Search results for: asset allocation
133 Sustainable Harvesting, Conservation and Analysis of Genetic Diversity in Polygonatum Verticillatum Linn.
Authors: Anchal Rana
Abstract:
Indian Himalayas with their diverse climatic conditions are home to many rare and endangered medicinal flora. One such species is Polygonatum verticillatum Linn., popularly known as King Solomon’s Seal or Solomon’s Seal. Its mention as an incredible medicinal herb comes from 5000 years ago in Indian Materia Medica as a component of Ashtavarga, a poly-herbal formulation comprising of eight herbs illustrated as world’s first ever revitalizing and rejuvenating nutraceutical food, which is now commercialised in the name ‘Chaywanprash’. It is an erect tall (60 to 120 cm) perennial herb with sessile, linear leaves and white pendulous flowers. The species grows well in an altitude range of 1600 to 3600 m amsl, and propagates mostly through rhizomes. The rhizomes are potential source for significant phytochemicals like flavonoids, phenolics, lectins, terpenoids, allantoin, diosgenin, β-Sitosterol and quinine. The presence of such phytochemicals makes the species an asset for antioxidant, cardiotonic, demulcent, diuretic, energizer, emollient, aphrodisiac, appetizer, glactagogue, etc. properties. Having profound concentrations of macro and micronutrients, species has fine prospects of being used as a diet supplement. However, due to unscientific and gregarious uprooting, it has been assigned a status of ‘vulnerable’ and ‘endangered’ in the Conservation Assessment and Management Plan (CAMP) process conducted by Foundation for Revitalisation of Local Health Traditions (FRLHT) during 2010, according to IUCN Red-List Criteria. Further, destructive harvesting, land use disturbances, heavy livestock grazing, climatic changes and habitat fragmentation have substantially contributed towards anomaly of the species. It, therefore, became imperative to conserve the diversity of the species and make judicious use in future research and commercial programme and schemes. A Gene Bank was therefore established at High Altitude Herbal Garden of the Forest Research Institute, Dehradun, India situated at Chakarata (30042’52.99’’N, 77051’36.77’’E, 2205 m amsl) consisting 149 accessions collected from thirty-one geographical locations spread over three Himalayan States of Jammu and Kashmir, Himachal Pradesh, and Uttarakhand. The present investigations purport towards sampling and collection of divergent germplasm followed by planting and cultivation techniques. The ultimate aim is thereby focussed on analysing genetic diversity of the species and capturing promising genotypes for carrying out further genetic improvement programme so to contribute towards sustainable development and healthcare.Keywords: Polygonatum verticillatum Linn., phytochemicals, genetic diversity, conservation, gene bank
Procedia PDF Downloads 171132 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks
Authors: Sulemana Ibrahim
Abstract:
Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks
Procedia PDF Downloads 62131 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning
Authors: Jiahao Tian, Michael D. Porter
Abstract:
Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation
Procedia PDF Downloads 66130 Theoretical Framework and Empirical Simulation of Policy Design on Trans-Dimensional Resource Recycling
Authors: Yufeng Wu, Yifan Gu, Bin Li, Wei Wang
Abstract:
Resource recycling process contains a subsystem with interactions of three dimensions including coupling allocation of primary and secondary resources, responsibility coordination of stakeholders in forward and reverse supply chains, and trans-boundary transfer of hidden resource and environmental responsibilities between regions. Overlap or lack of responsibilities is easy to appear at the intersection of the three management dimensions. It is urgent to make an overall design of the policy system for recycling resources. From theoretical perspective, this paper analyzes the unique external differences of resource and environment in various dimensions and explores the reason why the effects of trans-dimensional policies are strongly correlated. Taking the example of the copper resources contained in the waste electrical and electronic equipment, this paper constructs reduction effect accounting model of resources recycling and set four trans-dimensional policy scenarios including resources tax and environmental tax reform of the raw and secondary resources, application of extended producer responsibility system, promotion of clean development mechanism, and strict entry barriers of imported wastes. In these ways, the paper simulates the impact effect of resources recycling process on resource deduction and emission reduction of waste water and gas, and constructs trans-dimensional policy mix scenario through integrating dominant strategy. The results show that combined application of various dimensional policies can achieve incentive compatibility and the trans-dimensional policy mix scenario can reach a better effect. Compared with baseline scenario, this scenario will increase 91.06% copper resources reduction effect and improve emission reduction of waste water and gas by eight times from 2010 to 2030. This paper further analyzes the development orientation of policies in various dimension. In resource dimension, the combined application of compulsory, market and authentication methods should be promoted to improve the use ratio of secondary resources. In supply chain dimension, resource value, residual functional value and potential information value contained in waste products should be fully excavated to construct a circular business system. In regional dimension, it should give full play to the comparative advantages of manufacturing power to improve China’s voice in resource recycling in the world.Keywords: resource recycling, trans-dimension, policy design, incentive compatibility, life cycle
Procedia PDF Downloads 126129 The Effect of the Construction Contract System by Simulating the Comparative Costs of Capital to the Financial Feasibility of the Construction of Toll Bali Mandara
Authors: Mas Pertiwi I. G. AG Istri, Sri Kristinayanti Wayan, Oka Aryawan I. Gede Made
Abstract:
Ability of government to meet the needs of infrastructure investment constrained by the size of the budget commitments for other sectors. Another barrier is the complexity of the process of land acquisition. Public Private Partnership can help bridge the investment gap by including the amount of funding from the private sector, shifted the responsibility of financing, construction of the asset, and the operation and post-project design and care to them. In principle, a construction project implementation always requires the investor as a party to provide resources in the form of funding which it must be contained in a successor agreement in the form of a contract. In general, construction contracts consist of contracts which passed in Indonesia and contract International. One source of funding used in the implementation of construction projects comes from funding that comes from the collaboration between the government and the private sector, for example with the system: BLT (Build Lease Transfer), BOT (Build Operate Transfer), BTO (Build Transfer Operate) and BOO (Build Operate Own). And form of payment under a construction contract can be distinguished several ways: monthly payment, payments based on progress and payment after completed projects (Turn Key). One of the tools used to analyze the feasibility of the investment is to use financial models. The financial model describes the relationship between different variables and assumptions used. From a financial model will be known how the cash flow structure of the project, which includes revenues, expenses, liabilities to creditors and the payment of taxes to the government. Net cash flow generated from the project will be used as a basis for analyzing the feasibility of investment source of project financing Public Private Partnership could come from equity or debt. The proportion of funding according to its source is a comparison of a number of investment funds originating from each source of financing for a total investment cost during the construction period by selected the contract system and several alternative financing percentage ratio determined according to sources will generate cash flow structure that is different. Of the various possibilities for the structure of the cash flow generated will be analyzed by software is to test T Paired to compared the contract system used by various alternatives comparison of financing to determine the effect of the contract system and the comparison of such financing for the feasibility of investment toll road construction project for the economic life of 20 (twenty) years. In this use case studies of toll road contruction project Bali Mandara. And in this analysis only covered two systems contracts, namely Build Operate Transfer and Turn Key. Based on the results obtained by analysis of the variable investment feasibility of the NPV, BCR and IRR between the contract system Build Operate Transfer and contract system Turn Key on the interest rate of 9%, 12% and 15%.Keywords: contract system, financing, internal rate of return, net present value
Procedia PDF Downloads 227128 Achieving Product Robustness through Variation Simulation: An Industrial Case Study
Authors: Narendra Akhadkar, Philippe Delcambre
Abstract:
In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation
Procedia PDF Downloads 164127 Growth and Yield Response of an Indian Wheat Cultivar (HD 2967) to Ozone and Water Stress in Open-Top Chambers with Emphasis on Its Antioxidant Status, Photosynthesis and Nutrient Allocation
Authors: Annesha Ghosh, S. B. Agrawal
Abstract:
Agricultural sector is facing a serious threat due to climate change and exacerbation of different atmospheric pollutants. Tropospheric ozone (O₃) is considered as a dynamic air pollutant imposing substantial phytotoxicity to natural vegetations and agriculture worldwide. Naturally, plants are exposed to different environmental factors and their interactions. Amongst such interactions, studies related to O₃ and water stress are still rare. In the present experiment, wheat cultivar HD2967 were grown in open top chambers (OTC) under two O₃ concentration; ambient O₃ level (A) and elevated O₃ (E) (ambient + 20 ppb O₃) along with two different water supply; well-watered (W) and 50% water stress conditions (WS), with an aim to assess the individual and interactive effect of two most prevailing stress factors in Indo-Gangetic Plains of India. Exposure to elevated O₃ dose caused early senescence symptoms and reduction in growth and biomass of the test cultivar. The adversity was more pronounced under the combined effect of EWS. Significant reduction of stomatal conductance (gs) and assimilation rate were observed under combined stress condition compared to the control (AW). However, plants grown under individual stress conditions displayed higher gs, biomass, and antioxidant defense mechanism compared to the plants grown under the presence of combined stresses. Higher induction in most of the enzyme activities of catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POD) and superoxide dismutase (SOD) was displayed by HD 2967 under EW while, under the presence of combined stresses (EWS), a moderate increment of APX and CAT activity was observed only at its vegetative phase. Furthermore, variations in nutrient uptake and redistribution to different plants parts were also observed in the present study. Reduction in water availability has checked nutrient uptake (N, K, P, Ca, Cu, Mg, Zn) in above-ground parts (leaf) and below-ground parts (root). On the other hand, carbon (C) accumulation with subsequent C-N ratio was observed to be higher in the leaves under EWS. Such major nutrient check and limitation in carbon fixation due to lower gs under combined stress conditions might have weakened the defense mechanisms of the test cultivar. Grain yield was significantly reduced under EWS followed by AWS and EW as compared to their control, exhibiting an additive effect on the grain yield.Keywords: antioxidants, open-top chambers, ozone, water stress, wheat, yield
Procedia PDF Downloads 117126 Developing Offshore Energy Grids in Norway as Capability Platforms
Authors: Vidar Hepsø
Abstract:
The energy and oil companies on the Norwegian Continental shelf come from a situation where each asset control and manage their energy supply (island mode) and move towards a situation where the assets need to collaborate and coordinate energy use with others due to increased cost and scarcity of electric energy sharing the energy that is provided. Currently, several areas are electrified either with an onshore grid cable or are receiving intermittent energy from offshore wind-parks. While the onshore grid in Norway is well regulated, the offshore grid is still in the making, with several oil and gas electrification projects and offshore wind development just started. The paper will describe the shift in the mindset that comes with operating this new offshore grid. This transition process heralds an increase in collaboration across boundaries and integration of energy management across companies, businesses, technical disciplines, and engagement with stakeholders in the larger society. This transition will be described as a function of the new challenges with increased complexity of the energy mix (wind, oil/gas, hydrogen and others) coupled with increased technical and organization complexity in energy management. Organizational complexity denotes an increasing integration across boundaries, whether these boundaries are company, vendors, professional disciplines, regulatory regimes/bodies, businesses, and across numerous societal stakeholders. New practices must be developed, made legitimate and institutionalized across these boundaries. Only parts of this complexity can be mitigated technically, e.g.: by use of batteries, mixing energy systems and simulation/ forecasting tools. Many challenges must be mitigated with legitimated societal and institutionalized governance practices on many levels. Offshore electrification supports Norway’s 2030 climate targets but is also controversial since it is exploiting the larger society’s energy resources. This means that new systems and practices must also be transparent, not only for the industry and the authorities, but must also be acceptable and just for the larger society. The paper report from ongoing work in Norway, participant observation and interviews in projects and people working with offshore grid development in Norway. One case presented is the development of an offshore floating windfarm connected to two offshore installations and the second case is an offshore grid development initiative providing six installations electric energy via an onshore cable. The development of the offshore grid is analyzed using a capability platform framework, that describes the technical, competence, work process and governance capabilities that are under development in Norway. A capability platform is a ‘stack’ with the following layers: intelligent infrastructure, information and collaboration, knowledge sharing & analytics and finally business operations. The need for better collaboration and energy forecasting tools/capabilities in this stack will be given a special attention in the two use cases that are presented.Keywords: capability platform, electrification, carbon footprint, control rooms, energy forecsting, operational model
Procedia PDF Downloads 67125 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 178124 Periurban Landscape as an Opportunity Field to Solve Ecological Urban Conflicts
Authors: Cristina Galiana Carballo, Ibon Doval Martínez
Abstract:
Urban boundaries often result in a controversial limit between countryside and city in Europe. This territory is normally defined by the very limited land uses and the abundance of open space. The dimension and dynamics of peri-urbanization in the last decades have increased this land stock, which has influenced/impacted in several factors in terms of economic costs (maintenance, transport), ecological disturbances of the territory and changes in inhabitant´s behaviour. In an increasingly urbanised world and a growing urban population, cities also face challenges such as Climate Change. In this context, new near-future corrective trends including circular economies for local food supply or decentralised waste management became key strategies towards more sustainable urban models. Those new solutions need to be planned and implemented considering the potential conflict with current land uses. The city of Vitoria-Gasteiz (Basque Country, Spain) has triplicated land consumption per habitant in 10 years, resulting in a vast extension of low-density urban type confronting rural land and threatening agricultural uses, landscape and urban sustainability. Urban planning allows managing and optimum use allocation based on soil vocation and socio-ecosystem needs, while peri-urban space arises as an opportunity for developing different uses which do not match either within the compact city, not in open agricultural lands, such as medium-size agrocomposting systems or biomass plants. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Climate change and circular economy were identified as frameworks where to determine future land, soil vocation and urban planning requirements which eventually become estimations of required local food and renewable energy supply along with alternative waste management system´s implementation. By means of it, it has been developed an urban planning proposal which overcomes urban-non urban dichotomy in Vitoria-Gasteiz. The proposal aims to enhance rural system and improve urban sustainability performance through the normative recognition of an agricultural peri-urban belt.Keywords: landscape ecology, land-use management, periurban, urban planning
Procedia PDF Downloads 163123 A Critical Discourse Analysis of Protesters in the Debates of Al Jazeera Channel of the Yemeni Revolution
Authors: Raya Sulaiman
Abstract:
Critical discourse analysis investigates how discourse is used to abuse power relationships. Political debates constitute discourses which mirror aspects of ideologies. The Arab world has been one of the most unsettled zones in the world and has dominated global politics due to the Arab revolutions which started in 2010. This study aimed at uncovering the ideological intentions in the formulation and circulation of hegemonic political ideology in the TV political debates of the 2011 to 2012 Yemen revolution, how ideology was used as a tool of hegemony. The study specifically examined the ideologies associated with the use of protesters as a social actor. Data of the study consisted of four debates (17350 words) from four live debate programs: The Opposite Direction, In Depth, Behind the News and the Revolution Talk that were staged at Al Jazeera TV channel between 2011 and 2012. Data was readily transcribed by Al Jazeera online. Al Jazeera was selected for the study because it is the most popular TV network in the Arab world and has a strong presence, especially during the Arab revolutions. Al Jazeera has also been accused of inciting protests across the Arab region. Two debate sites were identified in the data: government and anti-government. The government side represented the president Ali Abdullah Saleh and his regime while the anti-government side represented the gathering squares who demanded the president to ‘step down’. The study analysed verbal discourse aspects of the debates using critical discourse analysis: aspects from the Social Actor Network model of van Leeuwen. This framework provides a step-by-step analysis model, and analyses discourse from specific grammatical processes into broader semantic issues. It also provides representative findings since it considers discourse as representative and reconstructed in social practice. Study findings indicated that Al Jazeera and the anti-government had similarities in terms of the ideological intentions related to the protesters. Al Jazeera victimized and incited the protesters which were similar to the anti-government. Al Jazeera used assimilation, nominalization, and active role allocation as the linguistic aspects in order to reach its ideological intentions related to the protesters. Government speakers did not share the same ideological intentions with Al Jazeera. Study findings indicated that Al Jazeera had excluded the government from its debates causing a violation to its slogan, the opinion, and the other opinion. This study implies the powerful role of discourse in shaping ideological media intentions and influencing the media audience.Keywords: Al Jazeera network, critical discourse analysis, ideology, Yemeni revolution
Procedia PDF Downloads 224122 Promoting 'One Health' Surveillance and Response Approach Implementation Capabilities against Emerging Threats and Epidemics Crisis Impact in African Countries
Authors: Ernest Tambo, Ghislaine Madjou, Jeanne Y. Ngogang, Shenglan Tang, Zhou XiaoNong
Abstract:
Implementing national to community-based 'One Health' surveillance approach for human, animal and environmental consequences mitigation offers great opportunities and value-added in sustainable development and wellbeing. 'One Health' surveillance approach global partnerships, policy commitment and financial investment are much needed in addressing the evolving threats and epidemics crises mitigation in African countries. The paper provides insights onto how China-Africa health development cooperation in promoting “One Health” surveillance approach in response advocacy and mitigation. China-Africa health development initiatives provide new prospects in guiding and moving forward appropriate and evidence-based advocacy and mitigation management approaches and strategies in attaining Universal Health Coverage (UHC) and Sustainable Development Goals (SDGs). Early and continuous quality and timely surveillance data collection and coordinated information sharing practices in malaria and other diseases are demonstrated in Comoros, Zanzibar, Ghana and Cameroon. Improvements of variety of access to contextual sources and network of data sharing platforms are needed in guiding evidence-based and tailored detection and response to unusual hazardous events. Moreover, understanding threats and diseases trends, frontline or point of care response delivery is crucial to promote integrated and sustainable targeted local, national “One Health” surveillance and response approach needs implementation. Importantly, operational guidelines are vital in increasing coherent financing and national workforce capacity development mechanisms. Strengthening participatory partnerships, collaboration and monitoring strategies in achieving global health agenda effectiveness in Africa. At the same enhancing surveillance data information streams reporting and dissemination usefulness in informing policies decisions, health systems programming and financial mobilization and prioritized allocation pre, during and post threats and epidemics crises programs strengths and weaknesses. Thus, capitalizing on “One Health” surveillance and response approach advocacy and mitigation implementation is timely in consolidating Africa Union 2063 agenda and Africa renaissance capabilities and expectations.Keywords: Africa, one health approach, surveillance, response
Procedia PDF Downloads 421121 Real Estate Trend Prediction with Artificial Intelligence Techniques
Authors: Sophia Liang Zhou
Abstract:
For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.Keywords: linear regression, random forest, artificial neural network, real estate price prediction
Procedia PDF Downloads 103120 Using Google Distance Matrix Application Programming Interface to Reveal and Handle Urban Road Congestion Hot Spots: A Case Study from Budapest
Authors: Peter Baji
Abstract:
In recent years, a growing body of literature emphasizes the increasingly negative impacts of urban road congestion in the everyday life of citizens. Although there are different responses from the public sector to decrease traffic congestion in urban regions, the most effective public intervention is using congestion charges. Because travel is an economic asset, its consumption can be controlled by extra taxes or prices effectively, but this demand-side intervention is often unpopular. Measuring traffic flows with the help of different methods has a long history in transport sciences, but until recently, there was not enough sufficient data for evaluating road traffic flow patterns on the scale of an entire road system of a larger urban area. European cities (e.g., London, Stockholm, Milan), in which congestion charges have already been introduced, designated a particular zone in their downtown for paying, but it protects only the users and inhabitants of the CBD (Central Business District) area. Through the use of Google Maps data as a resource for revealing urban road traffic flow patterns, this paper aims to provide a solution for a fairer and smarter congestion pricing method in cities. The case study area of the research contains three bordering districts of Budapest which are linked by one main road. The first district (5th) is the original downtown that is affected by the congestion charge plans of the city. The second district (13th) lies in the transition zone, and it has recently been transformed into a new CBD containing the biggest office zone in Budapest. The third district (4th) is a mainly residential type of area on the outskirts of the city. The raw data of the research was collected with the help of Google’s Distance Matrix API (Application Programming Interface) which provides future estimated traffic data via travel times between freely fixed coordinate pairs. From the difference of free flow and congested travel time data, the daily congestion patterns and hot spots are detectable in all measured roads within the area. The results suggest that the distribution of congestion peak times and hot spots are uneven in the examined area; however, there are frequently congested areas which lie outside the downtown and their inhabitants also need some protection. The conclusion of this case study is that cities can develop a real-time and place-based congestion charge system that forces car users to avoid frequently congested roads by changing their routes or travel modes. This would be a fairer solution for decreasing the negative environmental effects of the urban road transportation instead of protecting a very limited downtown area.Keywords: Budapest, congestion charge, distance matrix API, application programming interface, pilot study
Procedia PDF Downloads 196119 Evaluation of a Driver Training Intervention for People on the Autism Spectrum: A Multi-Site Randomized Control Trial
Authors: P. Vindin, R. Cordier, N. J. Wilson, H. Lee
Abstract:
Engagement in community-based activities such as education, employment, and social relationships can improve the quality of life for individuals with Autism Spectrum Disorder (ASD). Community mobility is vital to attaining independence for individuals with ASD. Learning to drive and gaining a driver’s license is a critical link to community mobility; however, for individuals with ASD acquiring safe driving skills can be a challenging process. Issues related to anxiety, executive function, and social communication may affect driving behaviours. Driving training and education aimed at addressing barriers faced by learner drivers with ASD can help them improve their driving performance. A multi-site randomized controlled trial (RCT) was conducted to evaluate the effectiveness of an autism-specific driving training intervention for improving the on-road driving performance of learner drivers with ASD. The intervention was delivered via a training manual and interactive website consisting of five modules covering varying driving environments starting with a focus on off-road preparations and progressing through basic to complex driving skill mastery. Seventy-two learner drivers with ASD aged 16 to 35 were randomized using a blinded group allocation procedure into either the intervention or control group. The intervention group received 10 driving lessons with the instructors trained in the use of an autism-specific driving training protocol, whereas the control group received 10 driving lessons as usual. Learner drivers completed a pre- and post-observation drive using a standardized driving route to measure driving performance using the Driving Performance Checklist (DPC). They also completed anxiety, executive function, and social responsiveness measures. The findings showed that there were significant improvements in driving performance for both the intervention (d = 1.02) and the control group (d = 1.15). However, the differences were not significant between groups (p = 0.614) or study sites (p = 0.842). None of the potential moderator variables (anxiety, cognition, social responsiveness, and driving instructor experience) influenced driving performance. This study is an important step toward improving community mobility for individuals with ASD showing that an autism-specific driving training intervention can improve the driving performance of leaner drivers with ASD. It also highlighted the complexity of conducting a multi-site design even when sites were matched according to geography and traffic conditions. Driving instructors also need more and clearer information on how to communicate with learner drivers with restricted verbal expression.Keywords: autism spectrum disorder, community mobility, driving training, transportation
Procedia PDF Downloads 132118 Transition towards a Market Society: Commodification of Public Health in India and Pakistan
Authors: Mayank Mishra
Abstract:
Market Economy can be broadly defined as economic system where supply and demand regulate the economy and in which decisions pertaining to production, consumption, allocation of resources, price and competition are made by collective actions of individuals or organisations with limited government intervention. On the other hand Market Society is one where instead of the economy being embedded in social relations, social relations are embedded in the economy. A market economy becomes a market society when all of land, labour and capital are commodified. This transition also has effect on people’s attitude and values. Such a transition commence impacting the non-material aspect of life such as public education, public health and the like. The inception of neoliberal policies in non-market norms altered the nature of social goods like public health that raised the following questions. What impact would the transition to a market society make on people in terms of accessibility to public health? Is healthcare a commodity that can be subjected to a competitive market place? What kind of private investments are being made in public health and how do private investments alter the nature of a public good like healthcare? This research problem will employ empirical-analytical approach that includes deductive reasoning which will be using the existing concept of market economy and market society as a foundation for the analytical framework and the hypotheses to be examined. The research also intends to inculcate the naturalistic elements of qualitative methodology which refers to studying of real world situations as they unfold. The research will analyse the existing literature available on the subject. Concomitantly the research intends to access the primary literature which includes reports from the World Bank, World Health Organisation (WHO) and the different departments of respective ministries of the countries for the analysis. This paper endeavours to highlight how the issue of commodification of public health would lead to perpetual increase in its inaccessibility leading to stratification of healthcare services where one can avail the better services depending on the extent of one’s ability to pay. Since the fundamental maxim of private investments is to churn out profits, these kinds of trends would pose a detrimental effect on the society at large perpetuating the lacuna between the have and the have-nots.The increasing private investments, both, domestic and foreign, in public health sector are leading to increasing inaccessibility of public health services. Despite the increase in various public health schemes the quality and impact of government public health services are on a continuous decline.Keywords: commodity, India and Pakistan, market society, public health
Procedia PDF Downloads 312117 Exploring the Role of Hydrogen to Achieve the Italian Decarbonization Targets using an OpenScience Energy System Optimization Model
Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi
Abstract:
Hydrogen is expected to become an undisputed player in the ecological transition throughout the next decades. The decarbonization potential offered by this energy vector provides various opportunities for the so-called “hard-to-abate” sectors, including industrial production of iron and steel, glass, refineries and the heavy-duty transport. In this regard, Italy, in the framework of decarbonization plans for the whole European Union, has been considering a wider use of hydrogen to provide an alternative to fossil fuels in hard-to-abate sectors. This work aims to assess and compare different options concerning the pathway to be followed in the development of the future Italian energy system in order to meet decarbonization targets as established by the Paris Agreement and by the European Green Deal, and to infer a techno-economic analysis of the required asset alternatives to be used in that perspective. To accomplish this objective, the Energy System Optimization Model TEMOA-Italy is used, based on the open-source platform TEMOA and developed at PoliTo as a tool to be used for technology assessment and energy scenario analysis. The adopted assessment strategy includes two different scenarios to be compared with a business-as-usual one, which considers the application of current policies in a time horizon up to 2050. The studied scenarios are based on the up-to-date hydrogen-related targets and planned investments included in the National Hydrogen Strategy and in the Italian National Recovery and Resilience Plan, with the purpose of providing a critical assessment of what they propose. One scenario imposes decarbonization objectives for the years 2030, 2040 and 2050, without any other specific target. The second one (inspired to the national objectives on the development of the sector) promotes the deployment of the hydrogen value-chain. These scenarios provide feedback about the applications hydrogen could have in the Italian energy system, including transport, industry and synfuels production. Furthermore, the decarbonization scenario where hydrogen production is not imposed, will make use of this energy vector as well, showing the necessity of its exploitation in order to meet pledged targets by 2050. The distance of the planned policies from the optimal conditions for the achievement of Italian objectives is be clarified, revealing possible improvements of various steps of the decarbonization pathway, which seems to have as a fundamental element Carbon Capture and Utilization technologies for its accomplishment. In line with the European Commission open science guidelines, the transparency and the robustness of the presented results is ensured by the adoption of the open-source open-data model such as the TEMOA-Italy.Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA
Procedia PDF Downloads 73116 SME Internationalisation and Its Financing: An Exploratory Study That Analyses Government Support and Funding Mechanisms for Irish and Scottish International SMEs
Authors: L. Spencer, S. O’ Donohoe
Abstract:
Much of the research to date on internationalisation relates to large firms with much less known about how small and medium-sized enterprises (SMEs) engage in internationalisation. Given the crucial role of SMEs in contributing to economic growth, there is now an emphasis on the need for SMEs internationalise. Yet little is known about how SMEs undertake and finance such expansion and whether or not internationalisation actually hinders or helps them in securing finance. The purpose of this research is to explore the internationalisation process for SMEs, the sources of funding used in financing this expansion and support received from the state agencies in assisting their overseas expansion. A conceptual framework has been devised which marries the two strands of literature together (internationalisation and financing the firm). The exploratory nature of this research dictates that the most appropriate methodology was to use semi-structured interviews with SME owners; bank representatives and support agencies. In essence, a triangulated approach to the research problem facilitates assessment of the perceptions and experiences from firms, the state and the financial institutions. Our sample is drawn from SMEs operating in Ireland and Scotland, two small but very open economies where SMEs are the dominant form of organisation. The sample includes a range of industry sectors. Key findings to date suggest some SMEs are born global; others are born again global whilst a significant cohort can be classed as traditional internationalisers. Unsurprisingly there is a strong industry effect with firms in the high tech sector more likely to be faster internationalisers in contrast to those in the traditional manufacturing sectors. Owner manager’s own funds are deemed key to financing initial internationalisation lending support for the financial growth life cycle model albeit more important for the faster internationalisers in contrast to the slower cohort who are more likely to deploy external sources especially bank finance. Retained earnings remain the predominant source of on-going financing for internationalising firms but trade credit is often used and invoice discounting is utilised quite frequently. In terms of lending, asset based lending backed by personal guarantees appears paramount for securing bank finance. Whilst the lack of diversified sources of funding for internationalising SMEs was found in both jurisdictions there appears no evidence to suggest that internationalisation impedes firms in securing finance. Finally state supports were cited as important to the internationalisation process, in particular those provided by Enterprise Ireland were deemed very valuable. Considering the paucity of studies to date on SME internationalisation and in particular the funding mechanisms deployed by them; this study seeks to contribute to the body of knowledge in both the international business and finance disciplines.Keywords: funding, government support, international pathways, modes of entry
Procedia PDF Downloads 245115 Digital Twins in the Built Environment: A Systematic Literature Review
Authors: Bagireanu Astrid, Bros-Williamson Julio, Duncheva Mila, Currie John
Abstract:
Digital Twins (DT) are an innovative concept of cyber-physical integration of data between an asset and its virtual replica. They have originated in established industries such as manufacturing and aviation and have garnered increasing attention as a potentially transformative technology within the built environment. With the potential to support decision-making, real-time simulations, forecasting abilities and managing operations, DT do not fall under a singular scope. This makes defining and leveraging the potential uses of DT a potential missed opportunity. Despite its recognised potential in established industries, literature on DT in the built environment remains limited. Inadequate attention has been given to the implementation of DT in construction projects, as opposed to its operational stage applications. Additionally, the absence of a standardised definition has resulted in inconsistent interpretations of DT in both industry and academia. There is a need to consolidate research to foster a unified understanding of the DT. Such consolidation is indispensable to ensure that future research is undertaken with a solid foundation. This paper aims to present a comprehensive systematic literature review on the role of DT in the built environment. To accomplish this objective, a review and thematic analysis was conducted, encompassing relevant papers from the last five years. The identified papers are categorised based on their specific areas of focus, and the content of these papers was translated into a through classification of DT. In characterising DT and the associated data processes identified, this systematic literature review has identified 6 DT opportunities specifically relevant to the built environment: Facilitating collaborative procurement methods, Supporting net-zero and decarbonization goals, Supporting Modern Methods of Construction (MMC) and off-site manufacturing (OSM), Providing increased transparency and stakeholders collaboration, Supporting complex decision making (real-time simulations and forecasting abilities) and Seamless integration with Internet of Things (IoT), data analytics and other DT. Finally, a discussion of each area of research is provided. A table of definitions of DT across the reviewed literature is provided, seeking to delineate the current state of DT implementation in the built environment context. Gaps in knowledge are identified, as well as research challenges and opportunities for further advancements in the implementation of DT within the built environment. This paper critically assesses the existing literature to identify the potential of DT applications, aiming to harness the transformative capabilities of data in the built environment. By fostering a unified comprehension of DT, this paper contributes to advancing the effective adoption and utilisation of this technology, accelerating progress towards the realisation of smart cities, decarbonisation, and other envisioned roles for DT in the construction domain.Keywords: built environment, design, digital twins, literature review
Procedia PDF Downloads 81114 Research on the Optimization of Satellite Mission Scheduling
Authors: Pin-Ling Yin, Dung-Ying Lin
Abstract:
Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling
Procedia PDF Downloads 25113 Redefining Success Beyond Borders: A Deep Dive into Effective Methods to Boost Morale Among Virtual Workers for Exponential Project Performance
Authors: Florence Ibeh, David Oyewmi Oyekunle, David Boohene
Abstract:
The continuous advancement of information technology has completely transformed how businesses and organizations operate on a global scale. The widespread availability of virtual communication tools enables individuals to opt for remote work. While remote employment offers various benefits, such as facilitating corporate growth and enhancing customer support, it also presents distinct challenges. Therefore, investigating the intricacies of virtual team morale is crucial for ensuring the achievement of project objectives. For this study, content analysis of pre-existing secondary data was employed to examine the phenomenon. Essential elements vital for improving the success of projects within virtual teams were identified. These factors include technology adoption, creating a distraction-free work environment, effective leadership, trust-building, clear communication channels, well-defined task allocation, active team participation, and motivation. Furthermore, the study established a substantial correlation between morale levels and the participation and productivity of virtual team members. Higher levels of morale were associated with optimal performance among virtual teams. The study determined that the key factors for enhancing project performance in virtual teams are the adoption of technology, a focused environment, effective leadership, trust, communication, well-defined tasks, collaborative teamwork, and motivation. Additionally, the study discovered that modifying the optimal strategies employed by in-office teams can enhance the diminished morale prevalent in remote teams to sustain a high level of team morale for virtual teams. The findings of this study are highly significant in the dynamic field of project management. Currently, there is limited information regarding strategies that address challenges arising from external factors in virtual teams, such as ambient noise and disruptions caused by family members. The findings underscore the significance of selecting appropriate communication technologies, delineating distinct roles and responsibilities for virtual team members, and nurturing a culture of accountability and trust. Promoting seamless collaboration and instilling motivation among virtual team members are deemed highly effective in augmenting employee engagement and performance within virtual team setting.Keywords: virtual teams, morale, project performance, distract-free environment, technology adaptation
Procedia PDF Downloads 95112 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques
Authors: Soheila Sadeghi
Abstract:
In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes
Procedia PDF Downloads 39111 Automatic Aggregation and Embedding of Microservices for Optimized Deployments
Authors: Pablo Chico De Guzman, Cesar Sanchez
Abstract:
Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.Keywords: aggregation, deployment, embedding, resource allocation
Procedia PDF Downloads 203110 Measurement of Influence of the COVID-19 Pandemic on Efficiency of Japan’s Railway Companies
Authors: Hideaki Endo, Mika Goto
Abstract:
The global outbreak of the COVID-19 pandemic has seriously affected railway businesses. The number of railway passengers decreased due to the decline in the number of commuters and business travelers to avoid crowded trains and a sharp drop in inbound tourists visiting Japan. This has affected not only railway businesses but also related businesses, including hotels, leisure businesses, and retail businesses at station buildings. In 2021, the companies were divided into profitable and loss-making companies. This division suggests that railway companies, particularly loss-making companies, needed to decrease operational inefficiency. To measure the impact of COVID-19 and discuss the sustainable management strategies of railway companies, we examine the cost inefficiency of Japanese listed railway companies by applying stochastic frontier analysis (SFA) to their operational and financial data. First, we employ the stochastic frontier cost function approach to measure inefficiency. The cost frontier function is formulated as a Cobb–Douglas type, and we estimated parameters and variables for inefficiency. This study uses panel data comprising 26 Japanese-listed railway companies from 2005 to 2020. This period includes several events deteriorating the business environment, such as the financial crisis from 2007 to 2008 and the Great East Japan Earthquake of 2011, and we compare those impacts with those of the COVID-19 pandemic after 2020. Second, we identify the characteristics of the best-practice railway companies and examine the drivers of cost inefficiencies. Third, we analyze the factors influencing cost inefficiency by comparing the profiles of the top 10 railway companies and others before and during the pandemic. Finally, we examine the relationship between cost inefficiency and the implementation of efficiency measures for each railway company. We obtained the following four findings. First, most Japanese railway companies showed the lowest cost inefficiency (most efficient) in 2014 and the highest in 2020 (least efficient) during the COVID-19 pandemic. The second worst occurred in 2009 when it was affected by the financial crisis. However, we did not observe a significant impact of the 2011 Great East Japan Earthquake. This is because no railway company was influenced by the earthquake in this operating area, except for JR-EAST. Second, the best-practice railway companies are KEIO and TOKYU. The main reason for their good performance is that both operate in and near the Tokyo metropolitan area, which is densely populated. Third, we found that non-best-practice companies had a larger decrease in passenger kilometers than best-practice companies. This indicates that passengers made fewer long-distance trips because they refrained from inter-prefectural travel during the pandemic. Finally, we found that companies that implement more efficiency improvement measures had higher cost efficiency and they effectively used their customer databases through proactive DX investments in marketing and asset management.Keywords: COVID-19 pandemic, stochastic frontier analysis, railway sector, cost efficiency
Procedia PDF Downloads 74109 How to Assess the Attractiveness of Business Location According to the Mainstream Concepts of Comparative Advantages
Authors: Philippe Gugler
Abstract:
Goal of the study: The concept of competitiveness has been addressed by economic theorists and policymakers for several hundreds of years, with both groups trying to understand the drivers of economic prosperity and social welfare. The goal of this contribution is to address the major useful theoretical contributions that permit to identify the main drivers of a territory’s competitiveness. We first present the major contributions found in the classical and neo-classical theories. Then, we concentrate on two majors schools providing significant thoughts on the competitiveness of locations: the Economic Geography (EG) School and the International Business (IB) School. Methodology: The study is based on a literature review of the classical and neo-classical theories, on the economic geography theories and on the international business theories. This literature review establishes links between these theoretical mainstreams. This work is based on the academic framework establishing a meaningful literature review aimed to respond to our research question and to develop further research in this field. Results: The classical and neo-classical pioneering theories provide initial insights that territories are different and that these differences explain the discrepancies in their levels of prosperity and standards of living. These theories emphasized different factors impacting the level and the growth of productivity in a given area and therefore the degree of their competitiveness. However, these theories are not sufficient to more precisely identify the drivers and enablers of location competitiveness and to explain, in particular, the factors that drive the creation of economic activities, the expansion of economic activities, the creation of new firms and the attraction of foreign firms. Prosperity is due to economic activities created by firms. Therefore, we need more theoretical insights to scrutinize the competitive advantages of territories or, in other words, their ability to offer the best conditions that enable economic agents to achieve higher rates of productivity in open markets. Two major theories provide, to a large extent, the needed insights: the economic geography theory and the international business theory. The economic geography studies scrutinized in this study from Marshall to Porter, aim to explain the drivers of the concentration of specific industries and activities in specific locations. These activity agglomerations may be due to the creation of new enterprises, the expansion of existing firms, and the attraction of firms located elsewhere. Regarding this last possibility, the international business (IB) theories focus on the comparative advantages of locations as far as multinational enterprises (MNEs) strategies are concerned. According to international business theory, the comparative advantages of a location serves firms not only by exploiting their ownership advantages (mostly as far as market seeking, resource seeking and efficiency seeking investments are concerned) but also by augmenting and/or creating new ownership advantages (strategic asset seeking investments). The impact of a location on the competitiveness of firms is considered from both sides: the MNE’s home country and the MNE’s host country.Keywords: competitiveness, economic geography, international business, attractiveness of businesses
Procedia PDF Downloads 156108 An Empirical Analysis on the Evolution Characteristics and Textual Content of Campus Football Policy in China
Authors: Shangjun Zou, Zhiyuan Wang, Songhui You
Abstract:
Introduction In recent years, the Chinese government has issued several policies to promote the institutional reform and innovation of the development of campus football, but many problems have been exposed in the process of policy implementation. Therefore, this paper attempts to conduct an empirical analysis of the campus football policy texts to reveal the dynamic development of the microsystem in the process of policy evolution. Methods The selected policy contents are coded by constructing a two-dimensional analysis framework of campus football policy tool-policy objective. Specifically, the X dimension consists of three oriented policy tools: environment, supply and demand, while the Y dimension is divided into six aspects of policy objectives, including institution, competition, player teaching, coach training, resource guarantee and popularization. And the distribution differences of textual analysis units on X and Y dimensions are tested by using SPSS22.0 so as to evaluate the characteristics and development trend of campus football policy on respective subjects. Results 1) In the policy evolution process of campus football stepping into the 2.0 Era, there were no significant differences in the frequency distribution of policy tools(p=0.582) and policy objectives(p=0.603). The collaborative governance of multiple participants has become the primary trend, and the guiding role of Chinese Football Association has gradually become prominent. 2) There were significant differences in the distribution of policy tools before the evolution at a 95% confidence level(p=0.041). With environmental tools always maintaining the dominant position, the overall synergy of policy tools increased slightly. 3) There were significant differences in the distribution of policy objectives after the evolution at a 90% confidence level(p=0.069). The competition system of policy objective has not received enough attention while the construction of institution and resource guarantee system has been strengthened. Conclusion The upgraded version of campus football should adhere to the education concept of health first, promote the coordinated development of youth cultural learning and football skills, and strive to achieve more solid popularization, more scientific institution, more comprehensive resource guarantee and adequate integration. At the same time, it is necessary to strengthen the collaborative allocation of policy tools and reasonable planning of policy objectives so as to promote the high quality and sustainable development of campus football in the New Era. Endnote The policy texts selected in this paper are “Implementation Opinions on Accelerating the Development of Youth Campus Football” and “Action Plans for the Construction of Eight Systems of National Youth Campus Football”, which were promulgated on August 13, 2015 and September 25, 2020 respectively.Keywords: campus football, content analysis, evolution characteristics, policy objective, policy tool
Procedia PDF Downloads 189107 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine
Procedia PDF Downloads 8106 Urban Waste Management for Health and Well-Being in Lagos, Nigeria
Authors: Bolawole F. Ogunbodede, Mokolade Johnson, Adetunji Adejumo
Abstract:
High population growth rate, reactive infrastructure provision, inability of physical planning to cope with developmental pace are responsible for waste water crisis in the Lagos Metropolis. Septic tank is still the most prevalent waste-water holding system. Unfortunately, there is a dearth of septage treatment infrastructure. Public waste-water treatment system statistics relative to the 23 million people in Lagos State is worrisome. 1.85 billion Cubic meters of wastewater is generated on daily basis and only 5% of the 26 million population is connected to public sewerage system. This is compounded by inadequate budgetary allocation and erratic power supply in the last two decades. This paper explored community participatory waste-water management alternative at Oworonshoki Municipality in Lagos. The study is underpinned by decentralized Waste-water Management systems in built-up areas. The initiative accommodates 5 step waste-water issue including generation, storage, collection, processing and disposal through participatory decision making in two Oworonshoki Community Development Association (CDA) areas. Drone assisted mapping highlighted building footage. Structured interviews and focused group discussion of land lord associations in the CDA areas provided collaborator platform for decision-making. Water stagnation in primary open drainage channels and natural retention ponds in framing wetlands is traceable to frequent of climate change induced tidal influences in recent decades. Rise in water table resulting in septic-tank leakage and water pollution is reported to be responsible for the increase in the water born infirmities documented in primary health centers. This is in addition to unhealthy dumping of solid wastes in the drainage channels. The effect of uncontrolled disposal system renders surface waters and underground water systems unsafe for human and recreational use; destroys biotic life; and poisons the fragile sand barrier-lagoon urban ecosystems. Cluster decentralized system was conceptualized to service 255 households. Stakeholders agreed on public-private partnership initiative for efficient wastewater service delivery.Keywords: health, infrastructure, management, septage, well-being
Procedia PDF Downloads 174105 Technology Road Mapping in the Fourth Industrial Revolution: A Comprehensive Analysis and Strategic Framework
Authors: Abdul Rahman Hamdan
Abstract:
The Fourth Industrial Revolution (4IR) has brought unprecedented technological advancements that have disrupted many industries worldwide. In keeping up with the technological advances and rapid disruption by the introduction of many technological advancements brought forth by the 4IR, the use of technology road mapping has emerged as one of the critical tools for organizations to leverage. Technology road mapping can be used by many companies to guide them to become more adaptable and anticipate future transformation and innovation, and avoid being redundant or irrelevant due to the rapid changes in technological advancement. This research paper provides a comprehensive analysis of technology road mapping within the context of the 4IR. The objectives of the paper are to provide companies with practical insights and a strategic framework of technology road mapping for them to navigate the fast-changing nature of the 4IR. This study also contributes to the understanding and practice of technology road mapping in the 4IR and, at the same time, provides organizations with the necessary tools and critical insight to navigate the 4IR transformation by leveraging technology road mapping. Based on the literature review and case studies, the study analyses key principles, methodologies, and best practices in technology road mapping and integrates them with the unique characteristics and challenges of the 4IR. The research paper gives the background of the fourth industrial revolution. It explores the disruptive potential of technologies in the 4IR and the critical need for technology road mapping that consists of strategic planning and foresight to remain competitive and relevant in the 4IR era. It also highlights the importance of technology road mapping as an organisation’s proactive approach to align the organisation’s objectives and resources to their technology and product development in meeting the fast-evolving technological 4IR landscape. The paper also includes the theoretical foundations of technology road mapping and examines various methodological approaches, and identifies external stakeholders in the process, such as external experts, stakeholders, collaborative platforms, and cross-functional teams to ensure an integrated and robust technological roadmap for the organisation. Moreover, this study presents a comprehensive framework for technology road mapping in the 4IR by incorporating key elements and processes such as technology assessment, competitive intelligence, risk analysis, and resource allocation. It provides a framework for implementing technology road mapping from strategic planning, goal setting, and technology scanning to road mapping visualisation, implementation planning, monitoring, and evaluation. In addition, the study also addresses the challenges and limitations related to technology roadmapping in 4IR, including the gap analysis. In conclusion of the study, the study will propose a set of practical recommendations for organizations that intend to leverage technology road mapping as a strategic tool in the 4IR in driving innovation and becoming competitive in the current and future ecosystem.Keywords: technology management, technology road mapping, technology transfer, technology planning
Procedia PDF Downloads 68104 Mechanisms Underlying the Effects of School-Based Internet Intervention for Alcohol Drinking Behaviours among Chinese Adolescent
Authors: Keith T. S. Tung, Frederick K. Ho, Rosa S. Wong, Camilla K. M. Lo, Wilfred H. S. Wong, C. B. Chow, Patrick Ip
Abstract:
Objectives: Underage drinking is an important public health problem both locally and globally. Conventional prevention/intervention relies on unidirectional knowledge transfer such as mail leaflets or health talks which showed mixed results in changing the target behaviour. Previously, we conducted a school internet-based intervention which was found to be effective in reducing alcohol use among adolescents, yet the underlying mechanisms have not been properly investigated. This study, therefore, examined the mechanisms that explain how the intervention produced a change in alcohol drinking behaviours among Chinese adolescent as observed in our previous clustered randomised controlled trial (RCT) study. Methods: This is a cluster randomised controlled trial with parallel group design. Participating schools were randomised to the Internet intervention or the conventional health education group (control) with a 1:1 allocation ratio. Secondary 1–3 students of the participating schools were enrolled in this study. The Internet intervention was a web-based quiz game competition, in which participating students would answer 1,000 alcohol-related multiple-choice quiz questions. Conventional health education group received a promotional package on equivalent alcohol-related knowledge. The participants’ alcohol-related attitude, knowledge, and perceived behavioural control were self-reported before the intervention (baseline) and one month and three months after the intervention. Results: Our RCT results showed that participants in the Internet group were less likely to drink (risk ratio [RR] 0.79, p < 0.01) as well as in lesser amount (β -0.06, p < 0.05) compared to those in the control group at both post-intervention follow-ups. Within the intervention group, regression analyses showed that high quiz scorer had greater improvement in alcohol-related knowledge (β 0.28, p < 0.01) and attitude (β -0.26, p < 0.01) at 1 month after intervention, which in turn increased their perceived behavioural control against alcohol use (β 0.10 and -0.26, both p < 0.01). Attitude, compared to knowledge, was found to be a stronger contributor to the intervention effect on perceived behavioural control. Conclusions: Our internet-based intervention has demonstrated effectiveness in reducing the risk of underage drinking when compared with conventional health education. Our study results further showed an attitude to be a more important factor than knowledge in changing health-related behaviour. This has an important implication for future prevention/intervention on an underage drinking problem.Keywords: adolescents, internet-based intervention, randomized controlled trial, underage drinking
Procedia PDF Downloads 164