult patients in acute care hospitals, and the skill mix model and patient mortality rate were included in the analysis. Results: Six included studies were conducted in the USA, Canada, Italy, Taiwan, and European countries (Belgium, England, Finland, Ireland, Spain, and Switzerland), including patients in medical, surgical, and intensive care units. There were both nurses and nursing assistants in their skill mix team. This main finding is that three studies (324,592 participants) show evidence of fewer mortality rates associated with hospitals with a higher percentage of registered nurse staff (range percentage of registered nurse staff 36.1%-100%), but three articles (1,122,270 participants) did not find the same result (range of percentage of registered nurse staff 46%-96%). However, based on appraisal findings, those showing a significant association all meet good quality standards, but only one-third of their counterparts. Conclusions: In light of the limited amount and quality of published research in this review, it is prudent to treat the findings with caution. Although the evidence is not insufficient certainty to draw conclusions about the relationship between nurse staffing level and patients' mortality, this review lights the direction of relevant studies in the future. The limitation of this article is the variation in skill mix models among countries and institutions, making it impossible to do a meta-analysis to compare them further.

Keywords: nurse staffing level, nursing assistants, mortality, skill mix

Procedia PDF Downloads 116
3652 Action Plans to Prevent Negative Attitudes Towards Gay and Lesbian Parents: A Systemic Analysis of Health-Care Interventions in Belgium

Authors: Therese Scali

Abstract:

Over the years, the European Union has continued to extend its action on lesbian, gay men, bisexual and transgender (LGBT) rights to a range of areas including access to justice, asylum, freedom of expression and assembly, parenting, and mutual recognition of civil status within the EU. The European Parliament has been a driving force behind such action adopting a range of resolutions calling for continued progress in this field. In particular, Belgium has been one of the first countries to legalize same-sex parenting and to create a general framework for action against negative attitudes towards gay and lesbian parents. The present paper aims at highlighting public healthcare workers’ attitudes towards different types of same-sex headed families in Belgium, and the content of their interventions in schools. Results revealed that attitudes can go from supportive to unsupportive, and participants do not show the same degree of support towards the different types of same-sex parenting. This contribution highlights work’s implication for public policy by understanding the resources and challenges that health-care professionals face in their work.

Keywords: attitudes, gay and lesbian parents, health-care workers, homophobia, prevention

Procedia PDF Downloads 150
3651 Collective Potential: A Network of Acupuncture Interventions for Flood Resilience

Authors: Sachini Wickramanayaka

Abstract:

The occurrence of natural disasters has increased in an alarming rate in recent times due to escalating effects of climate change. One such natural disaster that has continued to grow in frequency and intensity is ‘flooding’, adversely affecting communities around the globe. This is an exploration on how architecture can intervene and facilitate in preserving communities in the face of disaster, specifically in battling floods. ‘Resilience’ is one of the concepts that have been brought forward to be instilled in vulnerable communities to lower the impact from such disasters as a preventative and coping mechanism. While there are number of ways to achieve resilience in the built environment, this paper aims to create a synthesis between resilience and ‘urban acupuncture’. It will consider strengthening communities from within, by layering a network of relatively small-scale, fast phased interventions on pre-existing conventional flood preventative large-scale engineering infrastructure.By investigating ‘The Woodlands’, a planned neighborhood as a case study, this paper will argue that large-scale water management solutions while extremely important will not suffice as a single solution particularly during a time of frequent and extreme weather events. The different projects will try to synthesize non-architectural aspects such as neighborhood aspirations, requirements, potential and awareness into a network of architectural forms that would collectively increase neighborhood resiliency to floods. A mapping study of the selected study area will identify the problematic areas that flood in the neighborhood while the empirical data from previously implemented case studies will assess the success of each solution.If successful the different solutions for each of the identified problem areas will exhibithow flooding and water management can be integrated as part and parcel of daily life.

Keywords: acupuncture, architecture, resiliency, micro-interventions, neighborhood

Procedia PDF Downloads 170
3650 Multivariate Analysis of Spectroscopic Data for Agriculture Applications

Authors: Asmaa M. Hussein, Amr Wassal, Ahmed Farouk Al-Sadek, A. F. Abd El-Rahman

Abstract:

In this study, a multivariate analysis of potato spectroscopic data was presented to detect the presence of brown rot disease or not. Near-Infrared (NIR) spectroscopy (1,350-2,500 nm) combined with multivariate analysis was used as a rapid, non-destructive technique for the detection of brown rot disease in potatoes. Spectral measurements were performed in 565 samples, which were chosen randomly at the infection place in the potato slice. In this study, 254 infected and 311 uninfected (brown rot-free) samples were analyzed using different advanced statistical analysis techniques. The discrimination performance of different multivariate analysis techniques, including classification, pre-processing, and dimension reduction, were compared. Applying a random forest algorithm classifier with different pre-processing techniques to raw spectra had the best performance as the total classification accuracy of 98.7% was achieved in discriminating infected potatoes from control.

Keywords: Brown rot disease, NIR spectroscopy, potato, random forest

Procedia PDF Downloads 190
3649 Application of Change Detection Techniques in Monitoring Environmental Phenomena: A Review

Authors: T. Garba, Y. Y. Babanyara, T. O. Quddus, A. K. Mukatari

Abstract:

Human activities make environmental parameters in order to keep on changing globally. While some changes are necessary and beneficial to flora and fauna, others have serious consequences threatening the survival of their natural habitat if these changes are not properly monitored and mitigated. In-situ assessments are characterized by many challenges due to the absence of time series data and sometimes areas to be observed or monitored are inaccessible. Satellites Remote Sensing provide us with the digital images of same geographic areas within a pre-defined interval. This makes it possible to monitor and detect changes of environmental phenomena. This paper, therefore, reviewed the commonly use changes detection techniques globally such as image differencing, image rationing, image regression, vegetation index difference, change vector analysis, principal components analysis, multidate classification, post-classification comparison, and visual interpretation. The paper concludes by suggesting the use of more than one technique.

Keywords: environmental phenomena, change detection, monitor, techniques

Procedia PDF Downloads 274
3648 Functional Vision of Older People with Cognitive Impairment Living in Galician Nursing Homes

Authors: C. Vázquez, L. M. Gigirey, C. P. del Oro, S. Seoane

Abstract:

Poor vision is common among older people, and several studies show connections between visual impairment and cognitive function. 15 older adult live in Galician Government nursing homes, and cognitive decline is one of the main reasons of admission. Objectives: (1) To evaluate functional far and near vision of older people with cognitive impairment. (2) To determine connections between visual and cognitive state of “our” residents. Methodology: A total of 364 older adults (aged 65 years or more) underwent a visual and cognitive screening. We tested presenting visual acuity (binocular visual acuity with habitual correction if warn) for distance and near vision (E-Snellen, usual working distance for near vision). Binocular presenting visual acuity less than 0.3 was used as cut point for diagnosis of visual impairment. Exclusion criteria included immobilized residents unable to reach the USC Dual Sensory Loss Unit for visual screening. To screen cognition we employed the mini-mental examination test (Spanish version). Analysis of categorical variables was performed using chi-square tests. We utilized Pearson and Spearman correlation tests and the variance analysis to determine differences between groups of interest (SPSS 19.0 version). Results: the percentage of residents with cognitive decline reaches 32.2% Prevalence of visual impairment for distance and near vision increases among those subjects with cognitive impairment respect those with normal cognition. Shift correlation exists between distance visual acuity and mini-mental test (age and sex controlled), and moderate association was found in case of near vision (p<0.01). Conclusion: First results shows that people with cognitive impairment have poor functional distance and near vision than those with normal cognition. Next step will be to analyse the individual contribution of distance and near vision loss on cognition.

Keywords: visual impairment, cognition, aging, nursing homes

Procedia PDF Downloads 428
3647 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks

Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia

Abstract:

This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.

Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks

Procedia PDF Downloads 336
3646 Using Electronic Portfolio to Promote English Speaking Ability of EFL Undergraduate Students

Authors: Jiraporn Lao-Un, Dararat Khampusaen

Abstract:

Lack of exposure to English language in the authentic English setting naturally leads to a lack of fluency in the language. As a result, Thai EFL learners are struggling in meeting with the communication 'can do' descriptors of the Common European Framework of References (CEFR) required by the Ministry of Education. This initial phase of the ongoing study, employing the e-portfolio to promote the English speaking ability, probed into the effects of the use of e-portfolio on Thai EFL nursing students' speaking ability. Also, their opinions towards the use of e-portfolio to enhance their speaking ability were investigated. The participants were 44 undergraduate nursing students at a Thai College of Nursing. The participants undertook four lessons to promote their communication skills according to the CEFR criteria. Throughout the semester, the participants videotaped themselves while completing the four speaking tasks. The videos were then uploaded onto the e-portfolio website where the researcher provided them with the feedbacks. The video records were analyzed by the speaking rubric designed according to the CEFR 'can do' descriptors. Also, students were required to record self-reflections in video format and upload onto the same URL Students' oral self-reflections were coded to find out the perceptions towards the use of the e-portfolio in promoting their speaking ability. The results from the two research instruments suggested the effectiveness of the tool on improving speaking ability, learner autonomy and media literacy skills. In addition, the oral reflection videos revealed positive opinion towards the tool. The discussion offers the current status of English speaking ability among Thai EFL students. This reveals the gaps between the EFL speaking ability and the CEFR ‘can do’ descriptors. In addition, the author raises the light on integration of the 21st century IT tool to enhance these students’ speaking ability. Lastly, the theoretical implications and recommendation for further study in integrating electronic tools to promote language skills in the EFL context are offered for further research.

Keywords: EFL communication, EFL speaking, English communication, E-learning, E-portfolio, speaking ability, Thai EFL learners

Procedia PDF Downloads 163
3645 Involvement in Health Policy and Political Efficacy among Hospital Nurses in Jordan: A Descriptive Survey

Authors: Raeda F. Abualrub, Amani Abdulnabi

Abstract:

Aim: The aims of this study were to (a) examine the levels of nurses' political efficacy and involvement in health policy; and (b) explore the relationships between political efficacy, involvement in health policy, and participants’ background variables. Background: Nurses as citizens and health care providers have the right to express their opinions and beliefs in regard to issues that are concerned with the health care system or the public health domain. Methods: A descriptive, cross-sectional design using was utilized. A self-administered questionnaire (Political Efficacy Scale & Involvement in Health Policy Scale) was completed by a convenience sample of 302 nurses. Results: The results of this study showed low levels of involvement in health policy and political efficacy and a positive weak correlation between political efficacy and involvement in health policy. The perceived level of political efficacy was associated positively with nurses’ age and experience. Conclusions: Nurse administrators and managers may empower, support, and encourage nurses to enhance their involvement in health policy. Implications for Nursing Management: The findings have implications for nursing leaders and administrators to design appropriate strategies to enhance nurses’ involvement in health policy development.

Keywords: health policy, Jordan, nurses, political efficacy

Procedia PDF Downloads 95
3644 Access to Livelihoods for Urban Refugees in Kenya: The Case Study of Somalis Living in Eastleigh

Authors: Nancy Njoka, Manuela Ramos Cacciatore

Abstract:

In Kenya, refugee situations are becoming increasingly protracted, stretching over the years or even decades. As urbanization rates increase, so do the numbers of urban refugees in the country. Refugees living in urban areas face a range of challenges. In their efforts to pursue livelihoods, refugees have identified strategies to confront these challenges. In the same manner, humanitarian actors have come up with different interventions to promote access to livelihoods working through obstacles and barriers created by host governments. This paper seeks to understand the experience of Somali urban refugees living in the urban area of Eastleigh, Nairobi, both by investigating their own actions towards creating avenues to access livelihoods and by understanding their social, economic and policy context in which they forge livelihoods. The empirical data collected through fieldwork in Nairobi in 2020 serves as the basis of this qualitative case study. Drawing upon the themes of urban refugee movement, Somali ethnicity, citizenship discrimination and the livelihoods of refugees, the paper highlights how the actions of the Kenyan government and international non-governmental organization (INGO)s affect access to livelihoods and the consequences of these actions for Somali urban refugees. The results of the paper found that Somali urban refugees are taking active steps to create livelihoods for themselves. This is seen in the growth of Eastleigh as an economic hub in Kenya which is owned and run mostly by Somalis. Indeed, the Somali community is central to the establishment of networks in the neighborhood. Somali urban refugees are marginalized by the Kenyan government, reducing their opportunity to create dignified lives in Eastleigh. Findings also point out the community-based approaches used by INGOs in livelihood interventions. The relevance of this research lies in the interconnection of humanitarian development interventions for protracted refugees and the promotion of livelihoods in an urban and global context.

Keywords: Kenya, livelihoods, Somali, urban refugees

Procedia PDF Downloads 179