Search results for: electrode deposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1425

Search results for: electrode deposition

465 CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell

Authors: Mehak Munjal, Raj Kishore Sharma, Gurmeet Singh

Abstract:

Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications.

Keywords: microbial fuel cell, cobalt ferrite, E. coli, bioelectricity

Procedia PDF Downloads 135
464 Cold Spray Deposition of SS316L Powders on Al5052 Substrates and Their Potential Using for Biomedical Applications

Authors: B. Dikici, I. Ozdemir, M. Topuz

Abstract:

The corrosion behaviour of 316L stainless steel coatings obtained by cold spray method was investigated in this study. 316L powders were deposited onto Al5052 aluminum substrates. The coatings were produced using nitrogen (N2) process gas. In order to further improve the corrosion and mechanical properties of the coatings, heat treatment was applied at 250 and 750 °C. The corrosion performances of the coatings were compared using the potentiodynamic scanning (PDS) technique under in-vitro conditions (in Ringer’s solution at 37 °C). In addition, the hardness and porosity tests were carried out on the coatings. Microstructural characterization of the coatings was carried out by using scanning electron microscopy attached with energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD) technique. It was found that clean surfaces and a good adhesion were achieved for particle/substrate bonding. The heat treatment process provided both elimination of the anisotropy in the coating and resulting in healing-up of the incomplete interfaces between the deposited particles. It was found that the corrosion potential of the annealed coatings at 750 °C was higher than that of commercially 316 L stainless steel. Moreover, the microstructural investigations after the corrosion tests revealed that corrosion preferentially starts at inter-splat boundaries.

Keywords: biomaterials, cold spray, 316L, corrosion, heat treatment

Procedia PDF Downloads 367
463 Photo Electrical Response in Graphene Based Resistive Sensor

Authors: H. C. Woo, F. Bouanis, C. S. Cojocaur

Abstract:

Graphene, which consists of a single layer of carbon atoms in a honeycomb lattice, is an interesting potential optoelectronic material because of graphene’s high carrier mobility, zero bandgap, and electron–hole symmetry. Graphene can absorb light and convert it into a photocurrent over a wide range of the electromagnetic spectrum, from the ultraviolet to visible and infrared regimes. Over the last several years, a variety of graphene-based photodetectors have been reported, such as graphene transistors, graphene-semiconductor heterojunction photodetectors, graphene based bolometers. It is also reported that there are several physical mechanisms enabling photodetection: photovoltaic effect, photo-thermoelectric effect, bolometric effect, photogating effect, and so on. In this work, we report a simple approach for the realization of graphene based resistive photo-detection devices and the measurements of their photoelectrical response. The graphene were synthesized directly on the glass substrate by novel growth method patented in our lab. Then, the metal electrodes were deposited by thermal evaporation on it, with an electrode length and width of 1.5 mm and 300 μm respectively, using Co to fabricate simple graphene based resistive photosensor. The measurements show that the graphene resistive devices exhibit a photoresponse to the illumination of visible light. The observed re-sistance response was reproducible and similar after many cycles of on and off operations. This photoelectrical response may be attributed not only to the direct photocurrent process but also to the desorption of oxygen. Our work shows that the simple graphene resistive devices have potential in photodetection applications.

Keywords: graphene, resistive sensor, optoelectronics, photoresponse

Procedia PDF Downloads 283
462 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy

Authors: Asma Perveen, M. P. Jahan

Abstract:

Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.

Keywords: micro holes, micro EDM, Ni Alloy, discharge energy

Procedia PDF Downloads 271
461 Effects of Commonly-Used Inorganic Salts on the Morphology and Electrochemical Performance of Carboxylated Cellulose Nanocrystals Doped Polypyrrole Supercapacitors

Authors: Zuxinsun, Samuel Eyley, Yongjian Guo, Reeta Salminen, Wim Thielemans

Abstract:

Polypyrrole(PPy), as one of the most promising pseudocapacitor electrode materials, has attracted large research interest due to its low cost, high electrical conductivity and easy fabrication, limited capacitance, and cycling stability of PPy films hinder their practical applications. In this study, through adding different amounts of KCl into the pyrrole and CNC-COO⁻ system, three-dimensional, porous, and reticular PPy films were electropolymerized at last without the assistance of any template or substrate. Replacing KCl with NaCl, KBr, and NaClO4, the porous PPy films were still obtained rather than relatively dense PPy films which were deposited with pyrrole and CNC-COO⁻ or pyrrole and KCl. The nucleation and growth mechanisms of PPy films were studied in the deposited electrolyte with or without salts to illustrate the evolution of morphology from relatively dense to porous structure. The capacitance of PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films increased from 160.6 to 183.4 F g⁻¹ at 0.2 A g⁻¹. More importantly, at a high current density of 2.0 A g⁻¹ (20 mA cm⁻²), the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films exhibited an excellent capacitance of 125.0 F g⁻¹ (1.19 F cm⁻²), increasing about 203.7 % over PPy/CNC-COO- films. 103.3 % of its initial capacitance was retained after 5000 cycles at 2 A g⁻¹ (20 mA cm⁻²) for the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 supercapacitor. The analyses reveal that the porous and reticular PPy/CNC-COO⁻-salts films open up more active reaction areas to store charges. The stiff and ribbonlike CNC-COO⁻ as the permanent dopants improve strength and stability of PPy/CNC-COO⁻-salts films. Our demonstration provides a simple and practical way to deposit PPy-based supercapacitors with high capacitance and cycling ability.

Keywords: polypyrrole, supercapacitors, cellulose nanocrystals, porous and reticular structure, inorganic salts

Procedia PDF Downloads 61
460 System Response of a Variable-Rate Aerial Application System

Authors: Daniel E. Martin, Chenghai Yang

Abstract:

Variable-rate aerial application systems are becoming more readily available; however, aerial applicators typically only use the systems for constant-rate application of materials, allowing the systems to compensate for upwind and downwind ground speed variations. Much of the resistance to variable-rate aerial application system adoption in the U.S. pertains to applicator’s trust in the systems to turn on and off automatically as desired. The objectives of this study were to evaluate a commercially available variable-rate aerial application system under field conditions to demonstrate both the response and accuracy of the system to desired application rate inputs. This study involved planting oats in a 35-acre fallow field during the winter months to establish a uniform green backdrop in early spring. A binary (on/off) prescription application map was generated and a variable-rate aerial application of glyphosate was made to the field. Airborne multispectral imagery taken before and two weeks after the application documented actual field deposition and efficacy of the glyphosate. When compared to the prescription application map, these data provided application system response and accuracy information. The results of this study will be useful for quantifying and documenting the response and accuracy of a commercially available variable-rate aerial application system so that aerial applicators can be more confident in their capabilities and the use of these systems can increase, taking advantage of all that aerial variable-rate technologies have to offer.

Keywords: variable-rate, aerial application, remote sensing, precision application

Procedia PDF Downloads 467
459 Quantifying the Protein-Protein Interaction between the Ion-Channel-Forming Colicin A and the Tol Proteins by Potassium Efflux in E. coli Cells

Authors: Fadilah Aleanizy

Abstract:

Colicins are a family of bacterial toxins that kill Escherichia coli and other closely related species. The mode of action of colicins involves binding to an outer membrane receptor and translocation across the cell envelope, leading to cytotoxicity through specific targets. The mechanism of colicin cytotoxicity includes a non-specific endonuclease activity or depolarization of the cytoplasmic membrane by pore-forming activity. For Group A colicins, translocation requires an interaction between the N-terminal domain of the colicin and a series of membrane- bound and periplasmic proteins known as the Tol system (TolB, TolR, TolA, TolQ, and Pal and the active domain must be translocated through the outer membranes. Protein-protein interactions are intrinsic to virtually every cellular process. The transient protein-protein interactions of the colicin include the interaction with much more complicated assemblies during colicin translocation across the cellular membrane to its target. The potassium release assay detects variation in the K+ content of bacterial cells (K+in). This assays is used to measure the effect of pore-forming colicins such as ColA on an indicator organism by measuring the changes of the K+ concentration in the external medium (K+out ) that are caused by cell killing with a K+ selective electrode. One of the goals of this work is to employ a quantifiable in-vivo method to spot which Tol protein are more implicated in the interaction with colicin A as it is translocated to its target.

Keywords: K+ efflux, Colicin A, Tol-proteins, E. coli

Procedia PDF Downloads 403
458 Sedimentological Study of Bivalve Fossils Site Locality in Hong Hoi Formation in Lampang, Thailand

Authors: Kritsada Moonpa, Kannipa Motanated, Weerapan Srichan

Abstract:

Hong Hoi Formation is a Middle Triassic deep marine succession presented in outcrops throughout the Lampang Basin of northern Thailand. The primary goal of this research is to diagnose the paleoenvironment, petrographic compositions, and sedimentary sources of the Hong Hoi Formation in Ban Huat, Ngao District. The Triassic Hong Hoi Formation is chosen because the outcrops are continuous and fossils are greatly exposed and abundant. Depositional environment is reconstructed through sedimentological studies along with facies analysis. The Hong Hoi Formation is petrographically divided into two major facies, they are: sandstones with mudstone interbeds, and mudstones or shale with sandstone interbeds. Sandstone beds are lithic arenite and lithic greywacke, volcanic lithic fragments are dominated. Sedimentary structures, paleocurrent data and lithofacies arrangement indicate that the formation deposited in a part of deep marine abyssal plain environment. The sedimentological and petrographic features suggest that during the deposition the Hong Hoi Formation received sediment supply from nearby volcanic arc. This suggested that the intensive volcanic activity within the Sukhothai Arc during the Middle Triassic is the main sediment source.

Keywords: Sukhothai zone, petrography, Hong Hoi formation, Lampang, Triassic

Procedia PDF Downloads 207
457 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon

Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon

Abstract:

A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.

Keywords: Lekki Lagoon, Marine sediment, bathymetry, grain size distribution

Procedia PDF Downloads 228
456 Detection of Latent Fingerprints Recovered from Arson Simulation by a Novel Fluorescent Method

Authors: Somayeh Khanjani, Samaneh Nabavi, Shirin Jalili, Afshin Khara

Abstract:

Fingerprints are area source of ubiquitous evidence and consequential for establishing identity. The detection and subsequent development of fingerprints are thus inevitable in criminal investigations. This becomes a difficult task in the case of certain extreme conditions like fire. A fire scene may be accidental or arson. The evidence subjected to fire is generally overlooked as there is a misconception that they are damaged. There are several scientific approaches to determine whether the fire was deliberate or not. In such as scenario, fingerprints may be most critical to link the perpetrator to the crime. The reason for this may be the destructive nature of fire. Fingerprints subjected to fire are exposed to high temperatures, soot deposition, electromagnetic radiation, and subsequent water force. It is believed that these phenomena damage the fingerprint. A novel fluorescent and a pre existing small particle reagent were investigated for the same. Zinc carbonates based fluorescent small particle reagent was capable of developing latent fingerprints exposed to a maximum temperature of 800 ̊C. Fluorescent SPR may prove very useful in such cases. Fluorescent SPR reagent based on zinc carbonate is a potential method for developing fingerprints from arson sites. The method is cost effective and non hazardous. This formulation is suitable for developing fingerprints exposed to fire/ arson.

Keywords: fingerprint, small particle reagent (SPR), arson, novel fluorescent

Procedia PDF Downloads 467
455 Integrated ERT and Magnetic Surveys in a Mineralization Zone in Erkowit, Red Sea State, Sudan

Authors: K. M. Kheiralla, M. A. Ali, M. Y. Abdelgalil, N. E. Mohamed, G. Boutsis

Abstract:

The present study focus on integrated geophysical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. The study designates that correlation of magnetic and ERT anomalies with lithology are extremely useful in mineral exploration due to variations in some specific physical properties of rocks.

Keywords: ERT, magnetic, mineralization, Red Sea, Sudan

Procedia PDF Downloads 384
454 Electroencephalography Activity during Sensory Organization Balance Test

Authors: Tariq Ali Gujar, Anita Hökelmann

Abstract:

Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.

Keywords: balance, electroencephalography activity, somatosensory, visual, vestibular

Procedia PDF Downloads 575
453 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite

Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li

Abstract:

Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.

Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption

Procedia PDF Downloads 276
452 Factors Affecting Sustainability of a 3D Printed Object

Authors: Kadrefi Athanasia, Fronimaki Evgenia, Mavri Maria

Abstract:

3D Printing (3DP) is a distinct, disruptive technology that belongs to a wider group of manufacturing technologies, Additive Manufacturing (AM). In 3DP, a custom digital file turns into a solid object using a single computer and a 3D printer. Among multiple advantages, 3DP offers production with fewer steps compared to conventional manufacturing, lower production costs, and customizable designs. 3DP can be performed by several techniques, while the most common is Fused Deposition Modeling (FDM). FDM belongs to a wider group of AM techniques, material extrusion, where a digital file converts into a solid object using raw material (called filament) melted in high temperatures. As in most manufacturing procedures, environmental issues have been raised here, too. This study aims to review the literature on issues that determine technical and mechanical factors that affect the sustainability and resilience of a final 3D-printed object. The research focuses on the collection of papers that deal with 3D printing techniques and use keywords or phrases like ‘3D printed objects’, ‘factors of 3DP sustainability’, ‘waste materials,’ ‘infill patterns,’ and ‘support structures.’ After determining factors, a pilot survey will be conducted at the 3D Printing Lab in order to define the significance of each factor in the final 3D printed object.

Keywords: additive manufacturing, 3D printing, sustainable manufacturing, sustainable production

Procedia PDF Downloads 50
451 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor

Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li

Abstract:

Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.

Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide

Procedia PDF Downloads 107
450 The Nature of Mineralizing Fluids in the Hammam Zriba Deposit (F-Ba-Sr-Pb-Zn) in North-eastern Tunisia

Authors: Miladi Yasmine, Bouhlel Salah, David Banks

Abstract:

The Hammam Zriba (F-Ba-Sr-Pb-Zn) ore deposits of the Zaghouan district are located in northeast Tunisia, 60 Km south of Tunis. The host rocks belong to the Ressas Formation (Tithonian age) and lower Cretaceous layers. Mineralization occurs as stratiform replacement heaps and lenses. The mineral assemblage is composed of fluorite, barite, sphalerite, and galena. Primary fluid inclusions in sphalerite have homogenization temperatures ranging from 83 to 140°C, final melting temperature range from −18 to −7.0, corresponding to salinities of 5 to 21 wt % NaCl equivalent. Fluid inclusions in fluorite homogenize to the liquid phase between 132 and 178°C. Final ice melting temperatures range from −25 to −6.8 °C, corresponding to salinities between 17 and 24 wt% NaCl Equivalent. The LA-ICP-MS analyses of the fluid inclusions in fluorite show that these fluids are dominated by Na>Ca>K>Mg, with the concentration of Fe being equivalent to that of Mg. Microthermometric analyses of the fluid inclusions observed in fluorite and sphalerite show that two distinct fluids were involved in the mineralization deposition: a warmer saline fluid (132-178°C, 17-24 wt % NaCl equivalent) and cooler saline fluid (83°C-140, 5-21 wt %NaCl equivalent). The ore fluid result from highly saline and Na-Ca dominated with lower Mg concentrations come from the leaching of the dolomitic host rocks by the fluids.

Keywords: Hammam Zriba , fluid inclusions, LA-ICP-MS, Zaghouan district

Procedia PDF Downloads 91
449 Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries

Authors: Moustafa M. S. Sanad

Abstract:

The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques.

Keywords: structure modification, cationic substitution, non-stoichiometric synthesis, plasma treatment, lithium-ion batteries

Procedia PDF Downloads 46
448 Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application

Authors: Špela Hajduk, Sean P. Berglund, Matejka Podlogar, Goran Dražić, Fatwa F. Abdi, Zorica C. Orel, Menny Shalom

Abstract:

Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS).

Keywords: carbon nitride, photoanode, solar water splitting, zinc oxide

Procedia PDF Downloads 187
447 Spatial Variation of Groundwater Potential at Erusu-Arigidi in Ondo State

Authors: Onifade Yemi Sikiru, Vwoke Eruya

Abstract:

An investigation has been made of the groundwater potentials of Erusu-Arigidi, Ondo State, Nigeria and using an electrical resistivity survey. This study was motivated to determine the electrical resistivity parameters of the area. This work aims to use the electrical resistivity method to explore the groundwater potentials of the study area. A total of ten vertical electrical soundings (VES) were conducted with a maximum electrode spacing of 150 m. The data was acquired using ABEM SAS 1000 Terrameter and processed using WINRESIST. The interpreted and analyzed results reveal four to six geoelectric layers. The VES curves obtained were QH, H, AAA, HKH, and HA. Findings from the study revealed that the geoelectric layer ranges from 3 to 5 layers. From the result, the Dar Zarrouk parameters longitudinal conductance (S) and transverse resistance (Tr), average longitudinal resistance (), transverse resistivity (), coefficient of anisotropy (λ), and reflection coefficient ranges from 0.22 to 1.45mhos, 67.12 to 4262.91 Ω/m², 8.81 to 76.12 Ω-m, 12.0 to 243.5 Ωm², 1.01 to 1.78, and 0.72 to 0.99 respectively. Deduction from S suggested that groundwater tends to be slightly vulnerable to surface contamination. Further findings from Dar Zarrouk parameters revealed that southwest parts of the study area tend to have high groundwater potential when compared to other parts of the study area. While hydraulic conductivity and transmissivity range from 0.003 to 0.051m/day, and 11.16 to 158.30m²/day, results obtained from H and T revealed northwest parts of the study area are considered to be aquiferous when compared to other parts of the research area.

Keywords: variation, isoresistivity, hydraulic conductivity, groundwater

Procedia PDF Downloads 72
446 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst

Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski

Abstract:

Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.

Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution

Procedia PDF Downloads 204
445 Study of the Feasibility of Submerged Arc Welding(SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius

Authors: Ajay Biswas, Swapan Bhaumik, Saurav Datta, Abhijit Bhowmik

Abstract:

A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. voltage, wire feed rate, travel speed, and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.

Keywords: submerged arc welding, zero degree celsius, Taguchi’s design of experiment, geometry of weldment

Procedia PDF Downloads 441
444 Feasibility Study of Submerged Arc Welding (SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius

Authors: Ajay Biswas, Abhijit Bhowmik, Saurav Datta, Swapan Bhaumik

Abstract:

A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. Voltage, wire feed rate, travel speed and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.

Keywords: geometry of weldment, submerged arc welding, Taguchi’s design of experiment, zero degree Celsius

Procedia PDF Downloads 430
443 Influence of the 3D Printing Parameters on the Dynamic Characteristics of Composite Structures

Authors: Ali Raza, Rūta Rimašauskienė

Abstract:

In the current work, the fused deposition modelling (FDM) technique is used to manufacture PLA reinforced with carbon fibre composite structures with two unique layer patterns, 0°\0° and 0°\90°. The purpose of the study is to investigate the dynamic characteristics of each fabricated composite structure. The Macro Fiber Composite (MFC) is embedded with 0°/0° and 0°/90° structures to investigate the effect of an MFC (M8507-P2 type) patch on vibration amplitude suppression under dynamic loading circumstances. First, modal analysis testing was performed using a Polytec 3D laser vibrometer to identify bending mode shapes, natural frequencies, and vibration amplitudes at the corresponding natural frequencies. To determine the stiffness of each structure, several loads were applied at the free end of the structure, and the deformation was recorded using a laser displacement sensor. The findings confirm that a structure with 0°\0° layers pattern was found to have more stiffness compared to a 0°\90° structure. The maximum amplitude suppression in each structure was measured using a laser displacement sensor at the first resonant frequency when the control voltage signal with optimal phase was applied to the MFC. The results confirm that the 0°/0° pattern's structure exhibits a higher displacement reduction than the 0°/90° pattern. Moreover, stiffer structures have been found to perform amplitude suppression more effectively.

Keywords: carbon fibre composite, MFC, modal analysis stiffness, stiffness

Procedia PDF Downloads 59
442 Exposing Latent Fingermarks on Problematic Metal Surfaces Using Time of Flight Secondary Ion Mass Spectroscopy

Authors: Tshaiya Devi Thandauthapani, Adam J. Reeve, Adam S. Long, Ian J. Turner, James S. Sharp

Abstract:

Fingermarks are a crucial form of evidence for identifying a person at a crime scene. However, visualising latent (hidden) fingermarks can be difficult, and the correct choice of techniques is essential to develop and preserve any fingermarks that might be present. Knives, firearms and other metal weapons have proven to be challenging substrates (stainless steel in particular) from which to reliably obtain fingermarks. In this study, time of flight secondary ion mass spectroscopy (ToF-SIMS) was used to image fingermarks on metal surfaces. This technique was compared to a conventional superglue based fuming technique that was accompanied by a series of contrast enhancing dyes (basic yellow 40 (BY40), crystal violet (CV) and Sudan black (SB)) on three different metal surfaces. The conventional techniques showed little to no evidence of fingermarks being present on the metal surfaces after a few days. However, ToF-SIMS images revealed fingermarks on the same and similar substrates with an exceptional level of detail demonstrating clear ridge definition as well as detail about sweat pore position and shape, that persist for over 26 days after deposition when the samples were stored under ambient conditions.

Keywords: conventional techniques, latent fingermarks, metal substrates, time of flight secondary ion mass spectroscopy

Procedia PDF Downloads 157
441 Total-Reflection X-Ray Spectroscopy as a Tool for Element Screening in Food Samples

Authors: Hagen Stosnach

Abstract:

The analytical demands on modern instruments for element analysis in food samples include the analysis of major, trace and ultra-trace essential elements as well as potentially toxic trace elements. In this study total reflection, X-ray fluorescence analysis (TXRF) is presented as an analytical technique, which meets the requirements, defined by the Association of Official Agricultural Chemists (AOAC) regarding the limit of quantification, repeatability, reproducibility and recovery for most of the target elements. The advantages of TXRF are the small sample mass required, the broad linear range from µg/kg up to wt.-% values, no consumption of gases or cooling water, and the flexible and easy sample preparation. Liquid samples like alcoholic or non-alcoholic beverages can be analyzed without any preparation. For solid food samples, the most common sample pre-treatment methods are mineralization, direct deposition of the sample onto the reflector without/with minimal treatment, mainly as solid suspensions or after extraction. The main disadvantages are due to the possible peaks overlapping, which may lower the accuracy of quantitative analysis and the limit in the element identification. This analytical technique will be presented by several application examples, covering a broad range of liquid and solid food types.

Keywords: essential elements, toxic metals, XRF, spectroscopy

Procedia PDF Downloads 128
440 Superficial Metrology of Organometallic Chemical Vapour Deposited Undoped ZnO Thin Films on Stainless Steel and Soda-Lime Glass Substrates

Authors: Uchenna Sydney Mbamara, Bolu Olofinjana, Ezekiel Oladele B. Ajayi

Abstract:

Elaborate surface metrology of undoped ZnO thin films, deposited by organometallic chemical vapour deposition (OMCVD) technique at different precursor flow rates, was carried out. Dicarbomethyl-zinc precursor was used. The films were deposited on AISI304L steel and soda-lime glass substrates. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy showed that all the thin films were over 80% transparent, with an average bandgap of 3.39 eV, X-ray diffraction (XRD) results showed that the thin films were crystalline with a hexagonal structure, while Rutherford backscattering spectroscopy (RBS) results identified the elements present in each thin film as zinc and oxygen in the ratio of 1:1. Microscope and contactless profilometer results gave images with characteristic colours. The profilometer also gave the surface roughness data in both 2D and 3D. The asperity distribution of the thin film surfaces was Gaussian, while the average fractal dimension Da was in the range of 2.5 ≤ Da. The metrology proved the surfaces good for ‘touch electronics’ and coating mechanical parts for low friction.

Keywords: undoped ZnO, precursor flow rate, OMCVD, thin films, surface texture, tribology

Procedia PDF Downloads 55
439 Electrochemical and Photoelectrochemical Study of Polybithiophene–MnO2 Composite Films

Authors: H. Zouaoui, D. Abdi, B. Nessark, F. Habelhames, A. Bahloul

Abstract:

Among the conjugated organic polymers, the polythiophenes constitute a particularly important class of conjugated polymers, which has been extensively studied for the relation between the geometrical structure and the optic and electronic properties, while the polythiophene is an intractable material. They are, furthermore, chemically and thermally stable materials, and are very attractive for exploitation of their physical properties. The polythiophenes are extensively studied due to the possibility of synthesizing low band gap materials by using substituted thiophenes as precursors. Low band gap polymers may convert visible light into electricity and some photoelectrochemical cells based on these materials have been prepared. Polythiophenes (PThs) are good candidates for polymer optoelectronic devices such as polymer solar cells (PSCs) polymer light-emitting diodes (PLEDs) field-effect transistors (FETs) electrochromics and biosensors. In this work, MnO2 has been synthesized by hydrothermal method and analyzed by infrared spectroscopy. The polybithiophene+MnO2 composite films were electrochemically prepared by cyclic voltammetry technic on a conductor glass substrate ITO (indium–tin-oxide). The composite films are characterized by cyclic voltammetry, impedance spectroscopy and photoelectrochemical analyses. The results confirmed the presence of manganese dioxide nanoparticles in the polymer layer. An application has been made by using these deposits as an electrode in a photoelectrochemical cell for measuring photocurrent tests. The composite films show a significant photocurrent intensity 80 μA.cm-2.

Keywords: polybithiophene, MnO2, photoelectrochemical cells, composite films

Procedia PDF Downloads 346
438 Silymarin Loaded Mesoporous Silica Nanoparticles: Preparation, Optimization, Pharmacodynamic and Oral Multi-Dose Safety Assessment

Authors: Sarah Nasr, Maha M. A. Nasra, Ossama Y. Abdallah

Abstract:

The present work aimed to prepare Silymarin loaded MCM-41 type mesoporous silica nanoparticles (MSNs) and to assess the system’s solubility enhancement ability on the pharmacodynamic performance of Silymarin as a hepatoprotective agent. MSNs prepared by soft-templating technique, were loaded with Silymarin, characterized for particle size, zeta potential, surface properties, DSC and XRPD. DSC and specific surface area data confirmed deposition of Silymarin in an amorphous state in MSNs’ pores. In-vitro drug dissolution testing displayed enhanced dissolution rate of Silymarin upon loading on MSNs. High dose Acetaminophen was then used to inflict hepatic injury upon albino male Wistar rats simultaneously receiving either free Silymarin, Silymarin loaded MSNs or blank MSNs. Plasma AST, ALT, albumin and total protein and liver homogenate content of TBARs or LDH as measures of antioxidant drug action were assessed for all animal groups. Results showed a significant superiority of Silymarin loaded MSNs to free drug in almost all parameters. Meanwhile prolonged administration of blank MSNs had no evident toxicity on rats.

Keywords: mesoporous silica nanoparticles, safety, solubility enhancement, silymarin

Procedia PDF Downloads 328
437 AC Electro-Kinetics, Bipolar Current and Concentration-Polarization in a Microchannel-Nafion Membrane System

Authors: Sinwook Park, Gilad Yossifon

Abstract:

The presence of a floating electrode array located within the depletion layer formed due to concentration-polarization (CP) across a microchannel-membrane device, produces not only induced-charge electro-osmosis (ICEO) vortex and but also a bipolar current resulting from faradaic reactions. It has been shown that there exists an optimal SiO2 layer thickness of ~50nm which is sufficient to suppress bipolar currents (at least up to 5V applied voltage) but still enables ICEO vortices that stir the depletion layer, thereby affecting its I-V response. This effect is pronounced beyond the limiting current where the existence of the depletion layer results in increased local electric field due to decreased solution conductivity. This comprehensive study of the interaction of embedded electrodes with the induced CP in microchannel-perm selective medium systems, allows one to choose the thickness of the thin dielectric coating to either enhance the mixing as a means to control the diffuse layer, or suppress it, for example, in the case where electrodes are intended for local measurements of the solution conductivity with minimal invasion. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the CP length. In addition, the use of embedded heaters within the depletion layer generates electro-thermal vortices that in turn also control the CP length.

Keywords: AC electrokinetics, microchannel, concentration-polarization, bipolar current

Procedia PDF Downloads 492
436 Assessment of Pollutant Concentrations and Respiratory Tract Depositions of PM from Traffic Emissions: A Case Study of a Highway Toll Plaza in India

Authors: Nazneen, Aditya Kumar Patra

Abstract:

The aim of this study was to investigate the personal exposures of toll plaza workers on a busy national highway in India during the winter season to PM₂.₅, PM₁₀, BC (black carbon), and UFP (ultrafine particles). The results showed that toll workers inside the toll collection booths (ITC) were exposed to higher concentrations of air pollutants than those working outside the booths (OTC), except for UFP. Specifically, the concentrations of PM₂.₅ were 20₄.₇ µg m⁻³ (ITC) and 100.4 µg m⁻³ (OTC), while PM₁₀ concentrations were 326.1 µg m⁻³ (ITC) and 24₄.₇ µg m⁻³ (OTC), and BC concentrations were 30.7 µg m⁻³ (ITC) and 17.2 µg m⁻³ (OTC). In contrast, UFP concentrations were higher at OTC (11312.8 pt cm⁻³) than at IOC (7431.6 pt cm⁻³). The diurnal variation of pollutants showed higher concentrations in the evening due to increased traffic and less atmospheric dispersion. The respiratory deposition dose (RDD) of pollutants was higher inside the toll booths, especially during the evening. The study also revealed that PM particles consisted of soot, mineral and fly ash, which are proxies of fresh exhaust emissions, re-suspended road dust, and industrial emissions, respectively. The presence of Si, Al, Ca and Pb, as confirmed by EDX (Energy Dispersive X-ray analysis) analyses, indicated the sources of pollutants to be re-suspended road dust, brake/tire wear, and construction dust. The findings emphasize the need for policies to regulate air pollutant concentrations, particularly in workplaces situated near busy roads.

Keywords: air pollution, PM₂.₅, black carbon, traffic emissions

Procedia PDF Downloads 80