Search results for: data mapping
24768 Investigating Links in Achievement and Deprivation (ILiAD): A Case Study Approach to Community Differences
Authors: Ruth Leitch, Joanne Hughes
Abstract:
This paper presents the findings of a three-year government-funded study (ILiAD) that aimed to understand the reasons for differential educational achievement within and between socially and economically deprived areas in Northern Ireland. Previous international studies have concluded that there is a positive correlation between deprivation and underachievement. Our preliminary secondary data analysis suggested that the factors involved in educational achievement within multiple deprived areas may be more complex than this, with some areas of high multiple deprivation having high levels of student attainment, whereas other less deprived areas demonstrated much lower levels of student attainment, as measured by outcomes on high stakes national tests. The study proposed that no single explanation or disparate set of explanations could easily account for the linkage between levels of deprivation and patterns of educational achievement. Using a social capital perspective that centralizes the connections within and between individuals and social networks in a community as a valuable resource for educational achievement, the ILiAD study involved a multi-level case study analysis of seven community sites in Northern Ireland, selected on the basis of religious composition (housing areas are largely segregated by religious affiliation), measures of multiple deprivation and differentials in educational achievement. The case study approach involved three (interconnecting) levels of qualitative data collection and analysis - what we have termed Micro (or community/grassroots level) understandings, Meso (or school level) explanations and Macro (or policy/structural) factors. The analysis combines a statistical mapping of factors with qualitative, in-depth data interpretation which, together, allow for deeper understandings of the dynamics and contributory factors within and between the case study sites. Thematic analysis of the qualitative data reveals both cross-cutting factors (e.g. demographic shifts and loss of community, place of the school in the community, parental capacity) and analytic case studies of explanatory factors associated with each of the community sites also permit a comparative element. Issues arising from the qualitative analysis are classified either as drivers or inhibitors of educational achievement within and between communities. Key issues that are emerging as inhibitors/drivers to attainment include: the legacy of the community conflict in Northern Ireland, not least in terms of inter-generational stress, related with substance abuse and mental health issues; differing discourses on notions of ‘community’ and ‘achievement’ within/between community sites; inter-agency and intra-agency levels of collaboration and joined-up working; relationship between the home/school/community triad and; school leadership and school ethos. At this stage, the balance of these factors can be conceptualized in terms of bonding social capital (or lack of it) within families, within schools, within each community, within agencies and also bridging social capital between the home/school/community, between different communities and between key statutory and voluntary organisations. The presentation will outline the study rationale, its methodology, present some cross-cutting findings and use an illustrative case study of the findings from a community site to underscore the importance of attending to community differences when trying to engage in research to understand and improve educational attainment for all.Keywords: educational achievement, multiple deprivation, community case studies, social capital
Procedia PDF Downloads 38824767 Design of Knowledge Management System with Geographic Information System
Authors: Angga Hidayah Ramadhan, Luciana Andrawina, M. Azani Hasibuan
Abstract:
Data will be as a core of the decision if it has a good treatment or process, which is process that data into information, and information into knowledge to make a wisdom or decision. Today, many companies have not realize it include XYZ University Admission Directorate as executor of National Admission called Seleksi Masuk Bersama (SMB) that during the time, the workers only uses their feeling to make a decision. Whereas if it done, then that company can analyze the data to make a right decision to get a pin sales from student candidate or registrant that follow SMB as many as possible. Therefore, needs Knowledge Management System (KMS) with Geographic Information System (GIS) use 5C4C that can process that company data becomes more useful and can help make decisions. This information system can process data into information based on the pin sold data with 5C (Contextualized, Categorize, Calculation, Correction, Condensed) and convert information into knowledge with 4C (Comparing, Consequence, Connection, Conversation) that has been several steps until these data can be useful to make easier to take a decision or wisdom, resolve problems, communicate, and quicker to learn to the employees have not experience and also for ease of viewing/visualization based on spatial data that equipped with GIS functionality that can be used to indicate events in each province with indicator that facilitate in this system. The system also have a function to save the tacit on the system then to be proceed into explicit in expert system based on the problems that will be found from the consequences of information. With the system each team can make a decision with same ways, structured, and the important is based on the actual event/data.Keywords: 5C4C, data, information, knowledge
Procedia PDF Downloads 46224766 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco
Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali
Abstract:
This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco
Procedia PDF Downloads 1824765 A GIS Based Composite Land Degradation Assessment and Mapping of Tarkwa Mining Area
Authors: Bernard Kumi-Boateng, Kofi Bonsu
Abstract:
The clearing of vegetation in the Tarkwa Mining Area (TMA) for the purposes of mining, lumbering and development of settlement for the increasing population has caused a large scale denudation of the forest cover and erosion of the top soil thereby degrading the agriculture land. It is, therefore, essential to know the current status of land degradation in TMA so as to facilitate land conservation policy-making. The types of degradation, the extents of the degradations and their various degrees were combined to develop a composite land degradation index to assess the current status of land degradation in TMA using GIS based techniques. The assessment revealed that the most significant types of degradation in TMA were open pit and quarry mining; urbanisation and other construction projects; and surface scraping during land clearing. It was found that 21.62 % of the total area of TMA (353.07 km2) had high degradation index rating. It is recommended that decision makers use this assessment as a reference point for future initiatives that will be taken in order to develop land conservation policy.Keywords: degradation, GIS, land, mining
Procedia PDF Downloads 35424764 A Policy Strategy for Building Energy Data Management in India
Authors: Shravani Itkelwar, Deepak Tewari, Bhaskar Natarajan
Abstract:
The energy consumption data plays a vital role in energy efficiency policy design, implementation, and impact assessment. Any demand-side energy management intervention's success relies on the availability of accurate, comprehensive, granular, and up-to-date data on energy consumption. The Building sector, including residential and commercial, is one of the largest consumers of energy in India after the Industrial sector. With economic growth and increasing urbanization, the building sector is projected to grow at an unprecedented rate, resulting in a 5.6 times escalation in energy consumption till 2047 compared to 2017. Therefore, energy efficiency interventions will play a vital role in decoupling the floor area growth and associated energy demand, thereby increasing the need for robust data. In India, multiple institutions are involved in the collection and dissemination of data. This paper focuses on energy consumption data management in the building sector in India for both residential and commercial segments. It evaluates the robustness of data available through administrative and survey routes to estimate the key performance indicators and identify critical data gaps for making informed decisions. The paper explores several issues in the data, such as lack of comprehensiveness, non-availability of disaggregated data, the discrepancy in different data sources, inconsistent building categorization, and others. The identified data gaps are justified with appropriate examples. Moreover, the paper prioritizes required data in order of relevance to policymaking and groups it into "available," "easy to get," and "hard to get" categories. The paper concludes with recommendations to address the data gaps by leveraging digital initiatives, strengthening institutional capacity, institutionalizing exclusive building energy surveys, and standardization of building categorization, among others, to strengthen the management of building sector energy consumption data.Keywords: energy data, energy policy, energy efficiency, buildings
Procedia PDF Downloads 18524763 Metamodel for Artefacts in Service Engineering Analysis and Design
Authors: Purnomo Yustianto, Robin Doss
Abstract:
As a process of developing a service system, the term ‘service engineering’ evolves in scope and definition. To achieve an integrated understanding of the process, a general framework and an ontology are required. This paper extends a previously built service engineering framework by exploring metamodels for the framework artefacts based on a foundational ontology and a metamodel landscape. The first part of this paper presents a correlation map between the proposed framework with the ontology as a form of evaluation for the conceptual coverage of the framework. The mapping also serves to characterize the artefacts to be produced for each activity in the framework. The second part describes potential metamodels to be used, from the metamodel landscape, as alternative formats of the framework artefacts. The results suggest that the framework sufficiently covers the ontological concepts, both from general service context and software service context. The metamodel exploration enriches the suggested artefact format from the original eighteen formats to thirty metamodel alternatives.Keywords: artefact, framework, service, metamodel
Procedia PDF Downloads 20724762 A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures
Authors: Silvina Caíno-Lores, Jesús Carretero
Abstract:
Large scale computing infrastructures have been widely developed with the core objective of providing a suitable platform for high-performance and high-throughput computing. These systems are designed to support resource-intensive and complex applications, which can be found in many scientific and industrial areas. Currently, large scale data-intensive applications are hindered by the high latencies that result from the access to vastly distributed data. Recent works have suggested that improving data locality is key to move towards exascale infrastructures efficiently, as solutions to this problem aim to reduce the bandwidth consumed in data transfers, and the overheads that arise from them. There are several techniques that attempt to move computations closer to the data. In this survey we analyse the different mechanisms that have been proposed to provide data locality for large scale high-performance and high-throughput systems. This survey intends to assist scientific computing community in understanding the various technical aspects and strategies that have been reported in recent literature regarding data locality. As a result, we present an overview of locality-oriented techniques, which are grouped in four main categories: application development, task scheduling, in-memory computing and storage platforms. Finally, the authors include a discussion on future research lines and synergies among the former techniques.Keywords: data locality, data-centric computing, large scale infrastructures, cloud computing
Procedia PDF Downloads 25924761 Wind Speed Data Analysis in Colombia in 2013 and 2015
Authors: Harold P. Villota, Alejandro Osorio B.
Abstract:
The energy meteorology is an area for study energy complementarity and the use of renewable sources in interconnected systems. Due to diversify the energy matrix in Colombia with wind sources, is necessary to know the data bases about this one. However, the time series given by 260 automatic weather stations have empty, and no apply data, so the purpose is to fill the time series selecting two years to characterize, impute and use like base to complete the data between 2005 and 2020.Keywords: complementarity, wind speed, renewable, colombia, characteri, characterization, imputation
Procedia PDF Downloads 16424760 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis
Authors: Hyun-Woo Cho
Abstract:
Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques
Procedia PDF Downloads 38724759 Recommender System Based on Mining Graph Databases for Data-Intensive Applications
Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi
Abstract:
In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.Keywords: graph databases, NLP, recommendation systems, similarity metrics
Procedia PDF Downloads 10424758 Digital Revolution a Veritable Infrastructure for Technological Development
Authors: Osakwe Jude Odiakaosa
Abstract:
Today’s digital society is characterized by e-education or e-learning, e-commerce, and so on. All these have been propelled by digital revolution. Digital technology such as computer technology, Global Positioning System (GPS) and Geographic Information System (GIS) has been having a tremendous impact on the field of technology. This development has positively affected the scope, methods, speed of data acquisition, data management and the rate of delivery of the results (map and other map products) of data processing. This paper tries to address the impact of revolution brought by digital technology.Keywords: digital revolution, internet, technology, data management
Procedia PDF Downloads 44924757 Preliminary Result on the Impact of Anthropogenic Noise on Understory Bird Population in Primary Forest of Gaya Island
Authors: Emily A. Gilbert, Jephte Sompud, Andy R. Mojiol, Cynthia B. Sompud, Alim Biun
Abstract:
Gaya Island of Sabah is known for its wildlife and marine biodiversity. It has marks itself as one of the hot destinations of tourists from all around the world. Gaya Island tourism activities have contributed to Sabah’s economy revenue with the high number of tourists visiting the island. However, it has led to the increased anthropogenic noise derived from tourism activities. This may greatly interfere with the animals such as understory birds that rely on acoustic signals as a tool for communication. Many studies in other parts of the regions reveal that anthropogenic noise does decrease species richness of avian community. However, in Malaysia, published research regarding the impact of anthropogenic noise on the understory birds is still very lacking. This study was conducted in order to fill up this gap. This study aims to investigate the anthropogenic noise’s impact towards understory bird population. There were three sites within the Primary forest of Gaya Island that were chosen to sample the level of anthropogenic noise in relation to the understory bird population. Noise mapping method was used to measure the anthropogenic noise level and identify the zone with high anthropogenic noise level (> 60dB) and zone with low anthropogenic noise level (< 60dB) based on the standard threshold of noise level. The methods that were used for this study was solely mist netting and ring banding. This method was chosen as it can determine the diversity of the understory bird population in Gaya Island. The preliminary study was conducted from 15th to 26th April and 5th to 10th May 2015 whereby there were 2 mist nets that were set up at each of the zones within the selected site. The data was analyzed by using the descriptive analysis, presence and absence analysis, diversity indices and diversity t-test. Meanwhile, PAST software was used to analyze the obtain data. The results from this study present a total of 60 individuals that consisted of 12 species from 7 families of understory birds were recorded in three of the sites in Gaya Island. The Shannon-Wiener index shows that diversity of species in high anthropogenic noise zone and low anthropogenic noise zone were 1.573 and 2.009, respectively. However, the statistical analysis shows that there was no significant difference between these zones. Nevertheless, based on the presence and absence analysis, it shows that the species at the low anthropogenic noise zone was higher as compared to the high anthropogenic noise zone. Thus, this result indicates that there is an impact of anthropogenic noise on the population diversity of understory birds. There is still an urgent need to conduct an in-depth study by increasing the sample size in the selected sites in order to fully understand the impact of anthropogenic noise towards the understory birds population so that it can then be in cooperated into the wildlife management for a sustainable environment in Gaya Island.Keywords: anthropogenic noise, biodiversity, Gaya Island, understory bird
Procedia PDF Downloads 36524756 Effectiveness of Gamified Virtual Physiotherapy Patients with Shoulder Problems
Authors: A. Barratt, M. H. Granat, S. Buttress, B. Roy
Abstract:
Introduction: Physiotherapy is an essential part of the treatment of patients with shoulder problems. The focus of treatment is usually centred on addressing specific physiotherapy goals, ultimately resulting in the improvement in pain and function. This study investigates if computerised physiotherapy using gamification principles are as effective as standard physiotherapy. Methods: Physiotherapy exergames were created using a combination of commercially available hardware, the Microsoft Kinect, and bespoke software. The exergames used were validated by mapping physiotherapy goals of physiotherapy which included; strength, range of movement, control, speed, and activation of the kinetic chain. A multicenter, randomised prospective controlled trial investigated the use of exergames on patients with Shoulder Impingement Syndrome who had undergone Arthroscopic Subacromial Decompression surgery. The intervention group was provided with the automated sensor-based technology, allowing them to perform exergames and track their rehabilitation progress. The control group was treated with standard physiotherapy protocols. Outcomes from different domains were used to compare the groups. An important metric was the assessment of shoulder range of movement pre- and post-operatively. The range of movement data included abduction, forward flexion and external rotation which were measured by the software, pre-operatively, 6 weeks and 12 weeks post-operatively. Results: Both groups show significant improvement from pre-operative to 12 weeks in elevation in forward flexion and abduction planes. Results for abduction showed an improvement for the interventional group (p < 0.015) as well as the test group (p < 0.003). Forward flexion improvement was interventional group (p < 0.0201) with the control group (p < 0.004). There was however no significant difference between the groups at 12 weeks for abduction (p < 0.118067) , forward flexion (p < 0.189755) or external rotation (p < 0.346967). Conclusion: Exergames may be used as an alternative to standard physiotherapy regimes; however, further analysis is required focusing on patient engagement.Keywords: shoulder, physiotherapy, exergames, gamification
Procedia PDF Downloads 19424755 BigCrypt: A Probable Approach of Big Data Encryption to Protect Personal and Business Privacy
Authors: Abdullah Al Mamun, Talal Alkharobi
Abstract:
As data size is growing up, people are became more familiar to store big amount of secret information into cloud storage. Companies are always required to need transfer massive business files from one end to another. We are going to lose privacy if we transmit it as it is and continuing same scenario repeatedly without securing the communication mechanism means proper encryption. Although asymmetric key encryption solves the main problem of symmetric key encryption but it can only encrypt limited size of data which is inapplicable for large data encryption. In this paper we propose a probable approach of pretty good privacy for encrypt big data using both symmetric and asymmetric keys. Our goal is to achieve encrypt huge collection information and transmit it through a secure communication channel for committing the business and personal privacy. To justify our method an experimental dataset from three different platform is provided. We would like to show that our approach is working for massive size of various data efficiently and reliably.Keywords: big data, cloud computing, cryptography, hadoop, public key
Procedia PDF Downloads 32024754 Implementation of Big Data Concepts Led by the Business Pressures
Authors: Snezana Savoska, Blagoj Ristevski, Violeta Manevska, Zlatko Savoski, Ilija Jolevski
Abstract:
Big data is widely accepted by the pharmaceutical companies as a result of business demands create through legal pressure. Pharmaceutical companies have many legal demands as well as standards’ demands and have to adapt their procedures to the legislation. To manage with these demands, they have to standardize the usage of the current information technology and use the latest software tools. This paper highlights some important aspects of experience with big data projects implementation in a pharmaceutical Macedonian company. These projects made improvements of their business processes by the help of new software tools selected to comply with legal and business demands. They use IT as a strategic tool to obtain competitive advantage on the market and to reengineer the processes towards new Internet economy and quality demands. The company is required to manage vast amounts of structured as well as unstructured data. For these reasons, they implement projects for emerging and appropriate software tools which have to deal with big data concepts accepted in the company.Keywords: big data, unstructured data, SAP ERP, documentum
Procedia PDF Downloads 27124753 Saving Energy at a Wastewater Treatment Plant through Electrical and Production Data Analysis
Authors: Adriano Araujo Carvalho, Arturo Alatrista Corrales
Abstract:
This paper intends to show how electrical energy consumption and production data analysis were used to find opportunities to save energy at Taboada wastewater treatment plant in Callao, Peru. In order to access the data, it was used independent data networks for both electrical and process instruments, which were taken to analyze under an ISO 50001 energy audit, which considered, thus, Energy Performance Indexes for each process and a step-by-step guide presented in this text. Due to the use of aforementioned methodology and data mining techniques applied on information gathered through electronic multimeters (conveniently placed on substation switchboards connected to a cloud network), it was possible to identify thoroughly the performance of each process and thus, evidence saving opportunities which were previously hidden before. The data analysis brought both costs and energy reduction, allowing the plant to save significant resources and to be certified under ISO 50001.Keywords: energy and production data analysis, energy management, ISO 50001, wastewater treatment plant energy analysis
Procedia PDF Downloads 19424752 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 51724751 Natural Hazards and Their Costs in Albanian Part of Ohrid Graben
Authors: Mentor Sulollari
Abstract:
Albania, according to (UNU-EHS) United Nations University, Institute for Environment and Human Security studies for 2015, is listed as the number one country in Europe for the possibility to be caught by natural catastrophes. This is conditioned by unstudied human activity, which has seriously damaged the environment. Albanian part of Ohrid graben that lies in Southeast of Albania, is endangered by landslides and floods, as a result of uncontrolled urban development and low level of investment in infrastructure, rugged terrain in its western part and capricious climate caused by global warming. To be dealt with natural disasters, which cause casualties and material damage, it is important to study them in order to anticipate and reduce damages in future. As part of this study is the construction of natural hazards map, which show us where they are distributed, and which are the vulnerable areas. This article will also be dealing with socio-economic and environmental costs of those events and what are the measures to be taken to reduce them.Keywords: flooding, landslides, natural catastrophes mapping, Pogradec, lake Ohrid, Albanian part of Ohrid graben
Procedia PDF Downloads 29824750 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction
Procedia PDF Downloads 53724749 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: data grids, fault tolerance, clustering, chandy-lamport
Procedia PDF Downloads 34124748 An Observation of the Information Technology Research and Development Based on Article Data Mining: A Survey Study on Science Direct
Authors: Muhammet Dursun Kaya, Hasan Asil
Abstract:
One of the most important factors of research and development is the deep insight into the evolutions of scientific development. The state-of-the-art tools and instruments can considerably assist the researchers, and many of the world organizations have become aware of the advantages of data mining for the acquisition of the knowledge required for the unstructured data. This paper was an attempt to review the articles on the information technology published in the past five years with the aid of data mining. A clustering approach was used to study these articles, and the research results revealed that three topics, namely health, innovation, and information systems, have captured the special attention of the researchers.Keywords: information technology, data mining, scientific development, clustering
Procedia PDF Downloads 27824747 Security in Resource Constraints: Network Energy Efficient Encryption
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC
Procedia PDF Downloads 14524746 Data Mining Techniques for Anti-Money Laundering
Authors: M. Sai Veerendra
Abstract:
Today, money laundering (ML) poses a serious threat not only to financial institutions but also to the nation. This criminal activity is becoming more and more sophisticated and seems to have moved from the cliché of drug trafficking to financing terrorism and surely not forgetting personal gain. Most of the financial institutions internationally have been implementing anti-money laundering solutions (AML) to fight investment fraud activities. However, traditional investigative techniques consume numerous man-hours. Recently, data mining approaches have been developed and are considered as well-suited techniques for detecting ML activities. Within the scope of a collaboration project on developing a new data mining solution for AML Units in an international investment bank in Ireland, we survey recent data mining approaches for AML. In this paper, we present not only these approaches but also give an overview on the important factors in building data mining solutions for AML activities.Keywords: data mining, clustering, money laundering, anti-money laundering solutions
Procedia PDF Downloads 53724745 Preliminary Seismic Hazard Mapping of Papua New Guinea
Authors: Hadi Ghasemi, Mark Leonard, Spiliopoulos Spiro, Phil Cummins, Mathew Moihoi, Felix Taranu, Eric Buri, Chris Mckee
Abstract:
In this study the level of seismic hazard in terms of Peak Ground Acceleration (PGA) was calculated for return period of 475 years, using modeled seismic sources and assigned ground-motion equations. The calculations were performed for bedrock site conditions (Vs30=760 m/s). From the results it is evident that the seismic hazard reaches its maximum level (i.e. PGA≈1g for 475 yr return period) at the Huon Peninsula and southern New Britain regions. Disaggregation analysis revealed that moderate to large earthquakes occurring along the New Britain Trench mainly control the level of hazard at these locations. The open-source computer program OpenQuake developed by Global Earthquake Model foundation was used for the seismic hazard computations. It should be emphasized that the presented results are still preliminary and should not be interpreted as our final assessment of seismic hazard in PNG.Keywords: probabilistic seismic hazard assessment, Papua New Guinea, building code, OpenQuake
Procedia PDF Downloads 55624744 Mapping New Technologies for Sustainability along the Fashion Supply Chain
Authors: Hilde Heim
Abstract:
The textile industry is known for its swift adoption of innovations in fashion technology (Fash-Tech). The industry is also known for its harmful effects on the environment. Opportunely, Fash-Tech is expected to facilitate the turn towards more sustainable practice. However, although several technologies have the potential for advancing sustainable practice, many industry players, whether large or small, are confused and misinformed about Fash-Tech adoption, application, and impact. Through a visual poster presentation, this project aims to map global fashion innovations along the supply chain from fibre production to waste management, thus providing a clearer picture of numbers, scale, and adoption. While the project aims to identify Fash-Tech effectiveness in reaching sustainability goals, it also identifies areas of congestion as well as insufficiency in the accessibility of Fash-Tech. This project intends to help inform future decisions in business, investment, and policy for the advancement of sustainable practice.Keywords: fashion technology, sustainability, supply chain, enterprise management
Procedia PDF Downloads 24124743 A Collaborative Platform for Multilingual Ontology Development
Authors: Ahmed Tawfik, Fausto Giunchiglia, Vincenzo Maltese
Abstract:
Ontologies provide a common understanding of a specific domain of interest that can be communicated between people and used as background knowledge for automated reasoning in a wide range of applications. In this paper we address the design of multilingual ontologies following well-defined knowledge engineering methodologies with the support of novel collaborative development approaches. In particular, we present a collaborative platform which allows ontologies to be developed incrementally in multiple languages. This is made possible via an appropriate mapping between language independent concepts and one lexicalization per language (or a lexical gap in case such lexicalization does not exist). The collaborative platform has been designed to support the development of the Universal Knowledge Core, a multilingual ontology currently in English, Italian, Chinese, Mongolian, Hindi, and Bangladeshi. Its design follows a workflow-based development methodology that models resources as a set of collaborative objects and assigns customizable workflows to build and maintain each collaborative object in a community driven manner, with extensive support of modern web 2.0 social and collaborative features.Keywords: knowledge diversity, knowledge representation, ontology, development
Procedia PDF Downloads 39224742 Reducing Flood Risk in a Megacity: Using Mobile Application and Value Capture for Flood Risk Prevention and Risk Reduction Financing
Authors: Dedjo Yao Simon, Takahiro Saito, Norikazu Inuzuka, Ikuo Sugiyama
Abstract:
The megacity of Abidjan is a coastal urban area where the number of floods reported and the associated impacts are on a rapid increase due to climate change, an uncontrolled urbanization, a rapid population increase, a lack of flood disaster mitigation and citizens’ awareness. The objective of this research is to reduce in the short and long term period, the human and socio-economic impact of the flood. Hydrological simulation is applied on free of charge global spatial data (digital elevation model, satellite-based rainfall estimate, landuse) to identify the flood-prone area and to map the risk of flood. A direct interview to a sample residents is used to validate the simulation results. Then a mobile application (Flood Locator) is prototyped to disseminate the risk information to the citizen. In addition, a value capture strategy is proposed to mobilize financial resource for disaster risk reduction (DRRf) to reduce the impact of the flood. The town of Cocody in Abidjan is selected as a case study area to implement this research. The mapping of the flood risk reveals that population living in the study area is highly vulnerable. For a 5-year flood, more than 60% of the floodplain is affected by a water depth of at least 0.5 meters; and more than 1000 ha with at least 5000 buildings are directly exposed. The risk becomes higher for a 50 and 100-year floods. Also, the interview reveals that the majority of the citizen are not aware of the risk and severity of flooding in their community. This shortage of information is overcome by the Flood Locator and by an urban flood database we prototype for accumulate flood data. Flood Locator App allows the users to view floodplain and depth on a digital map; the user can activate the GPS sensor of the mobile to visualize his location on the map. Some more important additional features allow the citizen user to capture flood events and damage information that they can send remotely to the database. Also, the disclosure of the risk information could result to a decrement (-14%) of the value of properties locate inside floodplain and an increment (+19%) of the value of property in the suburb area. The tax increment due to the higher tax increment in the safer area should be captured to constitute the DRRf. The fund should be allocated to the reduction of flood risk for the benefit of people living in flood-prone areas. The flood prevention system discusses in this research will minimize in the short and long term the direct damages in the risky area due to effective awareness of citizen and the availability of DRRf. It will also contribute to the growth of the urban area in the safer zone and reduce human settlement in the risky area in the long term. Data accumulated in the urban flood database through the warning app will contribute to regenerate Abidjan towards the more resilient city by means of risk avoidable landuse in the master plan.Keywords: abidjan, database, flood, geospatial techniques, risk communication, smartphone, value capture
Procedia PDF Downloads 29024741 The Appropriation of Education Policy on Information and Communication Technology in South African Schools
Authors: T. Vandeyar
Abstract:
The purpose of this study is to explore how Government policy on ICT influences teaching and learning in South African schools. An instrumental case study using backward mapping principles as a strategy of inquiry was used. Utilizing a social constructivist lens and guided by a theoretical framework of a sociocultural approach to policy analysis, this exploratory qualitative research study set out to investigate how teachers appropriate government policy on ICT in South African schools. Three major findings emanated from this study. First, although teachers were ignorant of the national e-education policy their professionalism and agency were key in formulating and implementing an e-education policy in practice. Second, teachers repositioned themselves not as recipients or reactors of the e-education policy but as social and cultural actors of policy appropriation and formulation. Third, the lack of systemic support to teachers catalyzed improved school and teacher collaborations, teachers became drivers of ICT integration through collaboration, innovation, institutional practice and institutional leadership.Keywords: ICT, teachers as change agents, practice as policy, teacher's beliefs, teacher's attitudes
Procedia PDF Downloads 47624740 Digital Humanities in The US/Mexico Borderlands: Activism, Literature, and Border Crossers
Authors: Martin Camps
Abstract:
The two-thousand-mile border that divides the United States and Mexico is a “contact zone” of cultural friction and unbalanced power relations as defined by Mary Louise Pratt. The interest of this paper is to analyze digital platforms created to address the study and comprehension of the borderlands with pedagogical and research reasons. The paper explores ways to engage students in archival and analytical practices to build a repository of resources, links, and digital tools and consider how to adapt them to the study of the borderlands. Sites such as “Torn Apart / Separados,” “Digital Borderlands,” “Borderlands Archives Cartography,” and “Juaritos Literario” show visualizations, mapping, and access to materials and marginal literature on the border phenomenon. Analyzing these projects contributes to highlighting digital projects and the study of the border and how to engage in activism via the study of literature and the representation of a human tragedy that underscores the divisions and biopolitics imposed on the Global South and imagine the digital border futures.Keywords: borderlands, digital humanities, activism, border literature
Procedia PDF Downloads 7724739 Development of New Technology Evaluation Model by Using Patent Information and Customers' Review Data
Authors: Kisik Song, Kyuwoong Kim, Sungjoo Lee
Abstract:
Many global firms and corporations derive new technology and opportunity by identifying vacant technology from patent analysis. However, previous studies failed to focus on technologies that promised continuous growth in industrial fields. Most studies that derive new technology opportunities do not test practical effectiveness. Since previous studies depended on expert judgment, it became costly and time-consuming to evaluate new technologies based on patent analysis. Therefore, research suggests a quantitative and systematic approach to technology evaluation indicators by using patent data to and from customer communities. The first step involves collecting two types of data. The data is used to construct evaluation indicators and apply these indicators to the evaluation of new technologies. This type of data mining allows a new method of technology evaluation and better predictor of how new technologies are adopted.Keywords: data mining, evaluating new technology, technology opportunity, patent analysis
Procedia PDF Downloads 377