Search results for: catalyst analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27708

Search results for: catalyst analysis

26748 Chemical Modifications of Three Underutilized Vegetable Fibres for Improved Composite Value Addition and Dye Absorption Performance

Authors: Abayomi O. Adetuyi, Jamiu M. Jabar, Samuel O. Afolabi

Abstract:

Vegetable fibres are classes of fibres of low density, biodegradable and non-abrasive that are largely abundant fibre materials with specific properties and mostly found/ obtained in plants on earth surface. They are classified into three categories, depending on the part of the plant from which they are gotten from namely: fruit, Blast and Leaf fibre. Ever since four/five millennium B.C, attention has been focussing on the commonest and highly utilized cotton fibre obtained from the fruit of cotton plants (Gossypium spp), for the production of cotton fabric used in every home today. The present study, therefore, focused on the ability of three underutilized vegetable (fruit) fibres namely: coir fiber (Eleas coniferus), palm kernel fiber and empty fruit bunch fiber (Elias guinensis) through chemical modifications for better composite value addition performance to polyurethane form and dye adsorption. These fibres were sourced from their parents’ plants, identified and cleansed with 2% hot detergent solution 1:100, rinsed in distilled water and oven-dried to constant weight, before been chemically modified through alkali bleaching, mercerization and acetylation. The alkali bleaching involves treating 0.5g of each fiber material with 100 mL of 2% H2O2 in 25 % NaOH solution with refluxing for 2 h. While that of mercerization and acetylation involves the use of 5% sodium hydroxide NaOH solution for 2 h and 10% acetic acid- acetic anhydride 1:1 (v/v) (CH3COOH) / (CH3CO)2O solution with conc. H2SO4 as catalyst for 1 h, respectively on the fibres. All were subsequently washed thoroughly with distilled water and oven dried at 105 0C for 1 h. These modified fibres were incorporated as composite into polyurethane form and used in dye adsorption study of indigo. The first two treatments led to fiber weight reduction, while the acidified acetic anhydride treatment gave the fibers weight increment. All the treated fibers were found to be of less hydrophilic nature, better mechanical properties, higher thermal stabilities as well as better adsorption surfaces/capacities than the untreated ones. These were confirmed by gravimetric analysis, Instron Universal Testing Machine, Thermogravimetric Analyser and the Scanning Electron Microscope (SEM) respectively. The fiber morphology of the modified fibers showed smoother surfaces than unmodified fibres.The empty fruit bunch fibre and the coconut coir fibre are better than the palm kernel fibres as reinforcers for composites or as adsorbents for waste-water treatment. Acetylation and alkaline bleaching treatment improve the potentials of the fibres more than mercerization treatment. Conclusively, vegetable fibres, especially empty fruit bunch fibre and the coconut coir fibre, which are cheap, abundant and underutilized, can replace the very costly powdered activated carbon in wastewater treatment and as reinforcer in foam.

Keywords: chemical modification, industrial application, value addition, vegetable fibre

Procedia PDF Downloads 301
26747 Theoretical Study on the Visible-Light-Induced Radical Coupling Reactions Mediated by Charge Transfer Complex

Authors: Lishuang Ma

Abstract:

Charge transfer (CT) complex, also known as Electron donor-acceptor (EDA) complex, has received attentions increasingly in the field of synthetic chemistry community, due to the CT complex can absorb the visible light through the intermolecular charge transfer excited states, various of catalyst-free photochemical transformations under mild visible-light conditions. However, a number of fundamental questions are still ambiguous, such as the origin of visible light absorption, the photochemical and photophysical properties of the CT complex, as well as the detailed mechanism of the radical coupling pathways mediated by CT complex. Since these are critical factors for target-specific design and synthesis of more new-type CT complexes. To this end, theoretical investigations were performed in our group to answer these questions based on multiconfigurational perturbation theory. The photo-induced fluoroalkylation reactions are mediated by CT complexes, which are formed by the association of an acceptor of perfluoroalkyl halides RF−X (X = Br, I) and a suitable donor molecule such as β-naphtholate anion, were chosen as a paradigm example in this work. First, spectrum simulations were carried out by both CASPT2//CASSCF/PCM and TD-DFT/PCM methods. The computational results showed that the broadening spectra in visible light range (360-550nm) of the CT complexes originate from the 1(σπ*) excitation, accompanied by an intermolecular electron transfer, which was also found closely related to the aggregate states of the donor and acceptor. Moreover, from charge translocation analysis, the CT complex that showed larger charge transfer in the round state would exhibit smaller charge transfer in excited stated of 1(σπ*), causing blue shift relatively. Then, the excited-state potential energy surface (PES) was calculated at CASPT2//CASSCF(12,10)/ PCM level of theory to explore the photophysical properties of the CT complexes. The photo-induced C-X (X=I, Br) bond cleavage was found to occur in the triplet state, which is accessible through a fast intersystem crossing (ISC) process that is controlled by the strong spin-orbit coupling resulting from the heavy iodine and bromine atoms. Importantly, this rapid fragmentation process can compete and suppress the backward electron transfer (BET) event, facilitating the subsequent effective photochemical transformations. Finally, the reaction pathways of the radical coupling were also inspected, which showed that the radical chain propagation pathway could easy to accomplish with a small energy barrier no more than 3.0 kcal/mol, which is the key factor that promote the efficiency of the photochemical reactions induced by CT complexes. In conclusion, theoretical investigations were performed to explore the photophysical and photochemical properties of the CT complexes, as well as the mechanism of radical coupling reactions mediated by CT complex. The computational results and findings in this work can provide some critical insights into mechanism-based design for more new-type EDA complexes

Keywords: charge transfer complex, electron transfer, multiconfigurational perturbation theory, radical coupling

Procedia PDF Downloads 123
26746 Evaluation of the Role of Theatre for Development in Combating Climate Change in South Africa

Authors: Isaiah Phillip Smith, Sam Erevbenagie Usadolo, Pamela Theresa Tancsik

Abstract:

This paper is part of ongoing doctoral research that examines the role of Theatre for Development (TfD) in addressing climate change in the Mosuthu community in Reservoir Hills, Durban, South Africa. The context of the research underscores the pressing challenges facing South Africa, including drought, water shortages, deterioration of land, and civil unrest that require innovative approaches to the mitigation of climate change. TfD, described as a dialogical form of theatre that allows communities to express and contribute to development, emerges as a strategic medium for engaging communities in the process. The research problem focused on the unexamined potential of TfD in promoting community involvement and critical awareness of climate change. The study objectives included assessing the community's understanding of climate change, exploring TfD's potential as a participatory tool, examining its role in community mobilization, and developing recommendations for its effective implementation. A review of relevant literature and preliminary investigations in the research community indicates that TfD is an effective medium for promoting societal transformation and engaging marginalized communities. Through culturally resonant narratives, TfD can instill a deeper understanding of environmental challenges, fostering empathy and motivating behavioural changes. By integrating community voices and cultural elements, TfD serves as a powerful catalyst for promoting climate change awareness and inspiring collective action within the South African context. This research contributes to the global discourse on innovative approaches to climate change awareness and action.

Keywords: TfD, climate change, community involvement, societal transformation, culture

Procedia PDF Downloads 33
26745 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 391
26744 Gait Analysis in Total Knee Arthroplasty

Authors: Neeraj Vij, Christian Leber, Kenneth Schmidt

Abstract:

Introduction: Total knee arthroplasty is a common procedure. It is well known that the biomechanics of the knee do not fully return to their normal state. Motion analysis has been used to study the biomechanics of the knee after total knee arthroplasty. The purpose of this scoping review is to summarize the current use of gait analysis in total knee arthroplasty and to identify the preoperative motion analysis parameters for which a systematic review aimed at determining the reliability and validity may be warranted. Materials and Methods: This IRB-exempt scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist strictly. Five search engines were searched for a total of 279 articles. Articles underwent a title and abstract screening process followed by full-text screening. Included articles were placed in the following sections: the role of gait analysis as a research tool for operative decisions, other research applications for motion analysis in total knee arthroplasty, gait analysis as a tool in predicting radiologic outcomes, gait analysis as a tool in predicting clinical outcomes. Results: Eleven articles studied gait analysis as a research tool in studying operative decisions. Motion analysis is currently used to study surgical approaches, surgical techniques, and implant choice. Five articles studied other research applications for motion analysis in total knee arthroplasty. Other research applications for motion analysis currently include studying the role of the unicompartmental knee arthroplasty and novel physical therapy protocols aimed at optimizing post-operative care. Two articles studied motion analysis as a tool for predicting radiographic outcomes. Preoperative gait analysis has identified parameters than can predict postoperative tibial component migration. 15 articles studied motion analysis in conjunction with clinical scores. Conclusions: There is a broad range of applications within the research domain of total knee arthroplasty. The potential application is likely larger. However, the current literature is limited by vague definitions of ‘gait analysis’ or ‘motion analysis’ and a limited number of articles with preoperative and postoperative functional and clinical measures. Knee adduction moment, knee adduction impulse, total knee range of motion, varus angle, cadence, stride length, and velocity have the potential for integration into composite clinical scores. A systematic review aimed at determining the validity, reliability, sensitivities, and specificities of these variables is warranted.

Keywords: motion analysis, joint replacement, patient-reported outcomes, knee surgery

Procedia PDF Downloads 80
26743 Methylene Blue Removal Using NiO nanoparticles-Sand Adsorption Packed Bed

Authors: Nedal N. Marei, Nashaat Nassar

Abstract:

Many treatment techniques have been used to remove the soluble pollutants from wastewater as; dyes and metal ions which could be found in rich amount in the used water of the textile and tanneries industry. The effluents from these industries are complex, containing a wide variety of dyes and other contaminants, such as dispersants, acids, bases, salts, detergents, humectants, oxidants, and others. These techniques can be divided into physical, chemical, and biological methods. Adsorption has been developed as an efficient method for the removal of heavy metals from contaminated water and soil. It is now recognized as an effective method for the removal of both organic and inorganic pollutants from wastewaters. Nanosize materials are new functional materials, which offer high surface area and have come up as effective adsorbents. Nano alumina is one of the most important ceramic materials widely used as an electrical insulator, presenting exceptionally high resistance to chemical agents, as well as giving excellent performance as a catalyst for many chemical reactions, in microelectronic, membrane applications, and water and wastewater treatment. In this study, methylene blue (MB) dye has been used as model dye of textile wastewater in order to synthesize a synthetic MB wastewater. NiO nanoparticles were added in small percentage in the sand packed bed adsorption columns to remove the MB from the synthetic textile wastewater. Moreover, different parameters have been evaluated; flow of the synthetic wastewater, pH, height of the bed, percentage of the NiO to the sand in the packed material. Different mathematical models where employed to find the proper model which describe the experimental data and help to analyze the mechanism of the MB adsorption. This study will provide good understanding of the dyes adsorption using metal oxide nanoparticles in the classical sand bed.

Keywords: adsorption, column, nanoparticles, methylene

Procedia PDF Downloads 246
26742 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis

Procedia PDF Downloads 227
26741 Spectral Analysis Applied to Variables of Oil Wells Profiling

Authors: Suzana Leitão Russo, Mayara Laysa de Oliveira Silva, José Augusto Andrade Filho, Vitor Hugo Simon

Abstract:

Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals.

Keywords: oil, well, spectral analysis, oil extraction

Procedia PDF Downloads 514
26740 Allylation of Active Methylene Compounds with Cyclic Baylis-Hillman Alcohols: Why Is It Direct and Not Conjugate?

Authors: Karim Hrratha, Khaled Essalahb, Christophe Morellc, Henry Chermettec, Salima Boughdiria

Abstract:

Among the carbon-carbon bond formation types, allylation of active methylene compounds with cyclic Baylis-Hillman (BH) alcohols is a reliable and widely used method. This reaction is a very attractive tool in organic synthesis of biological and biodiesel compounds. Thus, in view of an insistent and peremptory request for an efficient and straightly method for synthesizing the desired product, a thorough analysis of various aspects of the reaction processes is an important task. The product afforded by the reaction of active methylene with BH alcohols depends largely on the experimental conditions, notably on the catalyst properties. All experiments reported that catalysis is needed for this reaction type because of the poor ability of alcohol hydroxyl group to be as a suitable leaving group. Within the catalysts, several transition- metal based have been used such as palladium in the presence of acid or base and have been considered as reliable methods. Furthemore, acid catalysts such as BF3.OEt2, BiX3 (X= Cl, Br, I, (OTf)3), InCl3, Yb(OTf)3, FeCl3, p-TsOH and H-montmorillonite have been employed to activate the C-C bond formation through the alkylation of active methylene compounds. Interestingly a report of a smoothly process for the ability of 4-imethyaminopyridine(DMAP) to catalyze the allylation reaction of active methylene compounds with cyclic Baylis-Hillman (BH) alcohol appeared recently. However, the reaction mechanism remains ambiguous, since the C- allylation process leads to an unexpected product (noted P1), corresponding to a direct allylation instead of conjugate allylation, which involves the most electrophilic center according to the electron withdrawing group CO effect. The main objective of the present theoretical study is to better understand the role of the DMAP catalytic activity as well as the process leading to the end- product (P1) for the catalytic reaction of a cyclic BH alcohol with active methylene compounds. For that purpose, we have carried out computations of a set of active methylene compounds varying by R1 and R2 toward the same alcohol, and we have attempted to rationalize the mechanisms thanks to the acid–base approach, and conceptual DFT tools such as chemical potential, hardness, Fukui functions, electrophilicity index and dual descriptor, as these approaches have shown a good prediction of reactions products.The present work is then organized as follows: In a first part some computational details will be given, introducing the reactivity indexes used in the present work, then Section 3 is dedicated to the discussion of the prediction of the selectivity and regioselectivity. The paper ends with some concluding remarks. In this work, we have shown, through DFT method at the B3LYP/6-311++G(d,p) level of theory that: The allylation of active methylene compounds with cyclic BH alcohol is governed by orbital control character. Hence the end- product denoted P1 is generated by direct allylation.

Keywords: DFT calculation, gas phase pKa, theoretical mechanism, orbital control, charge control, Fukui function, transition state

Procedia PDF Downloads 286
26739 Multivalued Behavior for a Two-Level System Using Homotopy Analysis Method

Authors: Angelo I. Aquino, Luis Ma. T. Bo-ot

Abstract:

We use the Homotopy Analysis Method (HAM) to solve the system of equations modeling the two-level system and extract results which will pinpoint to turbulent behavior. We look at multi-valued solutions as indicative of turbulence or turbulent-like behavior. We take di erent speci c cases which result in multi-valued velocities. The solutions are in series form and application of HAM ensures convergence in some region.

Keywords: multivalued solutions, homotopy analysis method, two-level system, equation

Procedia PDF Downloads 579
26738 Sociological Review of the Implantation of New Religious Movements in Spain

Authors: María Del Mar Ramos-Lorente, Rafael Martínez-Martín

Abstract:

More than 40 years have passed since the Spanish Constitution in force today was approved in 1978. The period prior to that Constitution, which marked the transition to democracy, was marked by National Catholicism, which actively limited the existence of religions other than Catholicism in the national territory. The approval of this norm allowed the opening in many aspects, including the religious one. This work will profusely describe the evolution of the appearance of religious minorities in Spain from the moment of the transition, in which the space for religious freedom appears up to the present. The methodology is twofold. On the one hand, qualitative analysis of the legislation has allowed the religious opening. On the other, the quantitative analysis of the NMRs implemented in Spain. The entire analysis establishes the increase in religious organizations as a result, with notable variations across the territory.

Keywords: new religious movements, religious minorities, sociological analysis, Spain

Procedia PDF Downloads 142
26737 Static and Dynamic Analysis on a Buddhism Goddess Guanyin in Shuangyashan

Authors: Gong Kangming, Zhao Caiqi

Abstract:

High-rise special-shaped structure, such as main frame structure of the statues, is one of the structure forms in irregular structure widely used. Due to the complex shape of the statue structure, with a large aspect ratio, its wind load value and the overall mechanical properties are very different from the high-rise buildings with the general rules. The paper taking a certain 48 meters high main frame structure of the statue located in Shuangyashan City, Heilongjiang Province, static and dynamic properties are analyzed by the finite element software. Through static and dynamic analysis, it got a number of useful conclusions that have a certain reference value for the analysis and design of the future similar structure.

Keywords: a Buddhism goddess Guanyin body, wind load, dynamic analysis, bolster, node design

Procedia PDF Downloads 452
26736 Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/Graphene Nanocomposite

Authors: Bekan Bogale, Tsegaye Girma Asere, Tilahun Yai, Fekadu Melak

Abstract:

Aims: To study photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This, in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been combined with cuprous oxides, resulting in cuprous oxide/graphene nanocomposite as a promising photocatalyst. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of methylene blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using the facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticles (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of photocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as high-performance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye.

Keywords: methylene blue, photocatalysis, cuprous oxide, graphene nanocomposite

Procedia PDF Downloads 166
26735 Transient Analysis of Laminated Rubber Bearing Bridge during High Intensity Earthquake

Authors: N. M. Amin, W. N. A. W. Sulaiman

Abstract:

The effectiveness of the seismic response between 3D solid elements model and simplified beam elements model has been investigated. At present, the studies of the numerical modelling using 3D solid element are minimal due to numerical software constraint. The finite element analysis using 3D solid element was chosen to study displacement response of laminated rubber bearing (LRB) during high intensity Kobe earthquake. In this research a simply supported bridge (single span), fixed at support was analysed by using transient analysis subjected to real time history loading of Kobe earthquake.

Keywords: laminated rubber bearing, solid element, simplified beam element, transient analysis

Procedia PDF Downloads 408
26734 Some Observations on the Analysis of Four Performances of the Allemande from J.S. Bach's Partita for Solo Flute (BWV 1013) in Terms of Zipf's Law

Authors: Douglas W. Scott

Abstract:

The Allemande from J. S. Bach's Partita for solo flute (BWV 1013) presents many unique challenges for any flautist, especially in terms of segmentation analysis required to select breathing places in the first half. Without claiming to identify a 'correct' solution to this problem, this paper analyzes the section in terms of a set of techniques based around a statistical property commonly (if not ubiquitously) found in music, namely Zipf’s law. Specifically, the paper considers violations of this expected profile at various levels of analysis, an approach which has yielded interesting insights in previous studies. The investigation is then grounded by considering four actual solutions to the problem found in recordings made by different flautists, which opens up the possibility of expanding Zipfian analysis to include a consideration of inter-onset-intervals (IOIs). It is found that significant deviations from the expected Zipfian distributions can reveal and highlight stylistic choices made by different performers.

Keywords: inter-onset-interval, Partita for solo flute, BWV 1013, segmentation analysis, Zipf’s law

Procedia PDF Downloads 163
26733 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis

Authors: Yoshio Kurosawa

Abstract:

The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.

Keywords: vibration, noise, road noise, statistical energy analysis

Procedia PDF Downloads 333
26732 Design and Manufacture of Non-Contact Moving Load for Experimental Analysis of Beams

Authors: Firooz Bakhtiari-Nejad, Hamidreza Rostami, Meysam Mirzaee, Mona Zandbaf

Abstract:

Dynamic tests are an important step of the design of engineering structures, because the accuracy of predictions of theoretical–numerical procedures can be assessed. In experimental test of moving loads that is one of the major research topics, the load is modeled as a simple moving mass or a small vehicle. This paper deals with the applicability of Non-Contact Moving Load (NML) for vibration analysis. For this purpose, an experimental set-up is designed to generate the different types of NML including constant and harmonic. The proposed method relies on pressurized air which is useful, especially when dealing with fragile or sensitive structures. To demonstrate the performance of this system, the set-up is employed for a modal analysis of a beam and detecting crack of the beam. The obtained results indicate that the experimental set-up for NML can be an attractive alternative to the moving load problems.

Keywords: experimental analysis, moving load, non-contact excitation, materials engineering

Procedia PDF Downloads 443
26731 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: dual solutions, heat transfer, shrinking sheet, stability analysis

Procedia PDF Downloads 398
26730 A Compared Approach between Moderate Islamic Values and Basic Human Values

Authors: Adel Bessadok

Abstract:

The theory of values postulates that each human has a set of values, or attractive and trans-situational goals, that drive their actions. The Basic Human Values as an incentive construct that apprehends human's values have been shown to govern a wide range of human behaviors. Individuals within and within societies have very different value preferences that reflect their enculturation, their personal experiences, their social places and their genetic heritage. Using a focus group composed by Islamic religious Preachers and a sample of 800 young students; this ongoing study will establish Moderate Islamic Values parameters. We analyze later, for the same students sample the difference between Moderate Islamic Values and Schwartz’s Basic Human Values. Keywords—Moderate Islamic Values, Basic Human Values, Exploratory Factor Analysis and Confirmatory Factor Analysis.

Keywords: moderate Islamic values, basic human values, exploratory factor analysis, confirmatory factor analysis

Procedia PDF Downloads 360
26729 Efficiency of DMUs in Presence of New Inputs and Outputs in DEA

Authors: Esmat Noroozi, Elahe Sarfi, Farha Hosseinzadeh Lotfi

Abstract:

Examining the impacts of data modification is considered as sensitivity analysis. A lot of studies have considered the data modification of inputs and outputs in DEA. The issues which has not heretofore been considered in DEA sensitivity analysis is modification in the number of inputs and (or) outputs and determining the impacts of this modification in the status of efficiency of DMUs. This paper is going to present systems that show the impacts of adding one or multiple inputs or outputs on the status of efficiency of DMUs and furthermore a model is presented for recognizing the minimum number of inputs and (or) outputs from among specified inputs and outputs which can be added whereas an inefficient DMU will become efficient. Finally the presented systems and model have been utilized for a set of real data and the results have been reported.

Keywords: data envelopment analysis, efficiency, sensitivity analysis, input, out put

Procedia PDF Downloads 431
26728 Towards a Scientific Intepretation of the Theory of Rasa in Indian Classical Music

Authors: Ajmal Hussain

Abstract:

In Indian music parlance, Rasa denotes a distinct aesthetic experience that builds up in the mind of the listeners while listening to a piece of Indian classical music. The distinction of the experience is rooted in the concept that it gives rise to an enhanced awareness about the Self or God and creates a mental state detached from mundane issues of everyday life. The theory of Rasa was initially proposed in the context of theatre but became a part of Indian musicological discourse roughly two thousand years ago, however, to this day, it remains shrouded in mystery due to its religious associations and connotations. This paper attempts to demystify the theory of Rasa in the light of available scientific knowledge fund particularly in Brain and Mind sciences. The paper initially describes the religious context of the theory of Rasa and then discusses its classical formulations by Bharata and Abhinavagupta including the steps and stages laid down by the latter to explain the creation of musical experience. The classical formulations are then interpreted with reference to the scientific knowledge fund about the human mind and mechanics of perception. The study uses the model of human mind as proposed by Portuguese-American neuroscientist Antonio Damasio in his theory ‘A Nesting Principle’. On the basis of the findings by Damasio, the paper interprets the experience of Rasa from a scientific perspective and clarifies the sequence of steps and stages involved in the making of musical experience. The study concludes that although the classical formulations of Rasa identify key aspects of musical experience, the association of Rasa with religion is misleading. The association with religion does not depend upon musical stimulus but the intellectual orientation of the listener. It further establishes that the function of Rasa is more profound as, from an evolutionary perspective, it can be seen as a catalyst for higher consciousness.

Keywords: aesthetic, consciousness, music, Rasa

Procedia PDF Downloads 111
26727 An Organocatalytic Construction of Vicinal Tetrasubstituted Stereocenters via Mannich Reaction of 2-Substituted Benzofuran-3-One with Isatin-Derived Ketimine

Authors: Koilpitchai Sivamuthuraman, Venkitasamy Kesavan

Abstract:

3-substituted 3-amino-2-oxindole skeleton bearing adjacent tetrasubstituted stereogenic centers is of great importance because of these heterocyclic motifs possess a wide range of pharmacological activity. The catalytic asymmetric construction of multi functionalised heterocyclic compound with adjacent tetrasubstituted stereocenters is one of the most difficult tasks in organic synthesis. To date, the most straightforward methodologies have been developed for synthesis of chiral 3-substituted 3-amino-2-oxindoles through the addition of carbon nucleophiles to isatin-derived ketimines. However, only a few successful examples have been described for the assembly of vicinal tetrasubstituted stereocenters using isatin derived ketimines as electrophiles. On the other hand, 2,2-Disubstituted benzofuran-3(2H)-ones and related frameworks are characteristic of a quaternary stereogenic center at C2 position present in quite a number of natural products and bioactive Molecules.Despite the intensive efforts devoted for the construction of 2,2-Disubstituted Benzofuran-3[2H]-one, there are only a few asymmetric methods such as organocatalytic Michael addition and enantioselective halogenations were reported till now. Due to the biological importance of oxindole and benzofuran-3-one, it is proposed here with the synthesis of hybrid molecule containing tetrasubstituted stereo centers through asymmetric organocatalysis. The addition of 2-substituted Benzofuran-3-one(1a) to isatin-derived ketimines(2a) using a bifunctional organocatalyst(catalyst IV or V), leading to chiral heterocyclic compounds containing both 3-amino 2-oxindole and benzofurn-3-one bearing vicinal quaternary stereocenters with good yields and excellent enantioselectivity. The present study extends the scope of the catalytic asymmetric Mannich reaction with isatin-derived ketimines, providing a new class of amino oxindole derivatives having benzofuran-3-one.

Keywords: asymmetric synthesis, benzofuran-3-one, isatin-derived ketimines, quaternary stereocenters

Procedia PDF Downloads 171
26726 Innovation and Analysis of Vibrating Fork Level Switch

Authors: Kuen-Ming Shu, Cheng-Yu Chen

Abstract:

A vibrating-fork sensor can measure the level height of solids and liquids and operates according to the principle that vibrations created by piezoelectric ceramics are transmitted to the vibrating fork, which produces resonance. When the vibrating fork touches an object, its resonance frequency changes and produces a signal that returns to a controller for immediate adjustment, so as to effectively monitor raw material loading. The design of the vibrating fork in a vibrating-fork material sensor is crucial. In this paper, ANSYS finite element analysis software is used to perform modal analysis on the vibrations of the vibrating fork. In addition, to design and produce a superior vibrating fork, the dimensions and welding shape of the vibrating fork are compared in a simulation performed using the Taguchi method.

Keywords: vibrating fork, piezoelectric ceramics, sound wave, ANSYS, Taguchi method, modal analysis

Procedia PDF Downloads 233
26725 Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder

Authors: Artem Nuriev, Olga Zaitseva

Abstract:

This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data.

Keywords: oscillating cylinder, secondary streaming, flow regimes, asymptotic and bifurcation analysis

Procedia PDF Downloads 419
26724 Hybrid Feature Selection Method for Sentiment Classification of Movie Reviews

Authors: Vishnu Goyal, Basant Agarwal

Abstract:

Sentiment analysis research provides methods for identifying the people’s opinion written in blogs, reviews, social networking websites etc. Sentiment analysis is to understand what opinion people have about any given entity, object or thing. Sentiment analysis research can be broadly categorised into three types of approaches i.e. semantic orientation, machine learning and lexicon based approaches. Feature selection methods improve the performance of the machine learning algorithms by eliminating the irrelevant features. Information gain feature selection method has been considered best method for sentiment analysis; however, it has the drawback of selection of threshold. Therefore, in this paper, we propose a hybrid feature selection methods comprising of information gain and proposed feature selection method. Initially, features are selected using Information Gain (IG) and further more noisy features are eliminated using the proposed feature selection method. Experimental results show the efficiency of the proposed feature selection methods.

Keywords: feature selection, sentiment analysis, hybrid feature selection

Procedia PDF Downloads 310
26723 Statistical Analysis to Select Evacuation Route

Authors: Zaky Musyarof, Dwi Yono Sutarto, Dwima Rindy Atika, R. B. Fajriya Hakim

Abstract:

Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic.

Keywords: association rules, sequential pattern mining, cluster analysis, fuzzy logic, evacuation route

Procedia PDF Downloads 484
26722 The Extent of Big Data Analysis by the External Auditors

Authors: Iyad Ismail, Fathilatul Abdul Hamid

Abstract:

This research was mainly investigated to recognize the extent of big data analysis by external auditors. This paper adopts grounded theory as a framework for conducting a series of semi-structured interviews with eighteen external auditors. The research findings comprised the availability extent of big data and big data analysis usage by the external auditors in Palestine, Gaza Strip. Considering the study's outcomes leads to a series of auditing procedures in order to improve the external auditing techniques, which leads to high-quality audit process. Also, this research is crucial for auditing firms by giving an insight into the mechanisms of auditing firms to identify the most important strategies that help in achieving competitive audit quality. These results are aims to instruct the auditing academic and professional institutions in developing techniques for external auditors in order to the big data analysis. This paper provides appropriate information for the decision-making process and a source of future information which affects technological auditing.

Keywords: big data analysis, external auditors, audit reliance, internal audit function

Procedia PDF Downloads 47
26721 Renewable Energy Trends Analysis: A Patents Study

Authors: Sepulveda Juan

Abstract:

This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: patents, scientometric, renewable energy, technology maps

Procedia PDF Downloads 282
26720 Design and Analysis of Piping System with Supports Using CAESAR-II

Authors: M. Jamuna Rani, K. Ramanathan

Abstract:

A steam power plant is housed with various types of equipments like boiler, turbine, heat exchanger etc. These equipments are mainly connected with piping systems. Such a piping layout design depends mainly on stress analysis and flexibility. It will vary with respect to pipe geometrical properties, pressure, temperature, and supports. The present paper is to analyze the presence and effect of hangers and expansion joints in the piping layout/routing using CAESAR-II software. Main aim of piping stress analysis is to provide adequate flexibility for absorbing thermal expansion, code compliance for stresses and displacement incurred in piping system. The design is said to be safe if all these are in allowable range as per code. In this study, a sample problem is considered for analysis as per power piping ASME B31.1 code and the results thus obtained are compared.

Keywords: ASTM B31.1, hanger, expansion joint, CAESAR-II

Procedia PDF Downloads 345
26719 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis

Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon

Abstract:

Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.

Keywords: electromagnetism, finite element method, sensitivity analysis, submarine power cables

Procedia PDF Downloads 333