Search results for: damage sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3494

Search results for: damage sensing

2534 High Rise Building Vibration Control Using Tuned Mass Damper

Authors: T. Vikneshvaran, A. Aminudin, U. Alyaa Hashim, Waziralilah N. Fathiah, D. Shakirah Shukor

Abstract:

This paper presents the experimental study conducted on a structure of three-floor height building model. Most vibrations are undesirable and can cause damages to the buildings, machines and people all around us. The vibration wave from earthquakes, construction and winds have high potential to bring damage to the buildings. Excessive vibrations can result in structural and machinery failures. This failure is related to the human life and environment around it. The effect of vibration which causes failure and damage to the high rise buildings can be controlled in real life by implementing tuned mass damper (TMD) into the structure of the buildings. This research aims to study the effect and performance improvement achieved by applying TMD into the building structure. A structure model of three degrees of freedom (3DOF) is designed to demonstrate the performance of TMD to the designed model. The model designed is the physical representation of actual building structure in real life. It is constructed at a reduced scale and will be used for the experiment. Thus, the result obtained will be more accurate to compared with the real life effect. Based on the result from experimental study, by applying TMD to the structure model, the forces of vibration and the displacement mode of the building reduced. Thus, the reduced in vibration of the building helps to maintain the good condition of the building.

Keywords: degrees-of-freedom, displacement mode, natural frequency, tuned mass damper

Procedia PDF Downloads 331
2533 Windstorm Risk Assessment for Offshore Wind Farms in the North Sea

Authors: Paul Buchana, Patrick E. Mc Sharry

Abstract:

In 2017 there will be about 38 wind farms in the North Sea belonging to 5 different countries. The North Sea is ideal for offshore wind power generation and is thus attractive to offshore wind energy developers and investors. With concerns about the potential for offshore wind turbines to sustain substantial damage as a result of extreme weather conditions, particularly windstorms, this poses a unique challenge to insurers and reinsurers as to adequately quantify the risk and offer appropriate insurance cover for these assets. The need to manage this risk also concerns regulators, who provide the oversight needed to ensure that if a windstorm or a series of storms occur in this area over a one-year time frame, the insurers of these assets in the EU remain solvent even after meeting consequent damage costs. In this paper, using available European windstorm data for the past 33 years and actual wind farm locations together with information pertaining to each of the wind farms (number of turbines, total capacity and financial value), we present a Monte Carlo simulation approach to assess the number of turbines that would be buckled in each of the wind farms using maximum wind speeds reaching each of them. These wind speeds are drawn from historical windstorm data. From the number of turbines buckled, associated financial loss and output capacity can be deduced. The results presented in this paper are targeted towards offshore wind energy developers, insurance and reinsurance companies and regulators.

Keywords: catastrophe modeling, North Sea wind farms, offshore wind power, risk analysis

Procedia PDF Downloads 291
2532 Juvenile Delinquency of Senior High School Students in Surabaya, Indonesia

Authors: Herdina Indrijati

Abstract:

This research aims to describe teenager delinquency behavior (Juvenile Delinquency) of senior high school students in Surabaya, Indonesia. Juvenile Delinquency is a broad range of behaviors start from socially unacceptable behavior (overreact in school), violation (escape from home) to crimes (like stealing). This research uses quantitative descriptive method using 498 students who come from 8 different schools in Surabaya as subjects. Juvenile Delinquency behavior form questionnaire has been completed by subjects and was used to measure and describe the behavior. The result of this research is presented in statistic descriptive forms. Result shows that 169 subjects skip school, 55 subjects get out of home without parent’s permission, 110 subjects engage in smoking behavior, 74 subjects damage other people properties, 32 subjects steal, 16 subjects exploit others and 7 subjects engage in drug abuse. Frequency of the top five mentioned behavior are 1-10 times. It is also found that subject’s peers are most likely to be the victim of Juvenile Delinquency. The reasons teenagers engage in Juvenile Delinquency include (1) feeling tired, bored or lazy – that contributes to their skip school behavior (2) Having a lot of problem with parents - contrives them to run away from home, (3) accidentally damage other people’s properties, (4) financial problems – force them to steal and exploit, (5) feeling like having a lot of life problems – that makes them do drugs (6) trying smoking for experience.

Keywords: juvenile delinquency, senior high school, student

Procedia PDF Downloads 211
2531 The Efficacy of Salicylic Acid and Puccinia Triticina Isolates Priming Wheat Plant to Diuraphis Noxia Damage

Authors: Huzaifa Bilal

Abstract:

Russian wheat aphid (Diuraphis noxia, Kurdjumov) is considered an economically important wheat (Triticum aestivum L.) pest worldwide and in South Africa. The RWA damages wheat plants and reduces annual yields by more than 10%. Even though pest management by pesticides and resistance breeding is an attractive option, chemicals can cause harm to the environment. Furthermore, the evolution of resistance-breaking aphid biotypes has out-paced the release of resistant cultivars. An alternative strategy to reduce the impact of aphid damage on plants, such as priming, which sensitizes plants to respond effectively to subsequent attacks, is necessary. In this study, wheat plants at the seedling and flag leaf stages were primed by salicylic acid and isolate representative of two races of the leaf rust pathogen Puccinia triticina Eriks. (Pt), before RWA (South African RWA biotypes 1 and 4) infestation. Randomized complete block design experiments were conducted in the greenhouse to study plant-pest interaction in primed and non-primed plants. Analysis of induced aphid damage indicated salicylic acid differentially primed wheat cultivars for increased resistance to the RWASA biotypes. At the seedling stage, all cultivars were primed for enhanced resistance to RWASA1, while at the flag leaf stage, only PAN 3111, SST 356 and Makalote were primed for increased resistance. The Puccinia triticina efficaciously primed wheat cultivars for excellent resistance to RWASA1 at the seedling and flag leaf stages. However, Pt failed to enhance the four Lesotho cultivars' resistance to RWASA4 at the seedling stage and PAN 3118 at the flag leaf stage. The induced responses at the seedling and flag leaf stages were positively correlated in all the treatments. Primed plants induced high activity of antioxidant enzymes like peroxidase, ascorbate peroxidase and superoxide dismutase. High antioxidant activity indicates activation of resistant responses in primed plants (primed by salicylic acid and Puccina triticina). Isolates of avirulent Pt races can be a worthy priming agent for improved resistance to RWA infestation. Further confirmation of the priming effects needs to be evaluated at the field trials to investigate its application efficiency.

Keywords: Russian wheat aphis, salicylic acid, puccina triticina, priming

Procedia PDF Downloads 199
2530 Further Development in Predicting Post-Earthquake Fire Ignition Hazard

Authors: Pegah Farshadmanesh, Jamshid Mohammadi, Mehdi Modares

Abstract:

In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.

Keywords: fire risk, post-earthquake fire ignition (PEFI), risk management, seismicity

Procedia PDF Downloads 375
2529 Introduction of Dams Impacts on Downstream Wetlands: Case Study in Ahwar Delta in Yemen

Authors: Afrah Saad Mohsen Al-Mahfadi

Abstract:

The construction of dams can provide various ecosystem services, but it can also lead to ecological changes such as habitat loss and coastal degradation. Yemen faces multiple risks, including water crises and inadequate environmental policies, which are particularly detrimental to coastal zones like the Ahwar Delta in Abyan. This study aims to examine the impacts of dam construction on downstream wetlands and propose sustainable management approaches. Research Aim: The main objective of this study is to assess the different impacts of dam construction on downstream wetlands, specifically focusing on the Ahwar Delta in Yemen. Methodology: The study utilizes a literature review approach to gather relevant information on dam impacts and adaptation measures. Interviews with decision-making stakeholders and local community members are conducted to gain insights into the specific challenges faced in the Ahwar Delta. Additionally, sensing data, such as Arc-GIS and precipitation data from 1981 to 2020, are analyzed to examine changes in hydrological dynamics. Questions Addressed: This study addresses the following questions: What are the impacts of dam construction on downstream wetlands in the Ahwar delta? How can environmental management planning activities be implemented to minimize these impacts? Findings: The results indicate several future issues arising from dam construction in the coastal areas, including land loss due to rising sea levels and increased salinity in drinking water wells. Climate change has led to a decrease in rainfall rates, impacting vegetation and increasing sedimentation and erosion. Downstream areas with dams exhibit lower sediment levels and slower flowing habitats compared to those without dams. Theoretical Importance: The findings of this study provide valuable insights into the ecological impacts of dam construction on downstream wetlands. Understanding these dynamics can inform decision-makers about the need for adaptation measures and their potential benefits in improving coastal biodiversity under dam impacts. Data Collection and Analysis Procedures: The study collects data through a literature review, interviews, and sensing technology. The literature review helps identify relevant studies on dam impacts and adaptation measures. Interviews with stakeholders and local community members provide firsthand information on the specific challenges faced in the Ahwar Delta. Sensing data, such as Arc-GIS and precipitation data, are analyzed to understand changes in hydrological dynamics over time. Conclusion: The study concludes that while the situation can worsen due to dam construction, practical adaptation measures can help mitigate the impacts. Recommendations include improving water management, developing integrated coastal zone planning, raising awareness among stakeholders, improving health and education, and implementing emergency projects to combat climate change.

Keywords: dam impact, delta wetland, hydrology, Yemen

Procedia PDF Downloads 60
2528 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve

Authors: Y.J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 463
2527 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 304
2526 Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes

Authors: Sang-Woo Kim, Young-Seon Lee

Abstract:

An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally.

Keywords: magnesium, AZ31 alloy, ductile fracture, FEM, sheet forming, Erichsen cupping test

Procedia PDF Downloads 367
2525 Polymer-Layered Gold Nanoparticles: Preparation, Properties and Uses of a New Class of Materials

Authors: S. M. Chabane sari S. Zargou, A.R. Senoudi, F. Benmouna

Abstract:

Immobilization of nano particles (NPs) is the subject of numerous studies pertaining to the design of polymer nano composites, supported catalysts, bioactive colloidal crystals, inverse opals for novel optical materials, latex templated-hollow inorganic capsules, immunodiagnostic assays; “Pickering” emulsion polymerization for making latex particles and film-forming composites or Janus particles; chemo- and biosensors, tunable plasmonic nano structures, hybrid porous monoliths for separation science and technology, biocidal polymer/metal nano particle composite coatings, and so on. Particularly, in the recent years, the literature has witnessed an impressive progress of investigations on polymer coatings, grafts and particles as supports for anchoring nano particles. This is actually due to several factors: polymer chains are flexible and may contain a variety of functional groups that are able to efficiently immobilize nano particles and their precursors by dispersive or van der Waals, electrostatic, hydrogen or covalent bonds. We review methods to prepare polymer-immobilized nano particles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nano particles. The latter range from soft bio macromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nano particles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nano particles, while polymers provide excellent platforms for dispersing nano particles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.

Keywords: gold, layer, polymer, macromolecular

Procedia PDF Downloads 385
2524 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve

Authors: Y. J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 505
2523 Investigation of Contact Pressure Distribution at Expanded Polystyrene Geofoam Interfaces Using Tactile Sensors

Authors: Chen Liu, Dawit Negussey

Abstract:

EPS (Expanded Polystyrene) geofoam as light-weight material in geotechnical applications are made of pre-expanded resin beads that form fused cellular micro-structures. The strength and deformation properties of geofoam blocks are determined by unconfined compression of small test samples between rigid loading plates. Applied loads are presumed to be supported uniformly over the entire mating end areas. Predictions of field performance on the basis of such laboratory tests widely over-estimate actual post-construction settlements and exaggerate predictions of long-term creep deformations. This investigation examined the development of contact pressures at a large number of discrete points at low and large strain levels for different densities of geofoam. Development of pressure patterns for fine and coarse interface material textures as well as for molding skin and hot wire cut geofoam surfaces were examined. The lab testing showed that I-Scan tactile sensors are useful for detailed observation of contact pressures at a large number of discrete points simultaneously. At low strain level (1%), the lower density EPS block presents low variations in localized stress distribution compared to higher density EPS. At high strain level (10%), the dense geofoam reached the sensor cut-off limit. The imprint and pressure patterns for different interface textures can be distinguished with tactile sensing. The pressure sensing system can be used in many fields with real-time pressure detection. The research findings provide a better understanding of EPS geofoam behavior for improvement of design methods and performance prediction of critical infrastructures, which will be anticipated to guide future improvements in design and rapid construction of critical transportation infrastructures with geofoam in geotechnical applications.

Keywords: geofoam, pressure distribution, tactile pressure sensors, interface

Procedia PDF Downloads 165
2522 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region

Authors: Tomiwa, Akinyemi Clement

Abstract:

Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.

Keywords: remote sensing, precipitation, drop size distribution, micro rain radar

Procedia PDF Downloads 18
2521 Ellagic Acid Enhanced Apoptotic Radiosensitivity via G1 Cell Cycle Arrest and γ-H2AX Foci Formation in HeLa Cells in vitro

Authors: V. R. Ahire, A. Kumar, B. N. Pandey, K. P. Mishra, G. R. Kulkarni

Abstract:

Radiation therapy is an effective vital strategy used globally in the treatment of cervical cancer. However, radiation efficacy principally depends on the radiosensitivity of the tumor, and not all patient exhibit significant response to irradiation. A radiosensitive tumor is easier to cure than a radioresistant tumor which later advances to local recurrence and metastasis. Herbal polyphenols are gaining attention for exhibiting radiosensitization through various signaling. Current work focuses to study the radiosensitization effect of ellagic acid (EA), on HeLa cells. EA intermediated radiosensitization of HeLa cells was due to the induction γ-H2AX foci formation, G1 phase cell cycle arrest, and loss of reproductive potential, growth inhibition, drop in the mitochondrial membrane potential and protein expression studies that eventually induced apoptosis. Irradiation of HeLa in presence of EA (10 μM) to doses of 2 and 4 Gy γ-radiation produced marked tumor cytotoxicity. EA also demonstrated radio-protective effect on normal cell, NIH3T3 and aided recovery from the radiation damage. Our results advocate EA to be an effective adjuvant for improving cancer radiotherapy as it displays striking tumor cytotoxicity and reduced normal cell damage instigated by irradiation.

Keywords: apoptotic radiosensitivity, ellagic acid, mitochondrial potential, cell-cycle arrest

Procedia PDF Downloads 345
2520 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 148
2519 Examining the Relationship Between Depression and Drug and Alcohol Use in Iran

Authors: Masoumeh Kazemi

Abstract:

Depression is one of the most common mental disorders that damage mental health. In addition to mental distress, mental health damage affects other dimensions of human health, including physical and social health. According to the national study of diseases and injuries in Iran, the third health problem of the country is depression. The purpose of this study was to measure the level of depression in people referred to Karaj psychiatric treatment centers, and to investigate the relationship between depression and drug and alcohol consumption. The statistical population included 5000 people. Morgan table was used to determine the sample size. The research questions sought to identify the relationship between depression and factors such as drug and alcohol use, employment and marital status, and gender. Beck standard questionnaire was used to collect complete information. Cronbach's alpha coefficient was used to confirm the reliability of the questionnaire. To test research hypotheses, non-parametric methods of correlation coefficient, Spearman's rank, Mann-Whitney and Kruskal-Wallis tests were used. The results of using SPSS statistical software showed that there is a direct relationship between depression and drug and alcohol use. Also, the rate of depression was higher in women, widows and unemployed people. Finally, by conducting the present study, it is suggested that people use the following treatments in combination for effective recovery: 1. Cognitive Behavioral Therapy (CBT) 2. Interpersonal Therapy (IPT) 3. Treatment with appropriate medication 4. Special light therapy 5. Electric shock treatment (in acute and exceptional cases) 6. Self-help

Keywords: alcohol, depression, drug, Iran

Procedia PDF Downloads 53
2518 Composition and Acaricidal Activity of Elettaria cardamomum Essential Oil Against Oligonychus afrasiaticus

Authors: Abid Hussain, Muhammad Rizwan-ul-Haq, Hassan Al-Ayedh, Ahmed M. Al-Jabr

Abstract:

Oligonychus afrasiaticus, is an important pest that devastates date palms (Phoenix dactylifera). They caused serious damage to date palm fruits. They start feeding on dates at Kimri stage (greenish color dates with high sugar and moisture level) resulting severe fruit losses and rendering them unfit for human consumption. Currently, acaricides are the only tool available to Saudi growers to prevent O. afrasiaticus damage. Many acaricides are available in the Saudi markets in order to control the mites on date palm trees but their efficacy against O. afrasiaticus is questionable. The intensive use of acaricides has led to resistance in many mite species around the globe and their control becomes exceedingly challenging. The current investigation explored for the first time the acaricidal potential of Elettaria cardamomum essential oil for the environmentally safe management of date mites in the laboratory. E. cardamomum exhibited acaricidal activities in a dose dependent manner. GC-MS fractionation of E. cardamomum detected numerous compounds. Among the identified compounds, Guaniol caused 100% mortality compared to other identified compounds including (+)-α-Pinene, Camphene, (-)-B-Pinene, 3-Carene, (R)-(+)-Limonene, and Citral. Our laboratory results showed that E. cardamomum and its constituents especially Guaniol are promising for the eco-friendly management of date mites, O. afrasiaticus, although their field efficacy remains to be evaluated.

Keywords: cardamom, old world date mite, natural acaricide, toxicity

Procedia PDF Downloads 306
2517 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: bioheat transfer, electrode, neuroprosthetics, TENS, transcutaneous stimulation

Procedia PDF Downloads 233
2516 Spatial and Temporal Analysis of Forest Cover Change with Special Reference to Anthropogenic Activities in Kullu Valley, North-Western Indian Himalayan Region

Authors: Krisala Joshi, Sayanta Ghosh, Renu Lata, Jagdish C. Kuniyal

Abstract:

Throughout the world, monitoring and estimating the changing pattern of forests across diverse landscapes through remote sensing is instrumental in understanding the interactions of human activities and the ecological environment with the changing climate. Forest change detection using satellite imageries has emerged as an important means to gather information on a regional scale. Kullu valley in Himachal Pradesh, India is situated in a transitional zone between the lesser and the greater Himalayas. Thus, it presents a typical rugged mountainous terrain with moderate to high altitude which varies from 1200 meters to over 6000 meters. Due to changes in agricultural cropping patterns, urbanization, industrialization, hydropower generation, climate change, tourism, and anthropogenic forest fire, it has undergone a tremendous transformation in forest cover in the past three decades. The loss and degradation of forest cover results in soil erosion, loss of biodiversity including damage to wildlife habitats, and degradation of watershed areas, and deterioration of the overall quality of nature and life. The supervised classification of LANDSAT satellite data was performed to assess the changes in forest cover in Kullu valley over the years 2000 to 2020. Normalized Burn Ratio (NBR) was calculated to discriminate between burned and unburned areas of the forest. Our study reveals that in Kullu valley, the increasing number of forest fire incidents specifically, those due to anthropogenic activities has been on a rise, each subsequent year. The main objective of the present study is, therefore, to estimate the change in the forest cover of Kullu valley and to address the various social aspects responsible for the anthropogenic forest fires. Also, to assess its impact on the significant changes in the regional climatic factors, specifically, temperature, humidity, and precipitation over three decades, with the help of satellite imageries and ground data. The main outcome of the paper, we believe, will be helpful for the administration for making a quantitative assessment of the forest cover area changes due to anthropogenic activities and devising long-term measures for creating awareness among the local people of the area.

Keywords: Anthropogenic Activities, Forest Change Detection, Normalized Burn Ratio (NBR), Supervised Classification

Procedia PDF Downloads 164
2515 Fracture Toughness Characterizations of Single Edge Notch (SENB) Testing Using DIC System

Authors: Amr Mohamadien, Ali Imanpour, Sylvester Agbo, Nader Yoosef-Ghodsi, Samer Adeeb

Abstract:

The fracture toughness resistance curve (e.g., J-R curve and crack tip opening displacement (CTOD) or δ-R curve) is important in facilitating strain-based design and integrity assessment of oil and gas pipelines. This paper aims to present laboratory experimental data to characterize the fracture behavior of pipeline steel. The influential parameters associated with the fracture of API 5L X52 pipeline steel, including different initial crack sizes, were experimentally investigated for a single notch edge bend (SENB). A total of 9 small-scale specimens with different crack length to specimen depth ratios were conducted and tested using single edge notch bending (SENB). ASTM E1820 and BS7448 provide testing procedures to construct the fracture resistance curve (Load-CTOD, CTOD-R, or J-R) from test results. However, these procedures are limited by standard specimens’ dimensions, displacement gauges, and calibration curves. To overcome these limitations, this paper presents the use of small-scale specimens and a 3D-digital image correlation (DIC) system to extract the parameters required for fracture toughness estimation. Fracture resistance curve parameters in terms of crack mouth open displacement (CMOD), crack tip opening displacement (CTOD), and crack growth length (∆a) were carried out from test results by utilizing the DIC system, and an improved regression fitting resistance function (CTOD Vs. crack growth), or (J-integral Vs. crack growth) that is dependent on a variety of initial crack sizes was constructed and presented. The obtained results were compared to the available results of the classical physical measurement techniques, and acceptable matchings were observed. Moreover, a case study was implemented to estimate the maximum strain value that initiates the stable crack growth. This might be of interest to developing more accurate strain-based damage models. The results of laboratory testing in this study offer a valuable database to develop and validate damage models that are able to predict crack propagation of pipeline steel, accounting for the influential parameters associated with fracture toughness.

Keywords: fracture toughness, crack propagation in pipeline steels, CTOD-R, strain-based damage model

Procedia PDF Downloads 56
2514 Research on the Spatial Evolution of Tourism-Oriented Rural Settlements: Take the Xiaochanfangyu Village, Dongshuichang Village, Maojiayu Village in Jixian County, Tianjin City as Examples

Authors: Yu Zhang, Jie Wu, Li Dong

Abstract:

Rural tourism is the service industry which regards the agricultural production, rural life, rural nature and cultural landscape as the tourist attraction. It aims to meet the needs of the city tourists such as country sightseeing, vacation, and leisure. According to the difference of the tourist resources, the rural settlements can be divided into different types: The type of tourism resources, scenic spot, and peri-urban. In the past ten years, the rural tourism has promoted the industrial transformation and economic growth in rural areas of China. And it is conducive to the coordinated development of urban and rural areas and has greatly improved the ecological environment and the standard of living for farmers in rural areas. At the same time, a large number of buildings and sites are built in the countryside in order to enhance the tourist attraction and the ability of tourist reception and also to increase the travel comfort and convenience, which has significant influence on the spatial evolution of the village settlement. This article takes the XiangYing Subdistrict, which is in JinPu District of Dalian in China as the exemplification and uses the technology of Remote Sensing (RS), Geographic Information System (GIS) and the technology of Landscape Spatial Analysis to study the influence of the rural tourism development in the rural settlement spaces in four steps. First, acquiring the remote sensing image data at different times of 8 administrative villages in the XiangYing Subdistrict, by using the remote sensing application EDRAS8.6; second, vectoring basic maps of XiangYing Subdistrict including its land-use map with the application of ArcGIS 9.3, associating with social and economic attribute data of rural settlements and analyzing on the rural evolution visually; third, quantifying the comparison of these patches in rural settlements by using the landscape spatial calculation application Fragstats 3.3 and analyzing on the evolution of the spatial structure of settlement in macro and medium scale; finally, summarizing the evolution characteristics and internal reasons of tourism-oriented rural settlements. The main findings of this article include: first of all, there is difference in the evolution of the spatial structure between the developing rural settlements and undeveloped rural settlements among the eight administrative villages; secondly, the villages relying on the surrounding tourist attractions, the villages developing agricultural ecological garden and the villages with natural or historical and cultural resources have different laws of development; then, the rural settlements whose tourism development in germination period, development period and mature period have different characteristics of spatial evolution; finally, the different evolution modes of the tourism-oriented rural settlement space have different influences on the protection and inheritance of the village scene. The development of tourism has a significant impact on the spatial evolution of rural settlement. The intensive use of rural land and natural resources is the fundamental principle to protect the rural cultural landscape and ecological environment as well as the critical way to improve the attraction of rural tourism and promote the sustainable development of countryside.

Keywords: landscape pattern, rural settlement, spatial evolution, tourism-oriented, Xiangying Subdistrict

Procedia PDF Downloads 273
2513 Satellite Images to Determine Levels of Fire Severity in a Native Chilean Forest: Assessing the Responses of Soil Mesofauna Diversity to a Fire Event

Authors: Carolina Morales, Ricardo Castro-Huerta, Enrique A. Mundaca

Abstract:

The edaphic fauna is the main factor involved in the transformation of nutrients and soil decomposition processes. Edaphic organisms are highly sensitive to soil disturbances, which normally causes changes in the composition and abundance of such organisms. Fire is known to be a disturbing factor since it affects the physical, chemical and biological properties of the soil and the whole ecosystem. During the summer (December-March) of 2017, Chile suffered the major fire events recorded in its modern history, which affected a vast area and a number of ecosystem types. The objective of this study was first to use remote sensing satellite images and GIS (Geographic Information Systems) to assess and identify levels of fire severity in disturbed areas and to compare the responses of the soil mesofauna diversity among such areas. We identified four areas (treatments) with an ascending level of severity, namely: mild, medium, high severity, and free of fire. A non-affected patch of forest was established as a control. Three samples from each treatment were collected in the form of a soil cube (10x10x10 cm). Edaphic mesofauna was obtained from each sample through the Berlese-Tullgren funnel method. Collected specimens were quantified and identified, using the RTU (Recognisable Taxonomic Unit) criterion. Diversity was analysed using inferential statistics to compare Simpson and Shannon-Wiener indexes across treatments. As predicted, the unburned forest patch (control) exhibited higher diversity values than the treatments. Significantly higher diversity values were recorded in those treatments subjected to lower fire severity. We conclude that remote sensing zoning is an adequate tool to identify different levels of fire severity and that an edaphic mesofauna is a group of organisms that qualify as good bioindicators for monitoring soil recovery after fire events.

Keywords: bioindicator, Chile, fire severity level, soil

Procedia PDF Downloads 151
2512 Radioprotective Effects of Selenium and Vitamin-E against 6Mv X-Rays in Human Volunteers Blood Lymphocytes by Micronuclei Assay

Authors: Vahid Changizi, Aram Rostami, Akbar Mosavi

Abstract:

Purpose of study: Critical macromolecules of cells such as DNA are in exposure to damage of free radicals that induced from interaction of ionizing radiation with biological systems. Selenium and vitamin-E are natural compound that has been shown to be a direct free radical scavenger. The aim of this study was to investigate the in vivo/in vitro radioprotective effect of selenium and vitamin-E separately and synergistically against genotoxicity induced by 6MV x-rays irradiation in cultured blood lymphocytes from 15 human volunteers. Methods: Fifteen volunteers were divided in three groups include A, B and C. These groups were given slenium(800 IU), vitamin-E(100 mg) and selenium(400 IU) + vitamin-E(50 mg), respectively. Peripheral blood samples were collected from each group before(0 hr) and 1, 2 and 3 hr after selenium and vitamin-E administration (separately and synergistically). Then the blood samples were irradiated to 200 cGy of 6 Mv x-rays. After that, lymphocyte samples were cultured with mitogenic stimulation to determine the chromosomal aberrations wih micronucleus assay in cytokinesis-blocked binucleated cells. Results: The lymphocytes in the blood samples collected at 1 hr after ingestion selenium and vitamin-E, exposed in vitro to x-rays exhibited a significant decrease in the incidence of micronuclei, compared with control group at 0 hr. The maximum protection and decrease in frequency of micronuclei(50%) was observed at 1 hr after administration of selenium and vitamin-E synergistically. Conclusion: The data suggest that ingestion of selenium and vitamin-E as a radioprotector substances before exposures may reduce genetic damage caused by x-rays irradiation.

Keywords: x-rays, selenium, vitamin-e, lymphocyte, micronuclei

Procedia PDF Downloads 264
2511 Planning and Urban Climate Change Adaptation: Italian Literature Review

Authors: Mara Balestrieri

Abstract:

Climate change has long been the focus of attention for the growing impact of extreme weather events and global warming in many areas of the planet and the evidence of economic, social, and environmental damage caused by global warming. Nowadays, climate change is recognized as a critical global problem. Several initiatives have been undertaken over time to enhance the long theoretical debate and field experience in order to reduce Co2 emissions and contain climate alteration. However, the awareness that climate change is already taking place has led to a growing demand for adaptation. It is certainly a matter of anticipating the negative effects of climate change but, at the same time, implementing appropriate actions to prevent climate change-related damage, minimize the problems that may result, and also seize any opportunities that may arise. Consequently, adaptation has become a core element of climate policy and research. However, the attention to this issue has not developed in a uniform manner across countries. Some countries are further ahead than others. This paper examines the literature on climate change adaptation developed until 2018 in Italy, considering the urban dimension, to provide a framework for it, and to identify main topics and features. The papers were selected from Scopus and were analyzed through a matrix that we propose. Results demonstrate that adaptation to climate change studies attracted increasing attention from Italian scientific communities in the last years, although Italian scientific production is still quantitatively lower than in other countries and describes strengths and weaknesses in line with international panorama with respect to objectives, sectors, and problems.

Keywords: adaptation, bibliometric literature, climate change, urban studies

Procedia PDF Downloads 67
2510 Design and Developing the Infrared Sensor for Detection and Measuring Mass Flow Rate in Seed Drills

Authors: Bahram Besharti, Hossein Navid, Hadi Karimi, Hossein Behfar, Iraj Eskandari

Abstract:

Multiple or miss sowing by seed drills is a common problem on the farm. This problem causes overuse of seeds, wasting energy, rising crop treatment cost and reducing crop yield in harvesting. To be informed of mentioned faults and monitoring the performance of seed drills during sowing, developing a seed sensor for detecting seed mass flow rate and monitoring in a delivery tube is essential. In this research, an infrared seed sensor was developed to estimate seed mass flow rate in seed drills. The developed sensor comprised of a pair of spaced apart circuits one acting as an IR transmitter and the other acting as an IR receiver. Optical coverage in the sensing section was obtained by setting IR LEDs and photo-diodes directly on opposite sides. Passing seeds made interruption in radiation beams to the photo-diode which caused output voltages to change. The voltage difference of sensing units summed by a microcontroller and were converted to an analog value by DAC chip. The sensor was tested by using a roller seed metering device with three types of seeds consist of chickpea, wheat, and alfalfa (representing large, medium and fine seed, respectively). The results revealed a good fitting between voltage received from seed sensor and mass flow of seeds in the delivery tube. A linear trend line was set for three seeds collected data as a model of the mass flow of seeds. A final mass flow model was developed for various size seeds based on receiving voltages from the seed sensor, thousand seed weight and equivalent diameter of seeds. The developed infrared seed sensor, besides monitoring mass flow of seeds in field operations, can be used for the assessment of mechanical planter seed metering unit performance in the laboratory and provide an easy calibrating method for seed drills before planting in the field.

Keywords: seed flow, infrared, seed sensor, seed drills

Procedia PDF Downloads 349
2509 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan

Authors: Basit Aftab, Zhichao Wang, Feng Zhongke

Abstract:

Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.

Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.

Procedia PDF Downloads 14
2508 Development of Star Tracker for Satellite

Authors: S. Yelubayev, V. Ten, B. Albazarov, E. Sarsenbayev, К. Аlipbayev, A. Shamro, Т. Bopeyev, А. Sukhenko

Abstract:

Currently in Kazakhstan much attention is paid to the development of space branch. Successful launch of two Earth remote sensing satellite is carried out, projects on development of components for satellite are being carried out. In particular, the project on development of star tracker experimental model is completed. In the future it is planned to use this experimental model for development of star tracker prototype. Main stages of star tracker experimental model development are considered in this article.

Keywords: development, prototype, satellite, star tracker

Procedia PDF Downloads 470
2507 State Forest Management Practices by Indigenous Peoples in Dharmasraya District, West Sumatra Province, Indonesia

Authors: Abdul Mutolib, Yonariza Mahdi, Hanung Ismono

Abstract:

The existence of forests is essential to human lives on earth, but its existence is threatened by forest deforestations and degradations. Forest deforestations and degradations in Indonesia is not only caused by the illegal activity by the company or the like, even today many cases in Indonesia forest damage caused by human activities, one of which cut down forests for agriculture and plantations. In West Sumatra, community forest management are the result supported the enactment of customary land tenure, including ownership of land within the forest. Indigenous forest management have a positive benefit, which gives the community an opportunity to get livelihood and income, but if forest management practices by indigenous peoples is not done wisely, then there is the destruction of forests and cause adverse effects on the environment. Based on intensive field works in Dhamasraya District employing some data collection techniques such as key informant interviews, household surveys, secondary data analysis, and satellite image interpretation. This paper answers the following questions; how the impact of forest management by local communities on forest conditions (foccus in Forest Production and Limited Production Forest) and knowledge of the local community on the benefits of forests. The site is a Nagari Bonjol, Dharmasraya District, because most of the forest in Dharmasraya located and owned by Nagari Bonjol community. The result shows that there is damage to forests in Dharmasraya because of forest management activities by local communities. Damage to the forest area of 33,500 ha in Dharmasraya because forests are converted into oil palm and rubber plantations with monocultures. As a result of the destruction of forests, water resources are also diminishing, and the community has experienced a drought in the dry season due to forest cut down and replaced by oil palm plantations. Knowledge of the local community on the benefits of low forest, the people considered that the forest does not have better benefits and cut down and converted into oil palm or rubber plantations. Local people do not understand the benefits of ecological and environmental services that forests. From the phenomena in Dharmasraya on land ownership, need to educate the local community about the importance of protecting the forest, and need a strategy to integrate forests management to keep the ecological functions that resemble the woods and counts the economic benefits for the welfare of local communities. One alternative that can be taken is to use forest management models agroforestry smallholders in accordance with the characteristics of the local community who still consider the economic, social and environmental.

Keywords: community, customary land, farmer plantations, and forests

Procedia PDF Downloads 329
2506 Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement

Authors: Chao Xu

Abstract:

Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result.

Keywords: vulnerability, probability seismic demand analysis, ground motion intensity measure, sufficiency, efficiency, inelastic time history analysis

Procedia PDF Downloads 345
2505 Allium Cepa Extract Provides Neuroprotection Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana, Alkem Laboratories, Baddi, Himachal Pradesh, India Chitkara University, Punjab, India

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min followed by 24 h reperfusion was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity was also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rise in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury, which may be attributed to its antioxidant properties.

Keywords: stroke, neuroprotection, ischemia reperfusion, herbal drugs

Procedia PDF Downloads 96