Search results for: crack propagation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1086

Search results for: crack propagation

126 Unusual Weld Failures of Rotary Compressor during Hydraulic Tests: Analysis revealed Boron Induced Cracking in Fusion Zone

Authors: Kaushal Kishore, Vaibhav Jain, Hrishikesh Jugade, Saurabh Hadas, Manashi Adhikary, Goutam Mukhopadhyay, Sandip Bhattacharyya

Abstract:

Rotary air compressors in air conditioners are used to suck excessive volume of air from the atmosphere in a small space to provide drive to the components attached to them. Hydraulic test is one of the most important methods to decide the suitability of these components for usage. In the present application, projection welding is used to join the hot rolled steel sheets after forming for manufacturing of air compressors. These sheets belong to two different high strength low alloy (HSLA) steel grades. It was observed that one batch of compressors made of a particular grade was cracking from the weld, whereas those made of another grade were passing the hydraulic tests. Cracking was repeatedly observed from the weld location. A detailed comparative study of the compressors which failed and successfully passed pressure tests has been presented. Location of crack initiation was identified to be the interface of fusion zone/heat affected zone. Shear dimples were observed on the fracture surface confirming the ductile mode of failure. Hardness profile across the weld revealed a sharp rise in hardness in the fusion zone. This was attributed to the presence of untempered martensitic lath in the fusion zone. A sharp metallurgical notch existed at the heat affected zone/fusion zone interface due to transition in microstructure from acicular ferrite and bainite in HAZ to untempered martensite in the fusion zone. In contrast, welds which did not fail during the pressure tests showed a smooth hardness profile with no abnormal rise in hardness in the fusion zone. The bainitic microstructure was observed in the fusion zone of successful welds. This difference in microstructural constituents in the fusion zone was attributed to the presence of a small amount of boron (0.002 wt. %) in the sheets which were cracking. Trace amount of boron is known to substantially increase the hardenability of HSLA steel, and cooling rate during resolidification in the fusion zone is sufficient to form martensite. Post-weld heat treatment was recommended to transform untempered martensite to tempered martensite with lower hardness.

Keywords: compressor, cracking, martensite, weld, boron, hardenability, high strength low alloy steel

Procedia PDF Downloads 141
125 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System

Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin

Abstract:

A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.

Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts

Procedia PDF Downloads 112
124 Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance

Authors: Chong Hu, Tiantian Wang, Zhe Li, Ourui Huang, Yichen Pan

Abstract:

When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels.

Keywords: high-speed trains, aerodynamic resistance, high-ground temperature, tunnel

Procedia PDF Downloads 42
123 Commercial Winding for Superconducting Cables and Magnets

Authors: Glenn Auld Knierim

Abstract:

Automated robotic winding of high-temperature superconductors (HTS) addresses precision, efficiency, and reliability critical to the commercialization of products. Today’s HTS materials are mature and commercially promising but require manufacturing attention. In particular to the exaggerated rectangular cross-section (very thin by very wide), winding precision is critical to address the stress that can crack the fragile ceramic superconductor (SC) layer and destroy the SC properties. Damage potential is highest during peak operations, where winding stress magnifies operational stress. Another challenge is operational parameters such as magnetic field alignment affecting design performance. Winding process performance, including precision, capability for geometric complexity, and efficient repeatability, are required for commercial production of current HTS. Due to winding limitations, current HTS magnets focus on simple pancake configurations. HTS motors, generators, MRI/NMR, fusion, and other projects are awaiting robotic wound solenoid, planar, and spherical magnet configurations. As with conventional power cables, full transposition winding is required for long length alternating current (AC) and pulsed power cables. Robotic production is required for transposition, periodic swapping of cable conductors, and placing into precise positions, which allows power utility required minimized reactance. A full transposition SC cable, in theory, has no transmission length limits for AC and variable transient operation due to no resistance (a problem with conventional cables), negligible reactance (a problem for helical wound HTS cables), and no long length manufacturing issues (a problem with both stamped and twisted stacked HTS cables). The Infinity Physics team is solving manufacturing problems by developing automated manufacturing to produce the first-ever reliable and utility-grade commercial SC cables and magnets. Robotic winding machines combine mechanical and process design, specialized sense and observer, and state-of-the-art optimization and control sequencing to carefully manipulate individual fragile SCs, especially HTS, to shape previously unattainable, complex geometries with electrical geometry equivalent to commercially available conventional conductor devices.

Keywords: automated winding manufacturing, high temperature superconductor, magnet, power cable

Procedia PDF Downloads 120
122 System Identification of Building Structures with Continuous Modeling

Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab

Abstract:

This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.

Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction

Procedia PDF Downloads 210
121 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 436
120 Evaluation of Genetic Fidelity and Phytochemical Profiling of Micropropagated Plants of Cephalantheropsis obcordata: An Endangered Medicinal Orchid

Authors: Gargi Prasad, Ashiho A. Mao, Deepu Vijayan, S. Mandal

Abstract:

The main objective of the present study was to optimize and develop an efficient protocol for in vitro propagation of a medicinally important orchid Cephalantheropsis obcordata (Lindl.) Ormerod along with genetic stability analysis of regenerated plants. This plant has been traditionally used in Chinese folk medicine and the decoction of whole plant is known to possess anticancer activity. Nodal segments used as explants were inoculated on Murashige and Skoog (MS) medium supplemented with various concentrations of isopentenyl adenine (2iP). The rooted plants were successfully acclimatized in the greenhouse with 100% survival rate. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of in vitro raised plants and the mother plant. It was revealed that monomorphic bands showing the absence of polymorphism in all in vitro raised plantlets analyzed, confirming the genetic uniformity among the regenerants. Phytochemical analysis was done to compare the antioxidant activities and HPLC fingerprinting assay of 80% aqueous ethanol extract of the leaves and stem of in vitro and in vivo grown C. obcordata. The extracts of the plants were examined for their antioxidant activities by using free radical 1, 1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. A simplified method for the detection of ascorbic acid, phenolic acids and flavonoids content was also developed by using reversed phase high-performance liquid chromatography (HPLC). This is the first report on the micropropagation, genetic integrity study and quantitative phytochemical analysis of in vitro regenerated plants of C. obcordata.

Keywords: Cephalantheropsis obcordata, genetic fidelity, ISSR markers, HPLC

Procedia PDF Downloads 133
119 An Experimental Investigation of Rehabilitation and Strengthening of Reinforced Concrete T-Beams Under Static Monotonic Increasing Loading

Authors: Salem Alsanusi, Abdulla Alakad

Abstract:

An experimental investigation to study the behaviour of under flexure reinforced concrete T-Beams. Those Beams were loaded to pre-designated stress levels as percentage of calculated collapse loads. Repairing these beans by either reinforced concrete jacket, or by externally bolted steel plates were utilized. Twelve full scale beams were tested in this experimental program scheme. Eight out of the twelve beams were loaded under different loading levels. Tests were performed for the beams before and after repair with Reinforced Concrete Jacket (RCJ). The applied Load levels were 60%, 77% and 100% of the calculated collapse loads. The remaining four beams were tested before and after repair with Bolted Steel Plate (BSP). Furthermore, out previously mentioned four beams two beams were loaded to the calculated failure load 100% and the remaining two beams were not subjected to any load. The eight beams recorded for the RCJ test were repaired using reinforced concrete jacket. The four beams recorded for the BSP test were all repaired using steel plate at the bottom. All the strengthened beams were gradually loaded until failure occurs. However, in each loading case, the beams behaviour, before and after strengthening, were studied through close inspection of the cracking propagation, and by carrying out an extensive measurement of deformations and strength. The stress-strain curve for reinforcing steel and the failure strains measured in the tests were utilized in the calculation of failure load for the beams before and after strengthening. As a result, the calculated failure loads were close to the actual failure tests in case of beams before repair, ranging from 85% to 90% and also in case of beams repaired by reinforced concrete jacket ranging from 70% to 85%. The results were in case of beams repaired by bolted steel plates ranging from (50% to 85%). It was observed that both jacketing and bolted steel plate methods could effectively restore the full flexure capacity of the damaged beams. However, the reinforced jacket has increased the failure load by about 67%, whereas the bolted steel plates recovered the failure load.

Keywords: rehabilitation, strengthening, reinforced concrete, beams deflection, bending stresses

Procedia PDF Downloads 286
118 T Cell Immunity Profile in Pediatric Obesity and Asthma

Authors: Mustafa M. Donma, Erkut Karasu, Burcu Ozdilek, Burhan Turgut, Birol Topcu, Burcin Nalbantoglu, Orkide Donma

Abstract:

The mechanisms underlying the association between obesity and asthma may be related to a decreased immunological tolerance induced by a defective function of regulatory T cells (Tregs). The aim of this study is to establish the potential link between these diseases and CD4+, CD25+ FoxP3+ Tregs as well as T helper cells (Ths) in children. This is a prospective case control study. Obese (n:40), asthmatic (n:40), asthmatic obese (n:40), and healthy children (n:40), who don't have any acute or chronic diseases, were included in this study. Obese children were evaluated according to WHO criteria. Asthmatic patients were chosen based on GINA criteria. Parents were asked to fill up the questionnaire. Informed consent forms were taken. Blood samples were marked with CD4+, CD25+ and FoxP3+ in order to determine Tregs and Ths by flow cytometric method. Statistical analyses were performed. p≤0.05 was chosen as meaningful threshold. Tregs exhibiting anti-inflammatory nature were significantly lower in obese (0,16%; p≤0,001), asthmatic (0,25%; p≤0,01) and asthmatic obese (0,29%; p≤0,05) groups than the control group (0,38%). Ths were counted higher in asthma group than the control (p≤0,01) and obese (p≤0,001)) groups. T cell immunity plays important roles in obesity and asthma pathogeneses. Decreased numbers of Tregs found in obese, asthmatic and asthmatic obese children may help to elucidate some questions in pathophysiology of these diseases. For HOMA-IR levels, any significant difference was not noted between control and obese groups, but statistically higher values were found for obese asthmatics. The values obtained in all groups were found to be below the critical cut off points. This finding has made the statistically significant difference observed between Tregs of obese, asthmatic, obese asthmatic, and control groups much more valuable. These findings will be useful in diagnosis and treatment of these disorders and future studies are needed. The production and propagation of Tregs may be promising in alternative asthma and obesity treatments.

Keywords: asthma, flow cytometry, pediatric obesity, T cells

Procedia PDF Downloads 327
117 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments

Authors: Manjinder Singh, Jasvinder Singh

Abstract:

Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.

Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite

Procedia PDF Downloads 507
116 Yellow Necklacepod and Shih-Balady: Possible Promising Sources Against Human Coronaviruses

Authors: Howaida I. Abd-Alla, Omnia Kutkat, Yassmin Moatasim, Magda T. Ibrahim, Marwa A. Mostafa, Mohamed GabAllah, Mounir M. El-Safty

Abstract:

Artemisia judaica (known shih-balady), Azadirachta indica and Sophora tomentosa (known yellow necklace pod) are members of available medicinal plants well-known for their traditional medical use in Egypt which suggests that they probably harbor broad-spectrum antiviral, immunostimulatory and anti-inflammatory functions. Their ethyl acetate-dichloromethane (1:1, v/v) extracts were evaluated for the potential anti-Middle East respiratory syndrome-related coronavirus (anti-MERS-CoV) activity. Their cytotoxic activity was tested in Vero-E6 cells using 3-(4,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method with minor modification. The plot of percentage cytotoxicity for each extract concentration has calculated the concentration which exhibited 50% cytotoxic concentration (TC50). A plaque reduction assay was employed using safe dose of extract to evaluate its effect on virus propagation. The highest inhibition percentage was recorded for the yellow necklace pod, followed by Shih-balady. The possible mode of action of virus inhibition was studied at three different levels viral replication, viral adsorption and virucidal activity. The necklace pod leaves have induced virucidal effects and direct effects on the replication of virus. Phytochemical investigation of the promising necklace pod led to the isolation and structure determination of nine compounds. The structure of each compound was determined by a variety of spectroscopic methods. Compounds 4-O-methyl sorbitol 1, 8-methoxy daidzin 6 and 6-methoxy apigenin-7-O-β-D-glucopyranoside 8 were isolated for the first time from the Sophora genus and the other six compounds were the first time that they were isolated from this species according to available works of literature. Generally, the highest anti-CoV 2 activity of S. tomentosa was associated with the crude ethanolic extract, indicating the possibility of synergy among the antiviral phytochemical constituents (1-9).

Keywords: coronavirus, MERS-CoV, mode of action, necklace pod, shih-balady

Procedia PDF Downloads 183
115 Mapping the Core Processes and Identifying Actors along with Their Roles, Functions and Linkages in Trout Value Chain in Kashmir, India

Authors: Stanzin Gawa, Nalini Ranjan Kumar, Gohar Bilal Wani, Vinay Maruti Hatte, A. Vinay

Abstract:

Rainbow trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta fario) are the two species of trout which were once introduced by British in waters of Kashmir has well adapted to favorable climatic conditions. Cold water fisheries are one of the emerging sectors in Kashmir valley and trout holds an important place Jammu and Kashmir fisheries. Realizing the immense potential of trout culture in Kashmir region, the state fisheries department started privatizing trout culture under the centrally funded scheme of RKVY in which they provide 80 percent subsidy for raceway construction and supply of feed and seed for the first year since 2009-10 and at present there are 362 private trout farms. To cater the growing demand for trout in the valley, it is important to understand the bottlenecks faced in the propagation of trout culture. Value chain analysis provides a generic framework to understand the various activities and processes, mapping and studying linkages is first step that needs to be done in any value chain analysis. In Kashmir, it is found that trout hatcheries play a crucial role in insuring the continuous supply of trout seed in valley. Feed is most limiting factor in trout culture and the farmer has to incur high cost in payment and in the transportation of feed from the feed mill to farm. Lack of aqua clinic in the Kashmir valley needs to be addressed. Brood stock maintenance, breeding and seed production, technical assistance to private farmer, extension services have to be strengthened and there is need to development healthier environment for new entrepreneurs. It was found that trout farmers do not avail credit facility as there is no well define credit scheme for fisheries in the state. The study showed weak institutional linkages. Research and development should focus more on applied science rather than basic science.

Keywords: trout, Kashmir, value chain, linkages, culture

Procedia PDF Downloads 383
114 Questioning the Predominant Feminism in Ahalya, a Short Film by Sujoy Ghosh

Authors: Somya Sharma

Abstract:

Ahalya, the critically acclaimed short film, is known to demolish the gender constructs of the age old myth of Ahalya. The paper tries to crack the overt meaning of the short film by reading between the dialogues and deconstructing the idea of the pseudo feminism in the short film Ahalya by Sujoy Ghosh. The film, by subverting the role of male character by making it seem submissive as compared to the female character's role seems to be just a surface level reading of the text. It seems that Sujoy Ghosh has played not just with changing the paradigm, but also trying to alter the history by doing so. The age old myth of putting Ahalya as a part of the five virgins (panchkanya) of Hindu mythology is explored in the paper. God's manoeuvre cannot be questioned and the two male characters tend to again shape the deed and the life of the female character, Ahalya. It is of importance to note that even in the 21st century, progressive actors like Radhika Apte fail to acknowledge the politics of altering history, not in a progressive way. The film blinds the viewer in the first watch to fall for the female strength and ownership of her sexuality, which is reflected in the opening scene itself where she opens the gate for the police man Indra Sen (representing God Indra who seduced her) who is charmed by her white dress. White, in Hindu mythology, stands for mourning, and this can be a hint towards the prophecy of what is about to come. Ahalya, bold, strong, and confident in this scene seems to be in total ownership of her sexual identity. Further, as the film progresses, control of Ahalya over her acts becomes even more dominant. In the myth of Ahalya, Gautama Maharishi, her husband, who wins her by Brahma's courtesy, curses her for her infidelity. She is then turned into a stone because of the curse and is redeemed when Lord Rama's foot brushes the stone. In the film, it is with the help of Ahalya that Goutam Sadhu turns Indra Sen into a stone doll. Ahalya is seen as a seductress who bewitches Indra Sen, and because the latter falls for the trap laid by the husband wife duo, he is turned into a doll. The attempt made by the paper is to read Ahalya as a character of the stand in wife who is yet again a pawn in the play of Goutama's revenge from Indra (who in the myth is able to escape from any curse or punishment for the act). The paper, therefore, reverts the idea which has till now been signified by the film and attempts to study the feminism this film appropriates. It is essential to break down the structure formed by such overt transgressing films in order to provide a real outlook of how feminism is twisted and moulded according to a man’s wishes.

Keywords: deconstructing, Hindu mythology, Panchkanya, predominant feminism, seductress, stone doll

Procedia PDF Downloads 221
113 Characterization of Ethanol-Air Combustion in a Constant Volume Combustion Bomb Under Cellularity Conditions

Authors: M. Reyes, R. Sastre, P. Gabana, F. V. Tinaut

Abstract:

In this work, an optical characterization of the ethanol-air laminar combustion is presented in order to investigate the origin of the instabilities developed during the combustion, the onset of the cellular structure and the laminar burning velocity. Experimental tests of ethanol-air have been developed in an optical cylindrical constant volume combustion bomb equipped with a Schlieren technique to record the flame development and the flame front surface wrinkling. With this procedure, it is possible to obtain the flame radius and characterize the time when the instabilities are visible through the cell's apparition and the cellular structure development. Ethanol is an aliphatic alcohol with interesting characteristics to be used as a fuel in Internal Combustion Engines and can be biologically synthesized from biomass. Laminar burning velocity is an important parameter used in simulations to obtain the turbulent flame speed, whereas the flame front structure and the instabilities developed during the combustion are important to understand the transition to turbulent combustion and characterize the increment in the flame propagation speed in premixed flames. The cellular structure is spontaneously generated by volume forces, diffusional-thermal and hydrodynamic instabilities. Many authors have studied the combustion of ethanol air and mixtures of ethanol with other fuels. However, there is a lack of works that investigate the instabilities and the development of a cellular structure in ethanol flames, a few works as characterized the ethanol-air combustion instabilities in spherical flames. In the present work, a parametrical study is made by varying the fuel/air equivalence ratio (0.8-1.4), initial pressure (0.15-0.3 MPa) and initial temperature (343-373K), using a design of experiments type I-optimal. In reach mixtures, it is possible to distinguish the cellular structure formed by the hydrodynamic effect and by from the thermo-diffusive. Results show that ethanol-air flames tend to stabilize as the equivalence ratio decreases in lean mixtures and develop a cellular structure with the increment of initial pressure and temperature.

Keywords: ethanol, instabilities, premixed combustion, schlieren technique, cellularity

Procedia PDF Downloads 48
112 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 347
111 “CheckPrivate”: Artificial Intelligence Powered Mobile Application to Enhance the Well-Being of Sextual Transmitted Diseases Patients in Sri Lanka under Cultural Barriers

Authors: Warnakulasuriya Arachichige Malisha Ann Rosary Fernando, Udalamatta Gamage Omila Chalanka Jinadasa, Bihini Pabasara Amandi Amarasinghe, Manul Thisuraka Mandalawatta, Uthpala Samarakoon, Manori Gamage

Abstract:

The surge in sexually transmitted diseases (STDs) has become a critical public health crisis demanding urgent attention and action. Like many other nations, Sri Lanka is grappling with a significant increase in STDs due to a lack of education and awareness regarding their dangers. Presently, the available applications for tracking and managing STDs cover only a limited number of easily detectable infections, resulting in a significant gap in effectively controlling their spread. To address this gap and combat the rising STD rates, it is essential to leverage technology and data. Employing technology to enhance the tracking and management of STDs is vital to prevent their further propagation and to enable early intervention and treatment. This requires adopting a comprehensive approach that involves raising public awareness about the perils of STDs, improving access to affordable healthcare services for early detection and treatment, and utilizing advanced technology and data analysis. The proposed mobile application aims to cater to a broad range of users, including STD patients, recovered individuals, and those unaware of their STD status. By harnessing cutting-edge technologies like image detection, symptom-based identification, prevention methods, doctor and clinic recommendations, and virtual counselor chat, the application offers a holistic approach to STD management. In conclusion, the escalating STD rates in Sri Lanka and across the globe require immediate action. The integration of technology-driven solutions, along with comprehensive education and healthcare accessibility, is the key to curbing the spread of STDs and promoting better overall public health.

Keywords: STD, machine learning, NLP, artificial intelligence

Procedia PDF Downloads 53
110 High Culture or Low Culture: The Propagation and Popularization of the Classic of Poetry in Modern China

Authors: Fang Tang

Abstract:

A major Confucian masterpiece and the earliest-known poetry anthology (composed approximately 1046-771 BCE), The Classic of Poetry, reflects different cultures in ancient China. It is regarded as a Chinese classic and one of the world’s most significant written works, an essential part of our global cultural heritage. This paper explores how the ancient Chinese classic became transformed into part of popular culture, found in folk songs circulated in Fangxian county, a mountainous location in Hubei province in central mainland China. It is the hometown of one of the most well-known authors of The Classic of Poetry, whose name is Yin Jifu. Local villagers process, refine, and recreate these poems into popular folk songs, which have been handed down from generation to generation. The folk songs based on The Classic of Poetry vividly reflect local customs, life styles, and various cultural activities. After thousands of years of singing these traditional songs, the region has become an important area to maintain part of Chinese cultural heritages; here, the original high culture is converted into a popular culture that is absorbed into people’s daily life. Based on a year’s field research and many interviews with local singers, this paper explores the ways in which locals have transformed the contents of The Classic of Poetry. It examines how today these popular folk songs become part of much-treasured culture heritage, illustrating the transformation of traditional high culture into popular culture. The paper argues that the modern adaptations of the traditional poems of The Classic of Poetry combine both oral and written cultural heritage and reflects the interaction between ancient Chinese official literature and folk literature. The paper also explores the reasons why the folk songs of The Classic of Poetry are so popular in the area, including the influences of its author Yin Jifu, the impact of ancient diasporic culture from the political centre to remote rural areas, and the interactions of local cultures (famous as Chu culture) and Chinese mainstream cultural policies.

Keywords: high/low culture, The Classic of Poetry, the functions of media, cultural policy

Procedia PDF Downloads 89
109 Four-Electron Auger Process for Hollow Ions

Authors: Shahin A. Abdel-Naby, James P. Colgan, Michael S. Pindzola

Abstract:

A time-dependent close-coupling method is developed to calculate a total, double and triple autoionization rates for hollow atomic ions of four-electron systems. This work was motivated by recent observations of the four-electron Auger process in near K-edge photoionization of C+ ions. The time-dependent close-coupled equations are solved using lattice techniques to obtain a discrete representation of radial wave functions and all operators on a four-dimensional grid with uniform spacing. Initial excited states are obtained by relaxation of the Schrodinger equation in imaginary time using a Schmidt orthogonalization method involving interior subshells. The radial wave function grids are partitioned over the cores on a massively parallel computer, which is essential due to the large memory requirements needed to store the coupled-wave functions and the long run times needed to reach the convergence of the ionization process. Total, double, and triple autoionization rates are obtained by the propagation of the time-dependent close-coupled equations in real-time using integration over bound and continuum single-particle states. These states are generated by matrix diagonalization of one-electron Hamiltonians. The total autoionization rates for each L excited state is found to be slightly above the single autoionization rate for the excited configuration using configuration-average distorted-wave theory. As expected, we find the double and triple autoionization rates to be much smaller than the total autoionization rates. Future work can be extended to study electron-impact triple ionization of atoms or ions. The work was supported in part by grants from the American University of Sharjah and the US Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, USA.

Keywords: hollow atoms, autoionization, auger rates, time-dependent close-coupling method

Procedia PDF Downloads 132
108 Effect of Accelerated Aging on Antibacterial and Mechanical Properties of SEBS Compounds

Authors: Douglas N. Simoes, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana

Abstract:

Thermoplastic elastomers (TPE) compounds are used in a wide range of applications, like home appliances, automotive components, medical devices, footwear, and others. These materials are susceptible to microbial attack, causing a crack in polymer chains compounds based on SEBS copolymers, poly (styrene-b-(ethylene-co-butylene)-b-styrene, are a class of TPE, largely used in domestic appliances like refrigerator seals (gaskets), bath mats and sink squeegee. Moisture present in some areas (such as shower area and sink) in addition to organic matter provides favorable conditions for microbial survival and proliferation, contributing to the spread of diseases besides the reduction of product life cycle due the biodegradation process. Zinc oxide (ZnO) has been studied as an alternative antibacterial additive due its biocidal effect. It is important to know the influence of these additives in the properties of the compounds, both at the beginning and during the life cycle. In that sense, the aim of this study was to evaluate the effect of accelerated aging in oven on antibacterial and mechanical properties of ZnO loaded SEBS based TPE compounds. Two different comercial zinc oxide, named as WR and Pe were used in proportion of 1%. A compound with no antimicrobial additive (standard) was also tested. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials, screw rotation rate was set at 226 rpm, with a temperature profile from 150 to 190 ºC. Test specimens were prepared using the injection molding machine at 190 ºC. The Standard Test Method for Rubber Property—Effect of Liquids was applied in order to simulate the exposition of TPE samples to detergent ingredients during service. For this purpose, ZnO loaded TPE samples were immersed in a 3.0% w/v detergent (neutral) and accelerated aging in oven at 70°C for 7 days. Compounds were characterized by changes in mechanical (hardness and tension properties) and mass. The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The microbiological tests showed a reduction up to 42% in E. coli and up to 49% in S. aureus population in non-aged samples. There were observed variations in elongation and hardness values with the addition of zinc The changes in tensile at rupture and mass were not significant between non-aged and aged samples.

Keywords: antimicrobial, domestic appliance, sebs, zinc oxide

Procedia PDF Downloads 227
107 Recognising the Importance of Smoking Cessation Support in Substance Misuse Patients

Authors: Shaine Mehta, Neelam Parmar, Patrick White, Mark Ashworth

Abstract:

Patients with a history of substance have a high prevalence of comorbidities, including asthma and chronic obstructive pulmonary disease (COPD). Mortality rates are higher than that of the general population and the link to respiratory disease is reported. Randomised controlled trials (RCTs) support opioid substitution therapy as an effective means for harm reduction. However, whilst a high proportion of patients receiving opioid substitution therapy are smokers, to the author’s best knowledge there have been no studies of respiratory disease and smoking intensity in these patients. A cross sectional prevalence study was conducted using an anonymised patient-level database in primary care, Lambeth DataNet (LDN). We included patients aged 18 years and over who had records of ever having been prescribed methadone in primary care. Patients under 18 years old or prescribed buprenorphine (because of uncertainty about the prescribing indication) were excluded. Demographic, smoking, alcohol and asthma and COPD coding data were extracted. Differences between methadone and non-methadone users were explored with multivariable analysis. LDN contained data on 321, 395 patients ≥ 18 years; 676 (0.16%) had a record of methadone prescription. Patients prescribed methadone were more likely to be male (70.7% vs. 50.4%), older (48.9yrs vs. 41.5yrs) and less likely to be from an ethnic minority group (South Asian 2.1% vs. 7.8%; Black African 8.9% vs. 21.4%). Almost all those prescribed methadone were smokers or ex-smokers (97.3% vs. 40.9%); more were non-alcohol drinkers (41.3% vs. 24.3%). We found a high prevalence of COPD (12.4% vs 1.4%) and asthma (14.2% vs 4.4%). Smoking intensity data shows a high prevalence of ≥ 20 cigarettes per day (21.5% vs. 13.1%). Risk of COPD, adjusted for age, gender, ethnicity and deprivation, was raised in smokers: odds ratio 14.81 (95%CI 11.26, 19.47), and in the methadone group: OR 7.51 (95%CI: 5.78, 9.77). Furthermore, after adjustment for smoking intensity (number of cigarettes/day), the risk was raised in methadone group: OR 4.77 (95%CI: 3.13, 7.28). High burden of respiratory disease compounded by the high rates of smoking is a public health concern. This supports an integrated approach to health in patients treated for opiate dependence, with access to smoking cessation support. Further work may evaluate the current structure and commissioning of substance misuse services, including smoking cessation. Regression modelling highlights that methadone as a ‘risk factor’ was independently associated with COPD prevalence, even after adjustment for smoking intensity. This merits further exploration, as the association may be related to unexplored aspects of smoking (such as the number of years smoked) or may be related to other related exposures, such as smoking heroin or crack cocaine.

Keywords: methadone, respiratory disease, smoking cessation, substance misuse

Procedia PDF Downloads 122
106 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining

Procedia PDF Downloads 147
105 Dynamic Response around Inclusions in Infinitely Inhomogeneous Media

Authors: Jinlai Bian, Zailin Yang, Guanxixi Jiang, Xinzhu Li

Abstract:

The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction.

Keywords: circular inclusions, complex variable function, dynamic stress concentration factor (DSCF), inhomogeneous medium

Procedia PDF Downloads 116
104 Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases

Authors: Jae-Yong Park, Yeo-Kyeong Lee, Hee-Sun Kim

Abstract:

Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth.

Keywords: cranium, finite element analysis, mandible, masticatory action, occlusal force

Procedia PDF Downloads 374
103 Mitigation of Offshore Piling Noise Effects on Marine Mammals

Authors: Waled A. Dawoud, Abdelazim M. Negm, Nasser M. Saleh

Abstract:

Offshore piling generates underwater sound at level high enough to cause physical damage or hearing impairment to the marine mammals. Several methods can be used to mitigate the effect of underwater noise from offshore pile driving on marine mammals which can be divided into three main approaches. The first approach is to keep the mammal out of the high-risk area by using aversive sound waves produced by acoustic mitigation devices such as playing-back of mammal's natural predator vocalization, alarm or distress sounds, and anthropogenic sound. The second approach is to reduce the amount of underwater noise from pile driving using noise mitigation techniques such as bubble curtains, isolation casing, and hydro-sound dampers. The third approach is to eliminate the overlap of underwater waves by using prolonged construction process. To investigate the effectiveness of different noise mitigation methods; a pile driven with 235 kJ rated energy diesel hammer near Jeddah Coast, Kingdom of Saudi Arabia was used. Using empirical sound exposure model based on Red Sea characteristics and limits of National Oceanic and Atmospheric Administration; it was found that the aversive sound waves should extend to 1.8 km around the pile location. Bubble curtains can reduce the behavioral disturbance area up to 28%; temporary threshold shift up to 36%; permanent threshold shift up to 50%; and physical injury up to 70%. Isolation casing can reduce the behavioral disturbance range up to 12%; temporary threshold shift up to 21%; permanent threshold shift up to 29%; and physical injury up to 46%. Hydro-sound dampers efficiency depends mainly on the used technology and it can reduce the behavioral disturbance range from 10% to 33%; temporary threshold shift from 18% to 25%; permanent threshold shift from 32% to 50%; and physical injury from 46% to 60%. To prolong the construction process, it was found that the single pile construction, use of soft start, and keep time between two successive hammer strikes more than 3 seconds are the most effective techniques.

Keywords: offshore pile driving, sound propagation models, noise effects on marine mammals, Underwater noise mitigation

Procedia PDF Downloads 515
102 Wireless Gyroscopes for Highly Dynamic Objects

Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev

Abstract:

Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.

Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing

Procedia PDF Downloads 350
101 Fatigue Influence on the Residual Stress State in Shot Peened Duplex Stainless Steel

Authors: P. D. Pedrosa, J. M. A. Rebello, M. P. Cindra Fonseca

Abstract:

Duplex stainless steels (DSS) exhibit a biphasic microstructure consisting of austenite and delta ferrite. Their high resistance to oxidation, and corrosion, even in H2S containing environments, allied to low cost when compared to conventional stainless steel, are some properties which make this material very attractive for several industrial applications. However, several of these industrial applications imposes cyclic loading to the equipments and in consequence fatigue damage needs to be a concern. A well-known way of improving the fatigue life of a component is by introducing compressive residual stress in its surface. Shot peening is an industrial working process which brings the material directly beneath component surface in a high mechanical compressive state, so inhibiting fatigue crack initiation. However, one must take into account the fact that the cyclic loading itself can reduce and even suppress these residual stresses, thus having undesirable consequences in the process of improving fatigue life by the introduction of compressive residual stresses. In the present work, shot peening was used to introduce residual stresses in several DSS samples. These were thereafter submitted to three different fatigue regimes: low, medium and high cycle fatigue. The evolution of the residual stress during loading were then examined on both surface and subsurface of the samples. It was used the DSS UNS S31803, with microstructure composed of 49% austenite and 51% ferrite. The treatment of shot peening was accomplished by the application of blasting in two Almen intensities of 0.25 and 0.39A. The residual stresses were measured by X-ray diffraction using the double exposure method and a portable equipment with CrK radiation and the (211) diffracting plane for the austenite phase and the (220) plane for the ferrite phase. It is known that residual stresses may arise when two regions of the same material experienced different degrees of plastic deformation. When these regions are separated in respect to each other on a scale that is large compared to the material's microstructure they are called macro stresses. In contrast, microstresses can largely vary over distances which are small comparable to the scale of the material's microstructure and must balance zero between the phases present. In the present work, special attention will be paid to the measurement of residual microstresses. Residual stress measurements were carried out in test pieces submitted to low, medium and high-cycle fatigue, in both longitudinal and transverse direction of the test pieces. It was found that after shot peening, the residual microstress is tensile in the austenite and compressive in the ferrite phases. It was hypothesized that the hardening behavior of the austenite after shot peening was probably due to its higher nitrogen content. Fatigue cycling can effectively change this stress state but this effect was found to be dependent of the shot peening intensity was well as the fatigue range.

Keywords: residual stresses, fatigue, duplex steel, shot peening

Procedia PDF Downloads 198
100 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 356
99 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina

Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava

Abstract:

The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.

Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing

Procedia PDF Downloads 100
98 Performance Demonstration of Extendable NSPO Space-Borne GPS Receiver

Authors: Hung-Yuan Chang, Wen-Lung Chiang, Kuo-Liang Wu, Chen-Tsung Lin

Abstract:

National Space Organization (NSPO) has completed in 2014 the development of a space-borne GPS receiver, including design, manufacture, comprehensive functional test, environmental qualification test and so on. The main performance of this receiver include 8-meter positioning accuracy, 0.05 m/sec speed-accuracy, the longest 90 seconds of cold start time, and up to 15g high dynamic scenario. The receiver will be integrated in the autonomous FORMOSAT-7 NSPO-Built satellite scheduled to be launched in 2019 to execute pre-defined scientific missions. The flight model of this receiver manufactured in early 2015 will pass comprehensive functional tests and environmental acceptance tests, etc., which are expected to be completed by the end of 2015. The space-borne GPS receiver is a pure software design in which all GPS baseband signal processing are executed by a digital signal processor (DSP), currently only 50% of its throughput being used. In response to the booming global navigation satellite systems, NSPO will gradually expand this receiver to become a multi-mode, multi-band, high-precision navigation receiver, and even a science payload, such as the reflectometry receiver of a global navigation satellite system. The fundamental purpose of this extension study is to port some software algorithms such as signal acquisition and correlation, reused code and large amount of computation load to the FPGA whose processor is responsible for operational control, navigation solution, and orbit propagation and so on. Due to the development and evolution of the FPGA is pretty fast, the new system architecture upgraded via an FPGA should be able to achieve the goal of being a multi-mode, multi-band high-precision navigation receiver, or scientific receiver. Finally, the results of tests show that the new system architecture not only retains the original overall performance, but also sets aside more resources available for future expansion possibility. This paper will explain the detailed DSP/FPGA architecture, development, test results, and the goals of next development stage of this receiver.

Keywords: space-borne, GPS receiver, DSP, FPGA, multi-mode multi-band

Procedia PDF Downloads 347
97 Experimental and Numerical Investigation of Fracture Behavior of Foamed Concrete Based on Three-Point Bending Test of Beams with Initial Notch

Authors: M. Kozłowski, M. Kadela

Abstract:

Foamed concrete is known for its low self-weight and excellent thermal and acoustic properties. For many years, it has been used worldwide for insulation to foundations and roof tiles, as backfill to retaining walls, sound insulation, etc. However, in the last years it has become a promising material also for structural purposes e.g. for stabilization of weak soils. Due to favorable properties of foamed concrete, many interests and studies were involved to analyze its strength, mechanical, thermal and acoustic properties. However, these studies do not cover the investigation of fracture energy which is the core factor governing the damage and fracture mechanisms. Only limited number of publications can be found in literature. The paper presents the results of experimental investigation and numerical campaign of foamed concrete based on three-point bending test of beams with initial notch. First part of the paper presents the results of a series of static loading tests performed to investigate the fracture properties of foamed concrete of varying density. Beam specimens with dimensions of 100×100×840 mm with a central notch were tested in three-point bending. Subsequently, remaining halves of the specimens with dimensions of 100×100×420 mm were tested again as un-notched beams in the same set-up with reduced distance between supports. The tests were performed in a hydraulic displacement controlled testing machine with a load capacity of 5 kN. Apart from measuring the loading and mid-span displacement, a crack mouth opening displacement (CMOD) was monitored. Based on the load – displacement curves of notched beams the values of fracture energy and tensile stress at failure were calculated. The flexural tensile strength was obtained on un-notched beams with dimensions of 100×100×420 mm. Moreover, cube specimens 150×150×150 mm were tested in compression to determine the compressive strength. Second part of the paper deals with numerical investigation of the fracture behavior of beams with initial notch presented in the first part of the paper. Extended Finite Element Method (XFEM) was used to simulate and analyze the damage and fracture process. The influence of meshing and variation of mechanical properties on results was investigated. Numerical models simulate correctly the behavior of beams observed during three-point bending. The numerical results show that XFEM can be used to simulate different fracture toughness of foamed concrete and fracture types. Using the XFEM and computer simulation technology allow for reliable approximation of load–bearing capacity and damage mechanisms of beams made of foamed concrete, which provides some foundations for realistic structural applications.

Keywords: foamed concrete, fracture energy, three-point bending, XFEM

Procedia PDF Downloads 276