Search results for: folded potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11620

Search results for: folded potential

1810 Understanding the Influence of Social Media on Individual’s Quality of Life Perceptions

Authors: Biljana Marković

Abstract:

Social networks are an integral part of our everyday lives, becoming an indispensable medium for communication in personal and business environments. New forms and ways of communication change the general mindset and significantly affect the quality of life of individuals. Quality of life is perceived as an abstract term, but often people are not aware that they directly affect the quality of their own lives, making minor but significant everyday choices and decisions. Quality of life can be defined broadly, but in the widest sense, it involves a subjective sense of satisfaction with one's life. Scientific knowledge about the impact of social networks on self-assessment of the quality of life of individuals is only just beginning to be researched. Available research indicates potential benefits as well as a number of disadvantages. In the context of the previous claims, the focus of the study conducted by the authors of this paper focuses on analyzing the impact of social networks on individual’s self-assessment of quality of life and the correlation between time spent on social networks, and the choice of content that individuals choose to share to present themselves. Moreover, it is aimed to explain how much and in what ways they critically judge the lives of others online. The research aspires to show the positive as well as negative aspects that social networks, primarily Facebook and Instagram, have on creating a picture of individuals and how they compare themselves with others. The topic of this paper is based on quantitative research conducted on a representative sample. An analysis of the results of the survey conducted online has elaborated a hypothesis which claims that content shared by individuals on social networks influences the image they create about themselves. A comparative analysis of the results obtained with the results of similar research has led to the conclusion about the synergistic influence of social networks on the feeling of the quality of life of respondents. The originality of this work is reflected in the approach of conducting research by examining attitudes about an individual's life satisfaction, the way he or she creates a picture of himself/herself through social networks, the extent to which he/she compares herself/himself with others, and what social media applications he/she uses. At the cognitive level, scientific contributions were made through the development of information concepts on quality of life, and at the methodological level through the development of an original methodology for qualitative alignment of respondents' attitudes using statistical analysis. Furthermore, at the practical level through the application of concepts in assessing the creation of self-image and the image of others through social networks.

Keywords: quality of life, social media, self image, influence of social media

Procedia PDF Downloads 128
1809 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application

Authors: Jeff Moussodji, Dominique Drouin

Abstract:

The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.

Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling

Procedia PDF Downloads 213
1808 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey

Authors: Melis Inalpulat, Levent Genc

Abstract:

Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), and Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased % 29 between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32 °C in 1984 and 27-33 °C in 2014. Minimum temperature of agricultural lands was increased 3 °C and reached to 23 °C. In contrast, maximum temperature of A class decreased to 41 °C from 44 °C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2 °C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.

Keywords: census data, landsat, land surface temperature (LST), land use land cover (LULC)

Procedia PDF Downloads 392
1807 The Toxicity of Doxorubicin Connected with Nanotransporters

Authors: Iva Blazkova, Amitava Moulick, Vedran Milosavljevic, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

Doxorubicin is one of the most commonly used and the most effective chemotherapeutic drugs. This antracycline drug isolated from the bacteria Streptomyces peuceticus var. caesius is sold under the trade name Adriamycin (hydroxydaunomycin, hydroxydaunorubicin). Doxorubicin is used in single therapy to treat hematological malignancies (blood cancers, leukaemia, lymphoma), many types of carcinoma (solid tumors) and soft tissue sarcomas. It has many serious side effects like nausea and vomiting, hair lost, myelosupression, oral mucositis, skin reactions and redness, but the most serious one is the cardiotoxicity. Because of the risk of heart attack and congestive heart failure, the total dose administered to patients has to be accurately monitored. With the aim to lower the side effects and to targeted delivery of doxorubicin into the tumor tissue, the different nanoparticles are studied. The drug can be bound on a surface of nanoparticle, encapsulated in the inner cavity, or incorporated into the structure of nanoparticle. Among others, carbon nanoparticles (graphene, carbon nanotubes, fullerenes) are highly studied. Besides the number of inorganic nanoparticles, a great potential exhibit also organic ones mainly lipid-based and polymeric nanoparticle. The aim of this work was to perform a toxicity study of free doxorubicin compared to doxorubicin conjugated with various nanotransporters. The effect of liposomes, fullerenes, graphene, and carbon nanotubes on the toxicity was analyzed. As a first step, the binding efficacy of between doxorubicin and the nanotransporter was determined. The highest efficacy was detected in case of liposomes (85% of applied drug was encapsulated) followed by graphene, carbon nanotubes and fullerenes. For the toxicological studies, the chicken embryos incubated under controlled conditions (37.5 °C, 45% rH, rotation every 2 hours) were used. In 7th developmental day of chicken embryos doxorubicin or doxorubicin-nanotransporter complex was applied on the chorioallantoic membrane of the eggs and the viability was analyzed every day till the 17th developmental day. Then the embryos were extracted from the shell and the distribution of doxorubicin in the body was analyzed by measurement of organs extracts using laser induce fluorescence detection. The chicken embryo mortality caused by free doxorubicin (30%) was significantly lowered by using the conjugation with nanomaterials. The highest accumulation of doxorubicin and doxorubicin nanotransporter complexes was observed in the liver tissue

Keywords: doxorubicin, chicken embryos, nanotransporters, toxicity

Procedia PDF Downloads 449
1806 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception

Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova

Abstract:

The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.

Keywords: bistability, brain, noise, perception, stochastic processes

Procedia PDF Downloads 446
1805 Generation and Migration of Carbone Dioxide in the Lower Cretaceous Bahi Sandstone Reservoir Within the En Naga Sub-Basin, Sirte Basin, Libya

Authors: Moaawia Abdulgader Gdara

Abstract:

En Naga sub - basin considered the most southern of the concessions in the Sirte Basin operated by HOO. En Naga Sub-basin has likely been point-sourced of CO₂ accumulations during the last 7 million years from local satellite intrusives associated with the Haruj Al Aswad igneous complex. CO₂ occurs in the En Naga Sub-basin as a result of the igneous activity of the Al Harouge Al Aswad complex. Igneous extrusives have been pierced in the subsurface and are exposed to the surface. The lower cretaceous Bahi Sandstone facies are recognized in the En Naga Sub-basin. In the Lower Cretaceous Bahi Sandstones, the presence of trapped carbon dioxide is proven within the En Naga Sub-basin. This makes it unique in providing an abundance of CO₂ gas reservoirs with almost pure magmatic CO₂, which can be easily sampled. Huge amounts of CO₂ exist in the Lower Cretaceous Bahi Sandstones in the En Naga sub-basin, where the economic value of CO₂ is related to its use for enhanced oil recovery (EOR). Based on the production tests for the drilled wells that make Lower Cretaceous Bahi sandstones the principal reservoir rocks for CO₂ where large volumes of CO₂ gas have been discovered in the Bahi Formation on and near Concession 72 (En Naga sub-basin). The Bahi sandstones are generally described as a good reservoir rock. Intergranular porosities and permeabilities are highly variable and can exceed 25% and 100 MD. In the (En Naga sub-basin), three main developed structures (Barrut I, En Naga A, and En Naga O) are thought to be prospective for the lower Cretaceous Bahi sandstone reservoir. These structures represent a good example of the deep over-pressure potential in (the En Naga sub-basin). The very high pressures assumed to be associated with local igneous intrusives may account for the abnormally high Bahi (and Lidam) reservoir pressures. The best gas tests from these facies are at F1-72 on the (Barrut I structure) from part of a 458 feet+ section having an estimated high value of CO₂ as 98% overpressured. Bahi CO₂ prospectivity is thought to be excellent in the central to western areas where At U1-72 (En Naga O structure). A significant CO₂ gas kick occurred at 11,971 feet and quickly led to blowout conditions due to uncontrollable leaks in the surface equipment, which reflects better reservoir quality sandstones associated with Paleostructural highs. Condensate and gas prospectivity increases to the east as the CO₂ prospectivity decreases with distance away from the Al Haruj Al Aswad igneous complex. To date, it has not been possible to accurately determine the volume of these strategically valuable reserves, although there are positive indications that they are very large.

Keywords: En Naga Sub Basin, Al Harouge Al Aswad, CO₂ generation and migration in the Bahi sandstone reservoir, lower cretaceous Bahi sandstone

Procedia PDF Downloads 12
1804 Agricultural Knowledge Management System Design, Use, and Consequence for Knowledge Sharing and Integration

Authors: Dejen Alemu, Murray E. Jennex, Temtim Assefa

Abstract:

This paper is investigated to understand the design, the use, and the consequence of Knowledge Management System (KMS) for knowledge systems sharing and integration. A KMS for knowledge systems sharing and integration is designed to meet the challenges raised by knowledge management researchers and practitioners: the technical, the human, and social factors. Agricultural KMS involves various members coming from different Communities of Practice (CoPs) who possess their own knowledge of multiple practices which need to be combined in the system development. However, the current development of the technology ignored the indigenous knowledge of the local communities, which is the key success factor for agriculture. This research employed the multi-methodological approach to KMS research in action research perspective which consists of four strategies: theory building, experimentation, observation, and system development. Using the KMS development practice of Ethiopian agricultural transformation agency as a case study, this research employed an interpretive analysis using primary qualitative data acquired through in-depth semi-structured interviews and participant observations. The Orlikowski's structuration model of technology has been used to understand the design, the use, and the consequence of the KMS. As a result, the research identified three basic components for the architecture of the shared KMS, namely, the people, the resources, and the implementation subsystems. The KMS were developed using web 2.0 tools to promote knowledge sharing and integration among diverse groups of users in a distributed environment. The use of a shared KMS allows users to access diverse knowledge from a number of users in different groups of participants, enhances the exchange of different forms of knowledge and experience, and creates high interaction and collaboration among participants. The consequences of a shared KMS on the social system includes, the elimination of hierarchical structure, enhance participation, collaboration, and negotiation among users from different CoPs having common interest, knowledge and skill development, integration of diverse knowledge resources, and the requirement of policy and guideline. The research contributes methodologically for the application of system development action research for understanding a conceptual framework for KMS development and use. The research have also theoretical contribution in extending structuration model of technology for the incorporation of variety of knowledge and practical implications to provide management understanding in developing strategies for the potential of web 2.0 tools for sharing and integration of indigenous knowledge.

Keywords: communities of practice, indigenous knowledge, participation, structuration model of technology, Web 2.0 tools

Procedia PDF Downloads 255
1803 Intrathecal: Not Intravenous Administration of Evans Blue Reduces Pain Behavior in Neuropathic Rats

Authors: Kun Hua O., Dong Woon Kim, Won Hyung Lee

Abstract:

Introduction: Neuropathic pain induced by spinal or peripheral nerve injury is highly resistant to common painkillers, nerve blocks, and other pain management approaches. Recently, several new therapeutic drug candidates have been developed to control neuropathic pain. In this study, we used the spinal nerve L5 ligation (SNL) model to investigate the ability of intrathecal or intravenous Evans blue to decrease pain behavior and to study the relationship between Evans blue and the neural structure of pain transmission. Method: Neuropathic pain (allodynia) of the left hind paw was induced by unilateral SNL in Sprague-Dawley rats(n=10) in each group. Evans blue (5, 15, 50μg/10μl) or phosphate buffer saline(PBS,10μl) was injected intrathecally at 3days post-ligation or intravenously(1mg/200 μl) 3days and 5days post-ligation . Mechanical sensitivity was assessed using Von Frey filaments at 3 days post-ligation and at 2 hours, days 1, 2, 3, 5,7 after intrathecal Evans blue injection, and on days 2, 4, 7, and 11 at 14 days after intravenous injection. In the intrathecal group, microglia and glutaminergic neurons in the dorsal horn and VNUT(vesicular nucleotide transporter) in the dorsal root ganglia were tested to evaluate co-staining with Evans blue. The experimental procedures were performed in accordance with the animal care guideline of the Korean Academy of Medical Science(Animal ethic committee of Chungnam National University Hospital: CNUH-014-A0005-1). Results: Tight ligation of the L5 spinal nerve induced allodynia in the left hind paw 3 days post-ligation. Intrathecal Evans blue most significantly(P<0.001) alleviated allodynia at 2 days after intrathecal, but not an intravenous injection. Glutaminergic neurons in the dorsal horn and VNUT in the dorsal root ganglia were co-stained with Evans blue. On the other hand, microglia in the dorsal horn were partially co-stained with Evans blue. Conclusion: We confirmed that Evans blue might have an analgesic effect through the central nervous system, not another system in neuropathic pain of the SNL animal model. These results suggest Evans blue may be a potential new drug for the treatment of chronic pain. This research was supported by the National Research Foundation of Korea (NRF-2020R1A2C100757512), funded by the Ministry of Education.

Keywords: neuropathic pain, Evas blue, intrathecal, intravenous

Procedia PDF Downloads 95
1802 Utilization of Standard Paediatric Observation Chart to Evaluate Infants under Six Months Presenting with Non-Specific Complaints

Authors: Michael Zhang, Nicholas Marriage, Valerie Astle, Marie-Louise Ratican, Jonathan Ash, Haddijatou Hughes

Abstract:

Objective: Young infants are often brought to the Emergency Department (ED) with a variety of complaints, some of them are non-specific and present as a diagnostic challenge to the attending clinician. Whilst invasive investigations such as blood tests and lumbar puncture are necessary in some cases to exclude serious infections, some basic clinical tools in additional to thorough clinical history can be useful to assess the risks of serious conditions in these young infants. This study aimed to examine the utilization of one of clinical tools in this regard. Methods: This retrospective observational study examined the medical records of infants under 6 months presenting to a mixed urban ED between January 2013 and December 2014. The infants deemed to have non-specific complaints or diagnoses by the emergency clinicians were selected for analysis. The ones with clear systemic diagnoses were excluded. Among all relevant clinical information and investigation results, utilization of Standard Paediatric Observation Chart (SPOC) was particularly scrutinized in these medical records. This specific chart was developed by the expert clinicians in local health department. It categorizes important clinical signs into some color-coded zones as a visual cue for serious implication of some abnormalities. An infant is regarded as SPOC positive when fulfills 1 red zone or 2 yellow zones criteria, and the attending clinician would be prompted to investigate and treat for potential serious conditions accordingly. Results: Eight hundred and thirty-five infants met the inclusion criteria for this project. The ones admitted to the hospital for further management were more likely to have SPOC positive criteria than the discharged infants (Odds ratio: 12.26, 95% CI: 8.04 – 18.69). Similarly, Sepsis alert criteria on SPOC were positive in a higher percentage of patients with serious infections (56.52%) in comparison to those with mild conditions (15.89%) (p < 0.001). The SPOC sepsis criteria had a sensitivity of 56.5% (95% CI: 47.0% - 65.7%) and a moderate specificity of 84.1% (95% CI: 80.8% - 87.0%) to identify serious infections. Applying to this infant population, with a 17.4% prevalence of serious infection, the positive predictive value was only 42.8% (95% CI: 36.9% - 49.0%). However, the negative predictive value was high at 90.2% (95% CI: 88.1% - 91.9%). Conclusions: Standard Paediatric Observation Chart has been applied as a useful clinical tool in the clinical practice to help identify and manage young sick infants in ED effectively.

Keywords: clinical tool, infants, non-specific complaints, Standard Paediatric Observation Chart

Procedia PDF Downloads 253
1801 Participatory Planning of the III Young Sea Meeting: An Experience of the Young Albatroz Collective

Authors: Victor V. Ribeiro, Thais C. Lopes, Rafael A. A. Monteiro

Abstract:

The Albatroz, Baleia Jubarte, Coral Vivo, Golfinho Rotador and Tamar projects make up the Young Sea Network (YSN), part of the BIOMAR Network, which aims to integrate the environmental youths of the Brazilian coast. For this, three editions of the Young Sea Meeting (YSM) were performed. Seeking to stimulate belonging, self-knowledge, participation, autonomy and youth protagonism, the Albatroz Project hosted the III YSM, in Bertioga (SP), in April 2019 and aimed to collectively plan the meeting. Five pillars of Environmental Education were used: identity, community, dialogue, power to act and happiness, the OCA Method and the Young Educates Young; Young Chooses Young; and One Generation Learns from the Other principals. In December 2018, still in the II YSM, the participatory planning of the III YSM began. Two "representatives" of each group were voluntarily elected to facilitate joint decisions, propose, receive and communicate demands from their groups and coordinators. The Young Albatroz Collective (YAC) facilitated the organization process as a whole. The purpose of the meeting was collectively constructed, answering the following question: "What is the YSM for?". Only two of the five pairs of representatives responded. There was difficulty gathering the young people in each group, because it was the end of the year, with people traveling. Thus, due to the short planning time, the YAC built a pre-programming to be validated by the other groups, defining as the objective of the meeting the strengthening of youth protagonism within the YSN. In the planning process, the YAC held 20 meetings, with 60 hours of face-to-face work, in three months, and two technical visits to the headquarters of the III YSM. The participatory dynamics of consultation, when it occurred, required up to two weeks, evidencing the limits of participation. The project coordinations stated that they were not being included in the process by their young people. There is a need to work more to be able to aloud the participation, developing skills and understanding about its principles. This training must take place in an articulated way between the network, implying the important role of the five projects in jointly developing and implementing educator processes with this objective in a national dimension, but without forgetting the specificities of each young group. Finally, it is worth highlighting the great potential of the III YSM by stimulating the exercise of leading environmental youth in more than 50 young people from Brazilian coast, linked to the YSN, stimulating the learning and mobilization of young people in favor of coastal and marine conservation.

Keywords: Marine Conservation, Environmental Education, Youth, Participation, Planning

Procedia PDF Downloads 169
1800 Hibiscus Sabdariffa Extracts: A Sustainable and Eco-Friendly Resource for Multifunctional Cellulosic Fibers

Authors: Mohamed Rehan, Gamil E. Ibrahim, Mohamed S. Abdel-Aziz, Shaimaa R. Ibrahim, Tawfik A. Khattab

Abstract:

The utilization of natural products in finishing textiles toward multifunctional applications without side effects is an extremely motivating goal. Hibiscus sabdariffa usually has been used for many traditional medicine applications. To develop an additional use for Hibiscus sabdariffa, an extraction of bioactive compounds from Hibiscus sabdariffa followed by finishing on cellulosic fibers was designed to cleaner production of the value-added textiles fibers with multifunctional applications. The objective of this study is to explore, identify, and evaluate the bioactive compound extracted from Hibiscus sabdariffa by different solvent via ultrasonic technique as a potential eco-friendly agent for multifunctional cellulosic fabrics via two approaches. In the first approach, Hibiscus sabdariffa extract was used as a source of sustainable eco-friendly for simultaneous coloration and multi-finishing of cotton fabrics via in situ incorporations of nanoparticles (silver and metal oxide). In the second approach, the micro-capsulation of Hibiscus sabdariffa extracts was followed by coating onto cotton gauze to introduce multifunctional healthcare applications. The effect of the solvent type was accelerated by ultrasonic on the phytochemical, antioxidant, and volatile compounds of Hibiscus sabdariffa. The surface morphology and elemental content of the treated fabrics were explored using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The multifunctional properties of treated fabrics, including coloration, sensor properties and protective properties against pathogenic microorganisms and UV radiation as well as wound healing property were evaluated. The results showed that the water, as well as ethanol/water, was selected as a solvent for the extraction of natural compounds from Hibiscus Sabdariffa with high in extract yield, total phenolic contents, flavonoid contents, and antioxidant activity. These natural compounds were utilized to enhance cellulosic fibers functionalization by imparting faint/dark red color, antimicrobial against different organisms, and antioxidants as well as UV protection properties. The encapsulation of Hibiscus Sabdariffa extracts, as well as wound healing, is under consideration and evaluation. As a result, the current study presents a sustainable and eco-friendly approach to design cellulosic fabrics for multifunctional medical and healthcare applications.

Keywords: cellulosic fibers, Hibiscus sabdariffa extract, multifunctional application, nanoparticles

Procedia PDF Downloads 148
1799 Evaluation of Low Temperature as Treatment Tool for Eradication of Mediterranean Fruit Fly (Ceratitis capitata) in Artificial Diet

Authors: Farhan J. M. Al-Behadili, Vineeta Bilgi, Miyuki Taniguchi, Junxi Li, Wei Xu

Abstract:

Mediterranean fruit fly (Ceratitis capitata) is one of the most destructive pests of fruits and vegetables. Medfly originated from Africa and spread in many countries, and is currently an endemic pest in Western Australia. Medfly has been recorded from over 300 plant species including fruits, vegetables, nuts and its main hosts include blueberries, citrus, stone fruit, pome fruits, peppers, tomatoes, and figs. Global trade of fruits and other farm fresh products are suffering from the damages of this pest, which prompted towards the need to develop more effective ways to control these pests. The available quarantine treatment technologies mainly include chemical treatment (e.g., fumigation) and non-chemical treatments (e.g., cold, heat and irradiation). In recent years, with the loss of several chemicals, it has become even more important to rely on non-chemical postharvest control technologies (i.e., heat, cold and irradiation) to control fruit flies. Cold treatment is one of the most potential trends of focus in postharvest treatment because it is free of chemical residues, mitigates or kills the pest population, increases the strength of the fruits, and prolongs storage time. It can also be applied to fruits after packing and ‘in transit’ during lengthy transport by sea during their exports. However, limited systematic study on cold treatment of Medfly stages in artificial diets was reported, which is critical to provide a scientific basis to compare with previous research in plant products and design an effective cold treatment suitable for exported plant products. The overall purpose of this study was to evaluate and understand Medfly responses to cold treatments. Medfly stages were tested. The long-term goal was to optimize current postharvest treatments and develop more environmentally-friendly, cost-effective, and efficient treatments for controlling Medfly. Cold treatment with different exposure times is studied to evaluate cold eradication treatment of Mediterranean fruit fly (Ceratitis capitata), that reared on carrot diet. Mortality is important aspect was studied in this study. On the other hand, study effects of exposure time on mortality means of medfly stages.

Keywords: cold treatment, fruit fly, Ceratitis capitata, carrot diet, temperature effects

Procedia PDF Downloads 226
1798 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 41
1797 Detection of Aflatoxin B1 Producing Aspergillus flavus Genes from Maize Feed Using Loop-Mediated Isothermal Amplification (LAMP) Technique

Authors: Sontana Mimapan, Phattarawadee Wattanasuntorn, Phanom Saijit

Abstract:

Aflatoxin contamination in maize, one of several agriculture crops grown for livestock feeding, is still a problem throughout the world mainly under hot and humid weather conditions like Thailand. In this study Aspergillus flavus (A. Flavus), the key fungus for aflatoxin production especially aflatoxin B1 (AFB1), isolated from naturally infected maize were identified and characterized according to colony morphology and PCR using ITS, Beta-tubulin and calmodulin genes. The strains were analysed for the presence of four aflatoxigenic biosynthesis genes in relation to their capability to produce AFB1, Ver1, Omt1, Nor1, and aflR. Aflatoxin production was then confirmed using immunoaffinity column technique. A loop-mediated isothermal amplification (LAMP) was applied as an innovative technique for rapid detection of target nucleic acid. The reaction condition was optimized at 65C for 60 min. and calcein flurescent reagent was added before amplification. The LAMP results showed clear differences between positive and negative reactions in end point analysis under daylight and UV light by the naked eye. In daylight, the samples with AFB1 producing A. Flavus genes developed a yellow to green color, but those without the genes retained the orange color. When excited with UV light, the positive samples become visible by bright green fluorescence. LAMP reactions were positive after addition of purified target DNA until dilutions of 10⁻⁶. The reaction products were then confirmed and visualized with 1% agarose gel electrophoresis. In this regards, 50 maize samples were collected from dairy farms and tested for the presence of four aflatoxigenic biosynthesis genes using LAMP technique. The results were positive in 18 samples (36%) but negative in 32 samples (64%). All of the samples were rechecked by PCR and the results were the same as LAMP, indicating 100% specificity. Additionally, when compared with the immunoaffinity column-based aflatoxin analysis, there was a significant correlation between LAMP results and aflatoxin analysis (r= 0.83, P < 0.05) which suggested that positive maize samples were likely to be a high- risk feed. In conclusion, the LAMP developed in this study can provide a simple and rapid approach for detecting AFB1 producing A. Flavus genes from maize and appeared to be a promising tool for the prediction of potential aflatoxigenic risk in livestock feedings.

Keywords: Aflatoxin B1, Aspergillus flavus genes, maize, loop-mediated isothermal amplification

Procedia PDF Downloads 241
1796 Measuring the Effect of a Music Therapy Intervention in a Neonatal Intensive Care Unit in Spain

Authors: Pablo González Álvarez, Anna Vinaixa Vergés, Paula Sol Ventura, Paula Fernández, Mercè Redorta, Gemma Ginovart Galiana, Maria Méndez Hernández

Abstract:

Context: The use of music therapy is gaining popularity worldwide, and it has shown positive effects in neonatology. Hospital Germans Trias i Pujol has recently established a music therapy unit and initiated a project in their neonatal intensive care unit (NICU). Research Aim: The aim of this study is to measure the effect of a music therapy intervention in the NICU of Hospital Germans Trias i Pujol in Spain. Methodology: The study will be an observational analytical case-control study. All newborns admitted to the neonatology unit, both term and preterm, and their parents will be offered a session of music therapy. Data will be collected from families who receive at least two music therapy sessions. Maternal and paternal anxiety levels will be measured through a pre- and post-intervention test. Findings: The study aims to demonstrate the benefits and acceptance of music therapy by patients, parents, and healthcare workers in the neonatal unit. The findings are expected to show a reduction in maternal and paternal anxiety levels following the music therapy sessions. Theoretical Importance: This study contributes to the growing body of literature on the effectiveness of music therapy in neonatal care. It will provide evidence of the acceptance and potential benefits of music therapy in reducing anxiety levels in both parents and babies in the NICU setting. Data Collection: Data will be collected from families who receive at least two music therapy sessions. This will include pre- and post-intervention test results to measure anxiety levels. Analysis Procedures: The collected data will be analyzed using appropriate statistical methods to determine the impact of music therapy on reducing anxiety levels in parents. Questions Addressed: - What is the effect of music therapy on maternal anxiety levels? - What is the effect of music therapy on paternal anxiety levels? - What is the acceptability and perceived benefits of music therapy among patients and healthcare workers in the NICU? Conclusion: The study aims to provide evidence supporting the value of music therapy in the neonatal intensive care unit. It seeks to demonstrate the positive effect of music therapy on reducing anxiety levels among parents.

Keywords: neonatology, music therapy, neonatal intensive care unit, babies, parents

Procedia PDF Downloads 53
1795 Polyvinyl Alcohol Incorporated with Hibiscus Extract Microcapsules as Combined Active and Intelligent Composite Film for Meat Preservation

Authors: Ahmed F. Ghanem, Marwa I. Wahba, Asmaa N. El-Dein, Mohamed A. EL-Raey, Ghada E.A. Awad

Abstract:

Numerous attempts are being performed in order to formulate suitable packaging materials for meat products. However, to the best of our knowledge, the incorporation of free hibiscus extract or its microcapsules in the pure polyvinyl alcohol (PVA) matrix as packaging materials for meats is seldom reported. Therefore, this study aims at protection of the aqueous crude extract of hibiscus flowers utilizing spry drying encapsulation technique. Fourier transform infrared (FTIR), scanning electron microscope (SEM), and zetasizer results confirmed the successful formation of assembled capsules via strong interactions, spherical rough microparticles, and ~ 235 nm of particle size, respectively. Also, the obtained microcapsules enjoy high thermal stability, unlike the free extract. Then, the obtained spray-dried particles were incorporated into the casting solution of the pure PVA film with a concentration 10 wt. %. The segregated free-standing composite films were investigated, compared to the neat matrix, with several characterization techniques such as FTIR, SEM, thermal gravimetric analysis (TGA), mechanical tester, contact angle, water vapor permeability, and oxygen transmission. The results demonstrated variations in the physicochemical properties of the PVA film after the inclusion of the free and the extract microcapsules. Moreover, biological studies emphasized the biocidal potential of the hybrid films against microorganisms contaminating the meat. Specifically, the microcapsules imparted not only antimicrobial but also antioxidant activities to PVA. Application of the prepared films on the real meat samples displayed low bacterial growth with a slight increase in the pH over the storage time up to 10 days at 4 oC which further proved the meat safety. Moreover, the colors of the films did not significantly changed except after 21 days indicating the spoilage of the meat samples. No doubt, the dual-functional of prepared composite films pave the way towards combined active/smart food packaging applications. This would play a vital role in the food hygiene, including also quality control and assurance.

Keywords: PVA, hibiscus, extraction, encapsulation, active packaging, smart and intelligent packaging, meat spoilage

Procedia PDF Downloads 84
1794 ‘Obuntu Bulamu’: Parental Peer to Peer Support for Inclusion of Children with Disabilities in Central Uganda

Authors: Ruth Nalugya, Claire Nimusiima, Elizabeth Kawesa, Harriet Nambejja, Geert van Hove, Janet Seeley, Femke Bannink Mbazzi

Abstract:

Background: ‘Obuntu bulamu’, an intervention for children, parents, and teachers to improve the participation and inclusion of children with disabilities (CwD) through peer-to-peer support, was developed and tested in central Uganda between 2017 and 2019. The intervention consisted of children, parents, and teachers' training sessions and peer to peer support activities directed at disability inclusion using an African disability framework. In this paper, we discuss parent participation in and parent evaluation of the ‘Obuntu bulamu’ intervention. Methods: This qualitative Afrocentric intervention study was implemented in 10 communities in the Wakiso district in Central Uganda. We purposely selected children aged 8 to 14 years with different impairments, their peers, and parents, with different levels of household income and familial support, who were enrolled in primary schools in the ten communities with on average three children with disabilities per community. Sixty four parents (33 parents of CwDs and 31 peers) participating in the ‘Obuntu bulamu’ study were interviewed at baseline and endline. Two focus group discussions were held with parents at the midline. Parents also participated in a consultative meeting about the intervention design at baseline, and two evaluation workshops held at midline and endline. Thematic data analysis of the interview and focus group data was conducted. Results: Findings showed parents found the group-based activities inspiring and said they built hope and confidence. Parents felt the intervention was acceptable, culturally appropriate, and supportive as it built on values and practices from their own traditions. Parents reported the intervention enhanced a sense of togetherness and belonging through the group meetings and follow-up activities. Parents also mentioned that the training helped them develop more positive attitudes towards CwD and disability inclusion. Parents felt that the invention increased a child’s participation and inclusion at home, school, and in communities. Conclusion: The Obuntu bulamu peer to peer support intervention is an acceptable, culturally appropriate intervention that has the potential to improve the inclusion of CwD. A larger randomized control trial is needed to evaluate the impact of the intervention model.

Keywords: inclusion, participation, inclusive education, peer support, belonging, Ubuntu, ‘Obuntu bulamu’

Procedia PDF Downloads 107
1793 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 100
1792 A Pilot Study on the Development and Validation of an Instrument to Evaluate Inpatient Beliefs, Expectations and Attitudes toward Reflexology (IBEAR)-16

Authors: Samuel Attias, Elad Schiff, Zahi Arnon, Eran Ben-Arye, Yael Keshet, Ibrahim Matter, Boker Lital Keinan

Abstract:

Background: Despite the extensive use of manual therapies, reflexology in particular, no validated tools have been developed to evaluate patients' beliefs, attitudes and expectations regarding reflexology. Such tools however are essential to improve the results of the reflexology treatment, by better adjusting it to the patients' attitudes and expectations. The tool also enables assessing correlations with clinical results of interventional studies using reflexology. Methods: The IBEAR (Inpatient Beliefs, Expectations and Attitudes toward Reflexology) tool contains 25 questions (8 demographic and 17 specifically addressing reflexology), and was constructed in several stages: brainstorming by a multidisciplinary team of experts; evaluation of each of the proposed questions by the experts' team; and assessment of the experts' degree of agreement per each question, based on a Likert 1-7 scale (1 – don't agree at all; 7 – agree completely). Cronbach's Alpha was computed to evaluate the questionnaire's reliability while the Factor analysis test was used for further validation (228 patients). The questionnaire was tested and re-tested (48h) on a group of 199 patients to assure clarity and reliability, using the Pearson coefficient and the Kappa test. It was modified based on these results into its final form. Results: After its construction, the IBEAR questionnaire passed the expert group's preliminary consensus, evaluation of the questions' clarity (from 5.1 to 7.0), inner validation (from 5.5 to 7) and structural validation (from 5.5 to 6.75). Factor analysis pointed to two content worlds in a division into 4 questions discussing attitudes and expectations versus 5 questions on belief and attitudes. Of the 221 questionnaires collected, a Cronbach's Alpha coefficient was calculated on nine questions relating to beliefs, expectations, and attitudes regarding reflexology. This measure stood at 0.716 (satisfactory reliability). At the Test-Retest stage, 199 research participants filled in the questionnaire a second time. The Pearson coefficient for all questions ranged between 0.73 and 0.94 (good to excellent reliability). As for dichotomic answers, Kappa scores ranged between 0.66 and 1.0 (mediocre to high). One of the questions was removed from the IBEAR following questionnaire validation. Conclusions: The present study provides evidence that the proposed IBEAR-16 questionnaire is a valid and reliable tool for the characterization of potential reflexology patients and may be effectively used in settings which include the evaluation of inpatients' beliefs, expectations, and attitudes toward reflexology.

Keywords: reflexology, attitude, expectation, belief, CAM, inpatient

Procedia PDF Downloads 229
1791 Al₂O₃ Nano-Particles Impact on Pseudomonas Putida Gene Expression: Implications for Environmental Risk

Authors: Nina Doskocz, Katarzyna Affek, Magdalena Matczuk, Monika Załęska-Radziwiłł

Abstract:

Wastewater treatment is a critical environmental issue, especially in the face of increasing urbanization and industrialization. One of the emerging issues related to wastewater is the presence of nanoparticles (NPs) - tiny particles with dimensions measured in nanometers. These nanoparticles are widely used in various industries, including medicine, electronics, and consumer products. With technological advances, NPs are increasingly finding their way into water and wastewater systems, posing new environmental challenges that require urgent research and regulation. Therefore, research on the impact of nanoparticles on wastewater treatment processes is critical to protect environmental health and ensure sustainable development in the face of advancing nanotechnology. Traditional ecotoxicological tests are often inadequate for routine analysis as they do not provide insight into the mechanisms of toxicity of these compounds. The development of (geno)toxicity biomarkers for nanoparticles will greatly aid in the rapid assessment and prediction of the effects of current and emerging nanomaterials on various organisms. However, despite growing interest in gene expression responses to nanoparticle-induced stress, the toxic mechanisms of action and defense responses against nanoparticle toxicity remain poorly understood. The aim of our research was to investigate the expression of several molecular biomarkers related to essential cellular functions - such as oxidative stress, xenobiotic detoxification, and mitochondrial electron transport - in Pseudomonas putida in response to Al₂O₃ nanoparticles found in wastewater, both before and after biological treatment, as well as in their native form. Real-time PCR (qPCR) was used to assess gene expression changes after 1 hour and 16 hours of exposure to Al₂O₃ NPs and wastewater containing these nanoparticles, both before and after biological treatment. In addition, gene expression measurements were performed on P. putida in the presence of bulk Al₂O₃ (pristine and in wastewater). The results showed increased expression of ahpC, katE and ctaD genes, indicating oxidative stress, increased detoxification capacity and impaired mitochondrial function. Both untreated and treated wastewater containing nanoparticles caused significant changes in gene expression, demonstrating the persistent bioactivity and potential toxicity of these nanoparticles. Nanoparticles exhibited greater reactivity and bioavailability compared to their bulk counterparts.

Keywords: nanoparticles, wastewater, gene expression, qPCR

Procedia PDF Downloads 22
1790 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.

Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter

Procedia PDF Downloads 331
1789 Modeling the Acquisition of Expertise in a Sequential Decision-Making Task

Authors: Cristóbal Moënne-Loccoz, Rodrigo C. Vergara, Vladimir López, Domingo Mery, Diego Cosmelli

Abstract:

Our daily interaction with computational interfaces is plagued of situations in which we go from inexperienced users to experts through self-motivated exploration of the same task. In many of these interactions, we must learn to find our way through a sequence of decisions and actions before obtaining the desired result. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion so that a specific sequence of actions must be performed in order to produce the expected outcome. But, as they become experts in the use of such interfaces, do users adopt specific search and learning strategies? Moreover, if so, can we use this information to follow the process of expertise development and, eventually, predict future actions? This would be a critical step towards building truly adaptive interfaces that can facilitate interaction at different moments of the learning curve. Furthermore, it could provide a window into potential mechanisms underlying decision-making behavior in real world scenarios. Here we tackle this question using a simple game interface that instantiates a 4-level binary decision tree (BDT) sequential decision-making task. Participants have to explore the interface and discover an underlying concept-icon mapping in order to complete the game. We develop a Hidden Markov Model (HMM)-based approach whereby a set of stereotyped, hierarchically related search behaviors act as hidden states. Using this model, we are able to track the decision-making process as participants explore, learn and develop expertise in the use of the interface. Our results show that partitioning the problem space into such stereotyped strategies is sufficient to capture a host of exploratory and learning behaviors. Moreover, using the modular architecture of stereotyped strategies as a Mixture of Experts, we are able to simultaneously ask the experts about the user's most probable future actions. We show that for those participants that learn the task, it becomes possible to predict their next decision, above chance, approximately halfway through the game. Our long-term goal is, on the basis of a better understanding of real-world decision-making processes, to inform the construction of interfaces that can establish dynamic conversations with their users in order to facilitate the development of expertise.

Keywords: behavioral modeling, expertise acquisition, hidden markov models, sequential decision-making

Procedia PDF Downloads 253
1788 Commitment Dynamics: Generational Variations in Romantic Relationships among Gen X, Millennials and Gen Z

Authors: Ispreha Bailung

Abstract:

Background: Romantic commitment has evolved across generations, influenced by societal, cultural, and technological changes. This study explores how Generation X, Millennials, and Gen Z perceive, develop, and sustain commitment, with a focus on family, society, and technology. The objectives are to uncover generational differences, identify barriers to commitment, and examine cultural influences, offering insights to foster healthier relationships in a shifting world. Method: A phenomenological approach was used to examine generational differences in romantic commitment dynamics. Fifteen participants (five from each generation) were recruited online. Inclusion criteria required participants to identify with a specified generation and have romantic relationship experience. Semi-structured interviews (60–90 minutes) were conducted, focusing on personal experiences, values, and technology's influence on commitment. Interviews were recorded, transcribed, and analyzed thematically. Ethical protocols ensured participant well-being and data integrity. Findings: Generational shifts in commitment were observed, with Gen X emphasizing traditional values like marriage and loyalty, Millennials balancing tradition with personal fulfillment, and Gen Z prioritizing autonomy and mental well-being. Technology, such as dating apps and social media, created option overload and skepticism about authenticity. Despite increasing individualization, family influence remained significant. Key barriers to commitment included emotional detachment, career priorities, and trust issues, reflecting a broader shift toward more flexible and individualized relationships. Conclusion: This study provides valuable insights into generational differences in commitment dynamics, highlighting shifts in how commitment is viewed and enacted. While the study contributes to understanding evolving perspectives, the findings are limited by a small sample size, potential cultural biases, and the short-term nature of the research, limiting generalizability. Future Implications: Future research should focus on cross-cultural and longitudinal studies to track changes in commitment perceptions. Examining digital communication’s impact on relationship satisfaction and exploring new frameworks for assessing relationship success will further inform understanding and policymaking in the context of evolving romantic dynamics.

Keywords: generational differences, commitment dynamics, romantic relationships, emotional compatibility, social media

Procedia PDF Downloads 11
1787 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 65
1786 From Stalemate to Progress: Navigating the Restitution Maze in Belgium and DRCongo

Authors: Gracia Lwanzo Kasongo

Abstract:

In the realm of cultural heritage, few issues loom larger than the ongoing battle for restitution faced by European and African museums. In Belgium, this contentious process was set in motion by two pivotal events. Firstly, the resounding revelations of the French report on restitution, which boldly declared that 'over 90% of African cultural heritage resides outside of Africa Secondly, the seismic impact of the Black Lives Matter movement following the tragic death of George Floyd. These two events unleashed a wave of outrage among Afro-descendants, who viewed the possession of colonial collections as an enduring symbol of colonial dominance and a stark validation of the systemic racism deeply ingrained within Belgian society. The instrumentalization of cultural property as a means of wielding political power is by no means a novel concept. Its roots can be traced back to the constructed justifications that emerged in the 1950s, during which the Royal Museum for Central Africa in Tervuren played a pivotal role as the self-proclaimed 'guardian of Congolese cultural heritage'. This legacy of legitimizing colonial presence permeates the fabric of Belgium's museum reform policies and the structural management of museums in the Democratic Republic of Congo (DRC). Employing a dialectical approach, I embark on an exploration of the intricate historical interplay between the Royal Museum for Central Africa and the Institute of National Museums of Congo. From this vantage point, I delve into the arduous struggles faced by museums in both the DRC and Belgium as they grapple with the complex and contentious issue of cultural heritage restitution. Central to these struggles is the profound quest for meaning and (re)definition of museums, particularly for Congolese and Afro-descendant communities whose identities and narratives have long been marginalized and suppressed. As the narrative unfolds, I shed light on the prospects for cooperation that have emerged from my extensive fieldwork. Within the interplay of historical entanglements, struggles for restitution, and the search for a more inclusive and equitable museum landscape, glimmers of hope emerge. Collaborative efforts and potential avenues for mutual understanding between Belgium and the DRC begin to take shape, offering a beacon of possibility amidst the often tumultuous discourse surrounding cultural heritage.

Keywords: restitution, museum stuggles, belgium, DRCongo

Procedia PDF Downloads 77
1785 Dimensionality Control of Li Transport by MOFs Based Quasi-Solid to Solid Electrolyte

Authors: Manuel Salado, Mikel Rincón, Arkaitz Fidalgo, Roberto Fernandez, Senentxu Lanceros-Méndez

Abstract:

Lithium-ion batteries (LIBs) are a promising technology for energy storage, but they suffer from safety concerns due to the use of flammable organic solvents in their liquid electrolytes. Solid-state electrolytes (SSEs) offer a potential solution to this problem, but they have their own limitations, such as poor ionic conductivity and high interfacial resistance. The aim of this research was to develop a new type of SSE based on metal-organic frameworks (MOFs) and ionic liquids (ILs). MOFs are porous materials with high surface area and tunable electronic properties, making them ideal for use in SSEs. ILs are liquid electrolytes that are non-flammable and have high ionic conductivity. A series of MOFs were synthesized, and their electrochemical properties were evaluated. The MOFs were then infiltrated with ILs to form a quasi-solid gel and solid xerogel SSEs. The ionic conductivity, interfacial resistance, and electrochemical performance of the SSEs were characterized. The results showed that the MOF-IL SSEs had significantly higher ionic conductivity and lower interfacial resistance than conventional SSEs. The SSEs also exhibited excellent electrochemical performance, with high discharge capacity and long cycle life. The development of MOF-IL SSEs represents a significant advance in the field of solid-state electrolytes. The high ionic conductivity and low interfacial resistance of the SSEs make them promising candidates for use in next-generation LIBs. The data for this research was collected using a variety of methods, including X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The data was analyzed using a variety of statistical and computational methods, including principal component analysis, density functional theory, and molecular dynamics simulations. The main question addressed by this research was whether MOF-IL SSEs could be developed that have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. The results of this research demonstrate that MOF-IL SSEs are a promising new type of solid-state electrolyte for use in LIBs. The SSEs have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. These properties make them promising candidates for use in next-generation LIBs that are safer and have higher energy densities.

Keywords: energy storage, solid-electrolyte, ionic liquid, metal-organic-framework, electrochemistry, organic inorganic plastic crystal

Procedia PDF Downloads 85
1784 A Comparative Study of the Physicochemical and Structural Properties of Quinoa Protein Isolate and Yellow Squat Shrimp Byproduct Protein Isolate through pH-Shifting Modification

Authors: María José Bugueño, Natalia Jaime, Cristian Castro, Diego Naranjo, Guido Trautmann, Mario Pérez-Won, Vilbett Briones-Labarca

Abstract:

Proteins play a crucial role in various prepared foods, including dairy products, drinks, emulsions, and ready meals. These food proteins are naturally present in food waste and byproducts. The alkaline extraction and acid precipitation method is commonly used to extract proteins from plants and animals due to its product stability, cost-effectiveness, and ease of use. This study aimed to investigate the impact of pH-shifting storage at two different pH levels on the conformational changes affecting the physicochemical and functional properties of quinoa protein isolate (QPI) and yellow shrimp byproduct protein isolate (YSPI). The QPI and YSPI were extracted using the alkaline extraction-isoelectric precipitation method. The dispersions were adjusted to pH 4 or 12, stirred for 2 hours at 20°C to achieve a uniform dispersion, and then freeze-dried. Various analyses were conducted, including flexibility (F), free sulfhydryl content (Ho), emulsifying activity (EA), emulsifying capacity (EC), water holding capacity (WHC), oil holding capacity (OHC), intrinsic fluorescence, ultraviolet spectroscopy, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) to assess the properties of the protein isolates. pH-shifting at pH 11 and 12 for QPI and YSPI, respectively, significantly improved protein properties, while property modification of the samples treated under acidic conditions was less pronounced. Additionally, the pH 11 and 12 treatments significantly improved F, Ho, EA, WHC, OHC, intrinsic fluorescence, ultraviolet spectroscopy, DSC, and FTIR. The increase in Ho was due to disulfide bond disruption, which produced more protein sub-units than other treatments for both proteins. This study provides theoretical support for comprehensively elucidating the functional properties of protein isolates, promoting the application of plant proteins and marine byproducts. The pH-shifting process effectively improves the emulsifying property and stability of QPI and YSPI, which can be considered potential plant-based or marine byproduct-based emulsifiers for use in the food industry.

Keywords: quinoa protein, yellow shrimp by-product protein, physicochemical properties, structural properties

Procedia PDF Downloads 50
1783 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.

Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic

Procedia PDF Downloads 258
1782 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach

Authors: Ässia Boukhatmi, Roger Nyffenegger

Abstract:

The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.

Keywords: business model, circular economy, database, design science research, solar industry

Procedia PDF Downloads 130
1781 Extent of Fruit and Vegetable Waste at Wholesaler Stage of the Food Supply Chain in Western Australia

Authors: P. Ghosh, S. B. Sharma

Abstract:

The growing problem of food waste is causing unacceptable economic, environmental and social impacts across the globe. In Australia, food waste is estimated at about AU$8 billion per year; however, information on the extent of wastage at different stages of the food value chain from farm to fork is very limited. This study aims to identify causes for and extent of food waste at wholesaler stage of the food value chain in the state of Western Australia. It also explores approaches applied to reduce and utilize food waste by the wholesalers. The study was carried out at Perth city market in Caning Vale, the main wholesale distribution centre for fruits and vegetables in Western Australia. A survey questionnaire was prepared and shared with 51 wholesalers and their responses to 10 targeted questions on quantity of produce (fruits and vegetables) delivery received and further supplied, reasons for waste generation and innovations applied or being considered to reduce and utilize food waste. Data were computed using the Statistical Package for the Social Sciences (SPSS version 21). Among the wholesalers 52% were primary wholesalers (buy produce directly from growers) and 48% were secondary wholesalers (buy produce in bulk from major wholesalers and supply to the local retail market, caterers, and customers with specific requirements). Average fruit and vegetable waste was 180 Kilogram per week per primary wholesaler and 30 Kilogram per secondary wholesaler. Based on this survey, the fruit and vegetable waste at wholesaler stage was estimated at about 286 tonnes per year. The secondary wholesalers distributed pre-ordered commodities, which minimized the potential to cause waste. Non-parametric test (Mann Whitney test) was carried out to assess contributions of wholesalers to waste generation. Over 56% of secondary wholesalers generally had nothing to bin as waste. Pearson’s correlation coefficient analysis showed positive correlation (r = 0.425; P=0.01) between the quantity of produce received and waste generated. Low market demand was the predominant reason identified by the wholesalers for waste generation. About a third of the wholesalers suggested that high cosmetic standards for fruits and vegetables - appearance, shape, and size - should be relaxed to reduce waste. Donation of unutilized fruits and vegetables to charity was overwhelmingly (95%) considered as one of the best options for utilization of discarded produce. The extent of waste at other stages of fruit and vegetable supply chain is currently being studied.

Keywords: food waste, fruits and vegetables, supply chain, waste generation

Procedia PDF Downloads 313