Search results for: base flow index
289 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality
Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn
Abstract:
This research was conducted in the Mae Sot Watershed whereas located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urbanized in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recently years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood event in 2013 as the worst studied case for those all communities in this municipality. Moreover, other problems are also faced in this watershed such shortage water supply for domestic consumption and agriculture utilizations including deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of appropriated application of some short period rainfall forecasting model as the aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in short period of 7 - 10 days in advance during rainy season instead of real time record. The IDV product can be present in advance period of rainfall with time step of 3 - 6 hours was introduced to the communities. The result can be used to input to either the hydrologic modeling system model (HEC-HMS) or the soil water assessment tool model (SWAT) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfied. The result of IDV’s rainfall forecast data was compared to observed data and found fair. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.Keywords: global rainfall, flood forecast, hydrologic modeling system, river analysis system
Procedia PDF Downloads 349288 Influence of Laser Treatment on the Growth of Sprouts of Different Wheat Varieties
Authors: N. Bakradze, T. Dumbadze, N. Gagelidze, L. Amiranashvili, A. D. L. Batako
Abstract:
Cereals are considered as a strategic product in human life and it demand is increasing with the growth of world population. There is always shortage of cereals in various areas of the globe. For example, Georgia own production meets only 15-20% of the demand for grain, despite the fact that the country is considered one of the main centers of wheat origin. In Georgia, there are 14 types of wheat and more than 150 subspecies, and 40 subspecies of common wheat. Increasing wheat production is important for the country. One of the ways to solve the problem is to develop and implement new, environmentally and economically acceptable technologies. Such technologies include pre-sowing treatment of seed with a laser and associative nitrogen-fixing of the Azospirillum brasilensse bacteria. In the region there are Dika and Lomtagora which are among the most common in Georgia. Dika is a frost-resistant wheat, with a high ability to adapt to the environment, resistant to falling and it is sown in highlands. Dicka excellent properties are due to its strong immunity to fungal diseases; Dicka grains are rich in protein and lysine. Lomtagora 126 differs with its winter and drought resistance, and, it has a great ability to germinate. Lomtagora is characterized by a strong root system and a high budding capacity. It is an early variety, fall-resistant, easy to thresh and suitable for mechanized harvesting with large and red grains. The plant is moderately resistant to fungal diseases. This paper presents some preliminary experimental results where, a continuous CO2 laser at a power of 25-40 W/cm2 was used to radiate grains at a flow rate of 10-15 cm/sec. The treatment was carried out on grains of the Triticum aestivum L. var. of Lutescens (local variety name - Lomtagora 126), and Triticum carthlicum Nevski (local variety name - Dika). Here the grains were treated with Azospirillum brasilensse isolate (108-109 CFU / ml), which was isolated from the rhizosphere of wheat. It was observed that the germination of the wheat was not significantly influenced by either laser or bacteria treatment. In the case of the variety Lomtagora 126, when irradiated at an angle of 90°, it slightly improved the growth within 38 days of sawing, and in the case of irradiation at an angle of 90°+1, by 23%. The treatment of seeds with Azospirillum brazilense in both irradiated and non-irradiated variants led to an improvement in the growth of ssprouts. However, in the case of treatment with azospiril alone - by 22%, and with joint treatment of seeds with azospiril and irradiation - by 29%. In the case of the Dika wheat, the irradiation only led to an increase in growth by 8-9%, and the combine treatment of seeds with azospiril and irradiation - by 10-15%, in comparison with the control. Thus, the combine treatment of wheat of different varieties provided the best effect on the growth. Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) (Grant number CARYS 19-573)Keywords: laser treatment, Azospirillum brasilensse, seeds, wheat varieties, Lomtagora, Dika
Procedia PDF Downloads 144287 Audience Members' Perspective-Taking Predicts Accurate Identification of Musically Expressed Emotion in a Live Improvised Jazz Performance
Authors: Omer Leshem, Michael F. Schober
Abstract:
This paper introduces a new method for assessing how audience members and performers feel and think during live concerts, and how audience members' recognized and felt emotions are related. Two hypotheses were tested in a live concert setting: (1) that audience members’ cognitive perspective taking ability predicts their accuracy in identifying an emotion that a jazz improviser intended to express during a performance, and (2) that audience members' affective empathy predicts their likelihood of feeling the same emotions as the performer. The aim was to stage a concert with audience members who regularly attend live jazz performances, and to measure their cognitive and affective reactions during the performance as non-intrusively as possible. Pianist and Grammy nominee Andy Milne agreed, without knowing details of the method or hypotheses, to perform a full-length solo improvised concert that would include an ‘unusual’ piece. Jazz fans were recruited through typical advertising for New York City jazz performances. The event was held at the New School’s Glass Box Theater, the home of leading NYC jazz venue ‘The Stone.’ Audience members were charged typical NYC jazz club admission prices; advertisements informed them that anyone who chose to participate in the study would be reimbursed their ticket price after the concert. The concert, held in April 2018, had 30 attendees, 23 of whom participated in the study. Twenty-two minutes into the concert, the performer was handed a paper note with the instruction: ‘Perform a 3-5-minute improvised piece with the intention of conveying sadness.’ (Sadness was chosen based on previous music cognition lab studies, where solo listeners were less likely to select sadness as the musically-expressed emotion accurately from a list of basic emotions, and more likely to misinterpret sadness as tenderness). Then, audience members and the performer were invited to respond to a questionnaire from a first envelope under their seat. Participants used their own words to describe the emotion the performer had intended to express, and then to select the intended emotion from a list. They also reported the emotions they had felt while listening using Izard’s differential emotions scale. The concert then continued as usual. At the end, participants answered demographic questions and Davis’ interpersonal reactivity index (IRI), a 28-item scale designed to assess both cognitive and affective empathy. Hypothesis 1 was supported: audience members with greater cognitive empathy were more likely to accurately identify sadness as the expressed emotion. Moreover, audience members who accurately selected ‘sadness’ reported feeling marginally sadder than people who did not select sadness. Hypotheses 2 was not supported; audience members with greater affective empathy were not more likely to feel the same emotions as the performer. If anything, members with lower cognitive perspective-taking ability had marginally greater emotional overlap with the performer, which makes sense given that these participants were less likely to identify the music as sad, which corresponded with the performer’s actual feelings. Results replicate findings from solo lab studies in a concert setting and demonstrate the viability of exploring empathy and collective cognition in improvised live performance.Keywords: audience, cognition, collective cognition, emotion, empathy, expressed emotion, felt emotion, improvisation, live performance, recognized emotion
Procedia PDF Downloads 133286 Choking among Babies, Toddlers and Children with Special Needs: A Review of Mechanisms, Implications, Incidence, and Recommendations of Professional Prevention Guidelines
Authors: Ella Abaev, Shany Segal, Miri Gabay
Abstract:
Background: Choking is a blockage of airways that prevents efficient breathing and air flow to the lungs. Choking may be partial or full and is an emergency situation. Complete or prolonged choking leads to apnea, lack of oxygen in the tissues of the body and brain, and can cause death. There are three mechanisms of choking: obstruction of internal respiratory tracts by food or object aspiration, any material that blocks or covers external air passages, external pressure on the neck or trapping between objects. Children's airways are narrower than that of adults and therefore the risk of choking is greater, due to the aspiration of food and other foreign bodies into the lungs. In the Child Development Center at Safra Children’s Hospital, Tel Hashomer in Israel are treated infants, toddlers, and children aged 0-18 years with various developmental disabilities. Due to the increase in reports of ‘almost an event’ of choking in the past year and the serious consequences of choking event, it was decided to give an emphasis to the issue. Incidence and methods: The number of reports of ‘almost an event’ or a choking event was examined at the center during the years 2013-2018 and a thorough research work was conducted on the subject in order to build a prevention program. Findings: Between 2013 and 2018 the center reported about ten cases of ‘almost choking events’. In the middle of 2018 alone three cases of ‘almost an event’ were reported. Objective: Providing knowledge leads to awareness raise, change of perception, change in behavior and prevention. The center employs more than 130 staff members from various sectors so that it is the work of multi-professional teams to promote the quality and safety of the treatment. The familiarity of the staff with risk factors, prevention guidelines, identification of choking signs, and treatment are most important and significant in determining the outcome of a choking event. Conclusions and recommendations: After in-depth research work was carried out in cooperation with the Risk Management Unit on the subject of choking, which include a description of the definitions, mechanisms, risk factors, treatment methods and extensive recommendations for prevention (e.g. using treatment and stimulation accessories with standards association stamps and adjustment of the type of food and the way it is served to match to the child's age and the ability to swallow). The expected stages of development and emphasis on the population of children with special needs were taken into account. The research findings will be published by the staff and parents of the patients, professional publications, and lectures and there is an expectation to decrease the number of choking events in the next years.Keywords: children with special needs, choking, educational system, prevention guidelines
Procedia PDF Downloads 180285 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation
Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang
Abstract:
The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics
Procedia PDF Downloads 133284 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine
Authors: D. Madhushanka, Y. Liu, H. C. Fernando
Abstract:
Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2
Procedia PDF Downloads 238283 Reactors with Effective Mixing as a Solutions for Micro-Biogas Plant
Authors: M. Zielinski, M. Debowski, P. Rusanowska, A. Glowacka-Gil, M. Zielinska, A. Cydzik-Kwiatkowska, J. Kazimierowicz
Abstract:
Technologies for the micro-biogas plant with heating and mixing systems are presented as a part of the Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications (Record Biomap). The main objective of the Record Biomap project is to build a network of operators and scientific institutions interested in cooperation and the development of promising technologies in the sector of small and medium-sized biogas plants. The activities carried out in the project will bridge the gap between research and market and reduce the time of implementation of new, efficient technological and technical solutions. Reactor with simultaneously mixing and heating system is a concrete tank with a rectangular cross-section. In the reactor, heating is integrated with the mixing of substrate and anaerobic sludge. This reactor is solution dedicated for substrates with high solids content, which cannot be introduced to the reactor with pumps, even with positive displacement pumps. Substrates are poured to the reactor and then with a screw pump, they are mixed with anaerobic sludge. The pumped sludge, flowing through the screw pump, is simultaneously heated by a heat exchanger. The level of the fermentation sludge inside the reactor chamber is above the bottom edge of the cover. Cover of the reactor is equipped with the screw pump driver. Inside the reactor, an electric motor is installed that is driving a screw pump. The heated sludge circulates in the digester. The post-fermented sludge is collected using a drain well. The inlet to the drain well is below the level of the sludge in the digester. The biogas is discharged from the reactor by the biogas intake valve located on the cover. The technology is very useful for fermentation of lignocellulosic biomass and substrates with high content of dry mass (organic wastes). The other technology is a reactor for micro-biogas plant with a pressure mixing system. The reactor has a form of plastic or concrete tank with a circular cross-section. The effective mixing of sludge is ensured by profiled at 90° bottom of the tank. Substrates for fermentation are supplied by an inlet well. The inlet well is equipped with a cover that eliminates odour release. The introduction of a new portion of substrates is preceded by pumping of digestate to the disposal well. Optionally, digestate can gravitationally flow to digestate storage tank. The obtained biogas is discharged into the separator. The valve supplies biogas to the blower. The blower presses the biogas from the fermentation chamber in such a way as to facilitate the introduction of a new portion of substrates. Biogas is discharged from the reactor by valve that enables biogas removal but prevents suction from outside the reactor.Keywords: biogas, digestion, heating system, mixing system
Procedia PDF Downloads 154282 Application of Acoustic Emissions Related to Drought Can Elicit Antioxidant Responses and Capsaicinoids Content in Chili Pepper Plants
Authors: Laura Helena Caicedo Lopez, Luis Miguel Contreras Medina, Ramon Gerardo Guevara Gonzales, Juan E. Andrade
Abstract:
In this study, we evaluated the effect of three different hydric stress conditions: Low (LHS), medium (MHS), and high (HHS) on capsaicinoid content and enzyme regulation of C. annuum plants. Five main peaks were detected using a 2 Hz resolution vibrometer laser (Polytec-B&K). These peaks or “characteristic frequencies” were used as acoustic emissions (AEs) treatment, transforming these signals into audible sound with the frequency (Hz) content of each hydric stress. Capsaicinoids (CAPs) are the main, secondary metabolites of chili pepper plants and are known to increase during hydric stress conditions or short drought-periods. The AEs treatments were applied in two plant stages: the first one was in the pre-anthesis stage to evaluate the genes that encode the transcription of enzymes responsible for diverse metabolic activities of C. annuum plants. For example, the antioxidant responses such as peroxidase (POD), superoxide dismutase (Mn-SOD). Also, phenyl-alanine ammonia-lyase (PAL) involved in the biosynthesis of the phenylpropanoid compounds. The chalcone synthase (CHS) related to the natural defense mechanisms and species-specific aquaporin (CAPIP-1) that regulate the flow of water into and out of cells. The second stage was at 40 days after flowering (DAF) to evaluate the biochemical effect of AEs related to hydric stress on capsaicinoids production. These two experiments were conducted to identify the molecular responses of C. annuum plants to AE. Moreover, to define AEs could elicit any increase in the capsaicinoids content after a one-week exposition to AEs treatments. The results show that all AEs treatment signals (LHS, MHS, and HHS) were significantly different compared to the non-acoustic emission control (NAE). Also, the AEs induced the up-regulation of POD (~2.8, 2.9, and 3.6, respectively). The gene expression of another antioxidant response was particularly treatment-dependent. The HHS induced and overexpression of Mn-SOD (~0.23) and PAL (~0.33). As well, the MHS only induced an up-regulation of the CHs gene (~0.63). On the other hand, CAPIP-1 gene gas down-regulated by all AEs treatments LHS, MHS, and HHS ~ (-2.4, -0.43 and -6.4, respectively). Likewise, the down-regulation showed particularities depending on the treatment. LHS and MHS induced downregulation of the SOD gene ~ (-1.26 and -1.20 respectively) and PAL (-4.36 and 2.05, respectively). Correspondingly, the LHS and HHS showed the same tendency in the CHs gene, respectively ~ (-1.12 and -1.02, respectively). Regarding the elicitation effect of AE on the capsaicinoids content, additional treatment controls were included. A white noise treatment (WN) to prove the frequency-selectiveness of signals and a hydric stressed group (HS) to compare the CAPs content. Our findings suggest that WN and NAE did not present differences statically. Conversely, HS and all AEs treatments induced a significant increase of capsaicin (Cap) and dihydrocapsaicin (Dcap) after one-week of a treatment. Specifically, the HS plants showed an increase of 8.33 times compared to the NAE and WN treatments and 1.4 times higher than the MHS, which was the AEs treatment with a larger induction of Capsaicinoids among treatments (5.88) and compared to the controls.Keywords: acoustic emission, capsaicinoids, elicitors, hydric stress, plant signaling
Procedia PDF Downloads 172281 Pre-Cooling Strategies for the Refueling of Hydrogen Cylinders in Vehicular Transport
Authors: C. Hall, J. Ramos, V. Ramasamy
Abstract:
Hydrocarbon-based fuel vehicles are a major contributor to air pollution due to harmful emissions produced, leading to a demand for cleaner fuel types. A leader in this pursuit is hydrogen, with its application in vehicles producing zero harmful emissions and the only by-product being water. To compete with the performance of conventional vehicles, hydrogen gas must be stored on-board of vehicles in cylinders at high pressures (35–70 MPa) and have a short refueling duration (approximately 3 mins). However, the fast-filling of hydrogen cylinders causes a significant rise in temperature due to the combination of the negative Joule-Thompson effect and the compression of the gas. This can lead to structural failure and therefore, a maximum allowable internal temperature of 85°C has been imposed by the International Standards Organization. The technological solution to tackle the issue of rapid temperature rise during the refueling process is to decrease the temperature of the gas entering the cylinder. Pre-cooling of the gas uses a heat exchanger and requires energy for its operation. Thus, it is imperative to determine the least amount of energy input that is required to lower the gas temperature for cost savings. A validated universal thermodynamic model is used to identify an energy-efficient pre-cooling strategy. The model requires negligible computational time and is applied to previously validated experimental cases to optimize pre-cooling requirements. The pre-cooling characteristics include the location within the refueling timeline and its duration. A constant pressure-ramp rate is imposed to eliminate the effects of rapid changes in mass flow rate. A pre-cooled gas temperature of -40°C is applied, which is the lowest allowable temperature. The heat exchanger is assumed to be ideal with no energy losses. The refueling of the cylinders is modeled with the pre-cooling split in ten percent time intervals. Furthermore, varying burst durations are applied in both the early and late stages of the refueling procedure. The model shows that pre-cooling in the later stages of the refuelling process is more energy-efficient than early pre-cooling. In addition, the efficiency of pre-cooling towards the end of the refueling process is independent of the pressure profile at the inlet. This leads to the hypothesis that pre-cooled gas should be applied as late as possible in the refueling timeline and at very low temperatures. The model had shown a 31% reduction in energy demand whilst achieving the same final gas temperature for a refueling scenario when pre-cooling was applied towards the end of the process. The identification of the most energy-efficient refueling approaches whilst adhering to the safety guidelines is imperative to reducing the operating cost of hydrogen refueling stations. Heat exchangers are energy-intensive and thus, reducing the energy requirement would lead to cost reduction. This investigation shows that pre-cooling should be applied as late as possible and for short durations.Keywords: cylinder, hydrogen, pre-cooling, refueling, thermodynamic model
Procedia PDF Downloads 99280 Investigation of Residual Stress Relief by in-situ Rolling Deposited Bead in Directed Laser Deposition
Authors: Ravi Raj, Louis Chiu, Deepak Marla, Aijun Huang
Abstract:
Hybridization of the directed laser deposition (DLD) process using an in-situ micro-roller to impart a vertical compressive load on the deposited bead at elevated temperatures can relieve tensile residual stresses incurred in the process. To investigate this stress relief mechanism and its relationship with the in-situ rolling parameters, a fully coupled dynamic thermo-mechanical model is presented in this study. A single bead deposition of Ti-6Al-4V alloy with an in-situ roller made of mild steel moving at a constant speed with a fixed nominal bead reduction is simulated using the explicit solver of the finite element software, Abaqus. The thermal model includes laser heating during the deposition process and the heat transfer between the roller and the deposited bead. The laser heating is modeled using a moving heat source with a Gaussian distribution, applied along the pre-formed bead’s surface using the VDFLUX Fortran subroutine. The bead’s cross-section is assumed to be semi-elliptical. The interfacial heat transfer between the roller and the bead is considered in the model. Besides, the roller is cooled internally using axial water flow, considered in the model using convective heat transfer. The mechanical model for the bead and substrate includes the effects of rolling along with the deposition process, and their elastoplastic material behavior is captured using the J2 plasticity theory. The model accounts for strain, strain rate, and temperature effects on the yield stress based on Johnson-Cook’s theory. Various aspects of this material behavior are captured in the FE software using the subroutines -VUMAT for elastoplastic behavior, VUHARD for yield stress, and VUEXPAN for thermal strain. The roller is assumed to be elastic and does not undergo any plastic deformation. Also, contact friction at the roller-bead interface is considered in the model. Based on the thermal results of the bead, the distance between the roller and the deposition nozzle (roller o set) can be determined to ensure rolling occurs around the beta-transus temperature for the Ti-6Al-4V alloy. It is identified that roller offset and the nominal bead height reduction are crucial parameters that influence the residual stresses in the hybrid process. The results obtained from a simulation at roller offset of 20 mm and nominal bead height reduction of 7% reveal that the tensile residual stresses decrease to about 52% due to in-situ rolling throughout the deposited bead. This model can be used to optimize the rolling parameters to minimize the residual stresses in the hybrid DLD process with in-situ micro-rolling.Keywords: directed laser deposition, finite element analysis, hybrid in-situ rolling, thermo-mechanical model
Procedia PDF Downloads 111279 Multi-Objective Optimization (Pareto Sets) and Multi-Response Optimization (Desirability Function) of Microencapsulation of Emamectin
Authors: Victoria Molina, Wendy Franco, Sergio Benavides, José M. Troncoso, Ricardo Luna, Jose R. PéRez-Correa
Abstract:
Emamectin Benzoate (EB) is a crystal antiparasitic that belongs to the avermectin family. It is one of the most common treatments used in Chile to control Caligus rogercresseyi in Atlantic salmon. However, the sea lice acquired resistance to EB when it is exposed at sublethal EB doses. The low solubility rate of EB and its degradation at the acidic pH in the fish digestive tract are the causes of the slow absorption of EB in the intestine. To protect EB from degradation and enhance its absorption, specific microencapsulation technologies must be developed. Amorphous Solid Dispersion techniques such as Spray Drying (SD) and Ionic Gelation (IG) seem adequate for this purpose. Recently, Soluplus® (SOL) has been used to increase the solubility rate of several drugs with similar characteristics than EB. In addition, alginate (ALG) is a widely used polymer in IG for biomedical applications. Regardless of the encapsulation technique, the quality of the obtained microparticles is evaluated with the following responses, yield (Y%), encapsulation efficiency (EE%) and loading capacity (LC%). In addition, it is important to know the percentage of EB released from the microparticles in gastric (GD%) and intestinal (ID%) digestions. In this work, we microencapsulated EB with SOL (EB-SD) and with ALG (EB-IG) using SD and IG, respectively. Quality microencapsulation responses and in vitro gastric and intestinal digestions at pH 3.35 and 7.8, respectively, were obtained. A central composite design was used to find the optimum microencapsulation variables (amount of EB, amount of polymer and feed flow). In each formulation, the behavior of these variables was predicted with statistical models. Then, the response surface methodology was used to find the best combination of the factors that allowed a lower EB release in gastric conditions, while permitting a major release at intestinal digestion. Two approaches were used to determine this. The desirability approach (DA) and multi-objective optimization (MOO) with multi-criteria decision making (MCDM). Both microencapsulation techniques allowed to maintain the integrity of EB in acid pH, given the small amount of EB released in gastric medium, while EB-IG microparticles showed greater EB release at intestinal digestion. For EB-SD, optimal conditions obtained with MOO plus MCDM yielded a good compromise among the microencapsulation responses. In addition, using these conditions, it is possible to reduce microparticles costs due to the reduction of 60% of BE regard the optimal BE proposed by (DA). For EB-GI, the optimization techniques used (DA and MOO) yielded solutions with different advantages and limitations. Applying DA costs can be reduced 21%, while Y, GD and ID showed 9.5%, 84.8% and 2.6% lower values than the best condition. In turn, MOO yielded better microencapsulation responses, but at a higher cost. Overall, EB-SD with operating conditions selected by MOO seems the best option, since a good compromise between costs and encapsulation responses was obtained.Keywords: microencapsulation, multiple decision-making criteria, multi-objective optimization, Soluplus®
Procedia PDF Downloads 131278 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago
Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu
Abstract:
Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago
Procedia PDF Downloads 52277 Finite Element Analysis of the Anaconda Device: Efficiently Predicting the Location and Shape of a Deployed Stent
Authors: Faidon Kyriakou, William Dempster, David Nash
Abstract:
Abdominal Aortic Aneurysm (AAA) is a major life-threatening pathology for which modern approaches reduce the need for open surgery through the use of stenting. The success of stenting though is sometimes jeopardized by the final position of the stent graft inside the human artery which may result in migration, endoleaks or blood flow occlusion. Herein, a finite element (FE) model of the commercial medical device AnacondaTM (Vascutek, Terumo) has been developed and validated in order to create a numerical tool able to provide useful clinical insight before the surgical procedure takes place. The AnacondaTM device consists of a series of NiTi rings sewn onto woven polyester fabric, a structure that despite its column stiffness is flexible enough to be used in very tortuous geometries. For the purposes of this study, a FE model of the device was built in Abaqus® (version 6.13-2) with the combination of beam, shell and surface elements; the choice of these building blocks was made to keep the computational cost to a minimum. The validation of the numerical model was performed by comparing the deployed position of a full stent graft device inside a constructed AAA with a duplicate set-up in Abaqus®. Specifically, an AAA geometry was built in CAD software and included regions of both high and low tortuosity. Subsequently, the CAD model was 3D printed into a transparent aneurysm, and a stent was deployed in the lab following the steps of the clinical procedure. Images on the frontal and sagittal planes of the experiment allowed the comparison with the results of the numerical model. By overlapping the experimental and computational images, the mean and maximum distances between the rings of the two models were measured in the longitudinal, and the transverse direction and, a 5mm upper bound was set as a limit commonly used by clinicians when working with simulations. The two models showed very good agreement of their spatial positioning, especially in the less tortuous regions. As a result, and despite the inherent uncertainties of a surgical procedure, the FE model allows confidence that the final position of the stent graft, when deployed in vivo, can also be predicted with significant accuracy. Moreover, the numerical model run in just a few hours, an encouraging result for applications in the clinical routine. In conclusion, the efficient modelling of a complicated structure which combines thin scaffolding and fabric has been demonstrated to be feasible. Furthermore, the prediction capabilities of the location of each stent ring, as well as the global shape of the graft, has been shown. This can allow surgeons to better plan their procedures and medical device manufacturers to optimize their designs. The current model can further be used as a starting point for patient specific CFD analysis.Keywords: AAA, efficiency, finite element analysis, stent deployment
Procedia PDF Downloads 193276 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.Keywords: land development, GIS, sand dunes, segmentation, remote sensing
Procedia PDF Downloads 72275 Role of Lipid-Lowering Treatment in the Monocyte Phenotype and Chemokine Receptor Levels after Acute Myocardial Infarction
Authors: Carolina N. França, Jônatas B. do Amaral, Maria C.O. Izar, Ighor L. Teixeira, Francisco A. Fonseca
Abstract:
Introduction: Atherosclerosis is a progressive disease, characterized by lipid and fibrotic element deposition in large-caliber arteries. Conditions related to the development of atherosclerosis, as dyslipidemia, hypertension, diabetes, and smoking are associated with endothelial dysfunction. There is a frequent recurrence of cardiovascular outcomes after acute myocardial infarction and, at this sense, cycles of mobilization of monocyte subtypes (classical, intermediate and nonclassical) secondary to myocardial infarction may determine the colonization of atherosclerotic plaques in different stages of the development, contributing to early recurrence of ischemic events. The recruitment of different monocyte subsets during inflammatory process requires the expression of chemokine receptors CCR2, CCR5, and CX3CR1, to promote the migration of monocytes to the inflammatory site. The aim of this study was to evaluate the effect of lipid-lowering treatment by six months in the monocyte phenotype and chemokine receptor levels of patients after Acute Myocardial Infarction (AMI). Methods: This is a PROBE (prospective, randomized, open-label trial with blinded endpoints) study (ClinicalTrials.gov Identifier: NCT02428374). Adult patients (n=147) of both genders, ageing 18-75 years, were randomized in a 2x2 factorial design for treatment with rosuvastatin 20 mg/day or simvastatin 40 mg/day plus ezetimibe 10 mg/day as well as ticagrelor 90 mg 2x/day and clopidogrel 75 mg, in addition to conventional AMI therapy. Blood samples were collected at baseline, after one month and six months of treatment. Monocyte subtypes (classical - inflammatory, intermediate - phagocytic and nonclassical – anti-inflammatory) were identified, quantified and characterized by flow cytometry, as well as the expressions of the chemokine receptors (CCR2, CCR5 and CX3CR1) were also evaluated in the mononuclear cells. Results: After six months of treatment, there was an increase in the percentage of classical monocytes and reduction in the nonclassical monocytes (p=0.038 and p < 0.0001 Friedman Test), without differences for intermediate monocytes. Besides, classical monocytes had higher expressions of CCR5 and CX3CR1 after treatment, without differences related to CCR2 (p < 0.0001 for CCR5 and CX3CR1; p=0.175 for CCR2). Intermediate monocytes had higher expressions of CCR5 and CX3CR1 and lower expression of CCR2 (p = 0.003; p < 0.0001 and p = 0.011, respectively). Nonclassical monocytes had lower expressions of CCR2 and CCR5, without differences for CX3CR1 (p < 0.0001; p = 0.009 and p = 0.138, respectively). There were no differences after the comparison between the four treatment arms. Conclusion: The data suggest a time-dependent modulation of classical and nonclassical monocytes and chemokine receptor levels. The higher percentage of classical monocytes (inflammatory cells) suggest a residual inflammatory risk, even under preconized treatments to AMI. Indeed, these changes do not seem to be affected by choice of the lipid-lowering strategy.Keywords: acute myocardial infarction, chemokine receptors, lipid-lowering treatment, monocyte subtypes
Procedia PDF Downloads 121274 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization
Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries
Abstract:
Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning
Procedia PDF Downloads 267273 Degradation of Diclofenac in Water Using FeO-Based Catalytic Ozonation in a Modified Flotation Cell
Authors: Miguel A. Figueroa, José A. Lara-Ramos, Miguel A. Mueses
Abstract:
Pharmaceutical residues are a section of emerging contaminants of anthropogenic origin that are present in a myriad of waters with which human beings interact daily and are starting to affect the ecosystem directly. Conventional waste-water treatment systems are not capable of degrading these pharmaceutical effluents because their designs cannot handle the intermediate products and biological effects occurring during its treatment. That is why it is necessary to hybridize conventional waste-water systems with non-conventional processes. In the specific case of an ozonation process, its efficiency highly depends on a perfect dispersion of ozone, long times of interaction of the gas-liquid phases and the size of the ozone bubbles formed through-out the reaction system. In order to increase the efficiency of these parameters, the use of a modified flotation cell has been proposed recently as a reactive system, which is used at an industrial level to facilitate the suspension of particles and spreading gas bubbles through the reactor volume at a high rate. The objective of the present work is the development of a mathematical model that can closely predict the kinetic rates of reactions taking place in the flotation cell at an experimental scale by means of identifying proper reaction mechanisms that take into account the modified chemical and hydrodynamic factors in the FeO-catalyzed Ozonation of Diclofenac aqueous solutions in a flotation cell. The methodology is comprised of three steps: an experimental phase where a modified flotation cell reactor is used to analyze the effects of ozone concentration and loading catalyst over the degradation of Diclofenac aqueous solutions. The performance is evaluated through an index of utilized ozone, which relates the amount of ozone supplied to the system per milligram of degraded pollutant. Next, a theoretical phase where the reaction mechanisms taking place during the experiments must be identified and proposed that details the multiple direct and indirect reactions the system goes through. Finally, a kinetic model is obtained that can mathematically represent the reaction mechanisms with adjustable parameters that can be fitted to the experimental results and give the model a proper physical meaning. The expected results are a robust reaction rate law that can simulate the improved results of Diclofenac mineralization on water using the modified flotation cell reactor. By means of this methodology, the following results were obtained: A robust reaction pathways mechanism showcasing the intermediates, free-radicals and products of the reaction, Optimal values of reaction rate constants that simulated Hatta numbers lower than 3 for the system modeled, degradation percentages of 100%, TOC (Total organic carbon) removal percentage of 69.9 only requiring an optimal value of FeO catalyst of 0.3 g/L. These results showed that a flotation cell could be used as a reactor in ozonation, catalytic ozonation and photocatalytic ozonation processes, since it produces high reaction rate constants and reduces mass transfer limitations (Ha > 3) by producing microbubbles and maintaining a good catalyst distribution.Keywords: advanced oxidation technologies, iron oxide, emergent contaminants, AOTS intensification
Procedia PDF Downloads 113272 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru
Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama
Abstract:
There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.Keywords: water economy, simulation, modeling, integration
Procedia PDF Downloads 156271 Role of Toll Like Receptor-2 in Female Genital Tuberculosis Disease Infection and Its Severity
Authors: Swati Gautam, Salman Akhtar, S. P. Jaiswar, Amita Jain
Abstract:
Background: FGTB is now a major global health problem mostly in developing countries including India. In humans, Mycobacterium Tuberculosis (M.tb) is a causating agent of infection. High index of suspicion is required for early diagnosis due to asymptomatic presentation of FGTB disease. In macrophages Toll Like Receptor-2 (TLR-2) is one which mediated host’s immune response to M.tb. The expression of TLR-2 on macrophages is important to determine the fate of innate immune responses to M.tb. TLR-2 have two work. First its high expression on macrophages worsen the outer of infection and another side, it maintains M.tb to its dormant stage avoids activation of M.tb from latent phase. Single Nucleotide Polymorphism (SNP) of TLR-2 gene plays an important role in susceptibility to TB among different populations and subsequently, in the development of infertility. Methodology: This Case-Control study was done in the Department of Obs and Gynae and Department of Microbiology at King George’s Medical University, U.P, Lucknow, India. Total 300 subjects (150 Cases and 150 Controls) were enrolled in the study. All subjects were enrolled only after fulfilling the given inclusion and exclusion criteria. Inclusion criteria: Age 20-35 years, menstrual-irregularities, positive on Acid-Fast Bacilli (AFB), TB-PCR, (LJ/MGIT) culture in Endometrial Aspiration (EA). Exclusion criteria: Koch’s active, on ATT, PCOS, and Endometriosis fibroid women, positive on Gonococal and Chlamydia. Blood samples were collected in EDTA tubes from cases and healthy control women (HCW) and genomic DNA extraction was carried out by salting-out method. Genotyping of TLR2 genetic variants (Arg753Gln and Arg677Trp) were performed by using single amplification refractory mutation system (ARMS) PCR technique. PCR products were analyzed by electrophoresis on 1.2% agarose gel and visualized by gel-doc. Statistical analysis of the data was performed using the SPSS 16.3 software and computing odds ratio (OR) with 95% CI. Linkage Disequiliribium (LD) analysis was done by SNP stats online software. Results: In TLR-2 (Arg753Gln) polymorphism significant risk of FGTB observed with GG homozygous mutant genotype (OR=13, CI=0.71-237.7, p=0.05), AG heterozygous mutant genotype (OR=13.7, CI=0.76-248.06, p=0.03) however, G allele (OR=1.09, CI=0.78-1.52, p=0.67) individually was not associated with FGTB. In TLR-2 (Arg677Trp) polymorphism a significant risk of FGTB observed with TT homozygous mutant genotype (OR= 0.020, CI=0.001-0.341, p < 0.001), CT heterozygous mutant genotype (OR=0.53, CI=0.33-0.86, p=0.014) and T allele (OR=0.463, CI=0.32-0.66, p < 0.001). TT mutant genotype was only found in FGTB cases and frequency of CT heterozygous more in control group as compared to FGTB group. So, CT genotype worked as protective mutation for FGTB susceptibility group. In haplotype analysis of TLR-2 genetic variants, four possible combinations, i.e. (G-T, A-C, G-C, and A-T) were obtained. The frequency of haplotype A-C was significantly higher in FGTB cases (0.32). Control group did not show A-C haplotype and only found in FGTB cases. Conclusion: In conclusion, study showed a significant association with both genetic variants of TLR-2 of FGTB disease. Moreover, the presence of specific associated genotype/alleles suggest the possibility of disease severity and clinical approach aimed to prevent extensive damage by disease and also helpful for early detection of disease.Keywords: ARMS, EDTA, FGTB, TLR
Procedia PDF Downloads 307270 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks
Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe
Abstract:
The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D
Procedia PDF Downloads 501269 Solid Waste and Its Impact on the Human Health
Authors: Waseem Akram, Hafiz Azhar Ali Khan
Abstract:
Unplanned urbanization together with change in life from simple to more technologically advanced style with flow of rural masses to urban areas has played a vital role in pilling loads of solid wastes in our environment. The cities and towns have expanded beyond boundaries. Even the uncontrolled population expansion has caused the overall environmental burden. Thus, today the indifference remains as one of the biggest trash that has come up due to the non-responsive behavior of the people. Everyday huge amount of solid waste is thrown in the streets, on the roads, parks, and in all those places that are frequently and often visited by the human beings. This behavior based response in many countries of the world has led to serious health concerns and environmental issues. Over 80% of our products that are sold in the market are packed in plastic bags. None of the bags are later recycled but simply become a permanent environment concern that flies, choke lines or are burnt and release toxic gases in the environment or form dumps of heaps. Lack of classification of the daily waste generated from houses and other places lead to worst clogging of the sewerage lines and formation of ponding areas which ultimately favor vector borne disease and sometimes become a cause of transmission of polio virus. Solid waste heaps were checked at different places of the cities. All of the wastes on visual assessments were classified into plastic bags, papers, broken plastic pots, clay pots, steel boxes, wrappers etc. All solid waste dumping sites in the cities and wastes that were thrown outside of the trash containers usually contained wrappers, plastic bags, and unconsumed food products. Insect populations seen in these sites included the house flies, bugs, cockroaches and mosquito larvae breeding in water filled wrappers, containers or plastic bags. The population of the mosquitoes, cockroaches and houseflies were relatively very high in dumping sites close to human population. This population has been associated with cases like dengue, malaria, dysentery, gastro and also to skin allergies during the monsoon and summer season. Thus, dumping of the huge amount of solid wastes in and near the residential areas results into serious environmental concerns, bad smell circulation, and health related issues. In some places, the same waste is burnt to get rid of mosquitoes through smoke which ultimately releases toxic material in the atmosphere. Therefore, a proper environmental strategy is needed to minimize environmental burden and promote concepts of recycled products and thus, reduce the disease burden.Keywords: solid waste accumulation, disease burden, mosquitoes, vector borne diseases
Procedia PDF Downloads 280268 A Review on Cyberchondria Based on Bibliometric Analysis
Authors: Xiaoqing Peng, Aijing Luo, Yang Chen
Abstract:
Background: Cyberchondria, as an "emerging risk" accompanied by the information era, is a new abnormal pattern characterized by excessive or repeated online searches for health-related information and escalating health anxiety, which endangers people's physical and mental health and poses a huge threat to public health. Objective: To explore and discuss the research status, hotspots and trends of Cyberchondria. Methods: Based on a total of 77 articles regarding "Cyberchondria" extracted from Web of Science from the beginning till October 2019, the literature trends, countries, institutions, hotspots are analyzed by bibliometric analysis, the concept definition of Cyberchondria, instruments, relevant factors, treatment and intervention are discussed as well. Results: Since "Cyberchondria" was put forward for the first time in 2001, the last two decades witnessed a noticeable increase in the amount of literature, especially during 2014-2019, it quadrupled dramatically at 62 compared with that before 2014 only at 15, which shows that Cyberchondria has become a new theme and hot topic in recent years. The United States was the most active contributor with the largest publication (23), followed by England (11) and Australia (11), while the leading institutions were Baylor University(7) and University of Sydney(7), followed by Florida State University(4) and University of Manchester(4). The WoS categories "Psychiatry/Psychology " and "Computer/ Information Science "were the areas of greatest influence. The concept definition of Cyberchondria is not completely unified in the world, but it is generally considered as an abnormal behavioral pattern and emotional state and has been invoked to refer to the anxiety-amplifying effects of online health-related searches. The first and the most frequently cited scale for measuring the severity of Cyberchondria called “The Cyberchondria Severity Scale (CSS) ”was developed in 2014, which conceptualized Cyberchondria as a multidimensional construct consisting of compulsion, distress, excessiveness, reassurance, and mistrust of medical professionals which was proved to be not necessary for this construct later. Since then, the Brazilian, German, Turkish, Polish and Chinese versions were subsequently developed, improved and culturally adjusted, while CSS was optimized to a simplified version (CSS-12) in 2019, all of which should be worthy of further verification. The hotspots of Cyberchondria mainly focuses on relevant factors as follows: intolerance of uncertainty, anxiety sensitivity, obsessive-compulsive disorder, internet addition, abnormal illness behavior, Whiteley index, problematic internet use, trying to make clear the role played by “associated factors” and “anxiety-amplifying factors” in the development of Cyberchondria, to better understand the aetiological links and pathways in the relationships between hypochondriasis, health anxiety and online health-related searches. Although the treatment and intervention of Cyberchondria are still in the initial stage of exploration, there are kinds of meaningful attempts to seek effective strategies from different aspects such as online psychological treatment, network technology management, health information literacy improvement and public health service. Conclusion: Research on Cyberchondria is in its infancy but should be deserved more attention. A conceptual consensus on Cyberchondria, a refined assessment tool, prospective studies conducted in various populations, targeted treatments for it would be the main research direction in the near future.Keywords: cyberchondria, hypochondriasis, health anxiety, online health-related searches
Procedia PDF Downloads 124267 Arc Plasma Application for Solid Waste Processing
Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator
Procedia PDF Downloads 250266 Blackcurrant-Associated Rhabdovirus: New Pathogen for Blackcurrants in the Baltic Sea Region
Authors: Gunta Resevica, Nikita Zrelovs, Ivars Silamikelis, Ieva Kalnciema, Helvijs Niedra, Gunārs Lācis, Toms Bartulsons, Inga Moročko-Bičevska, Arturs Stalažs, Kristīne Drevinska, Andris Zeltins, Ina Balke
Abstract:
Newly discovered viruses provide novel knowledge for basic phytovirus research, serve as tools for biotechnology and can be helpful in identification of epidemic outbreaks. Blackcurrant-associated rhabdovirus (BCaRV) have been discovered in USA germplasm collection samples from Russia and France. As it was reported in one accession originating from France it is unclear whether the material was already infected when it entered in the USA or it became infected while in collection in the USA. Due to that BCaRV was definite as non-EU viruses. According to ICTV classification BCaRV is representative of Blackcurrant betanucleorhabdovirus specie in genus Betanucleorhabdovirus (family Rhabdoviridae). Nevertheless, BCaRV impact on the host, transmission mechanisms and vectors are still unknown. In RNA-seq data pool from Ribes plants resistance gene study by high throughput sequencing (HTS) we observed differences between sample group gene transcript heat maps. Additional analysis of the whole data pool (total 393660492 of 150 bp long read pairs) by rnaSPAdes v 3.13.1 resulted into 14424 bases long contig with an average coverage of 684x with shared 99.5% identity to the previously reported first complete genome of BCaRV (MF543022.1) using EMBOSS Needle. This finding proved BCaRV presence in EU and indicated that it might be relevant pathogen. In this study leaf tissue from twelve asymptomatic blackcurrant cv. Mara Eglite plants (negatively tested for blackcurrant reversion virus (BRV)) from Dobele, Latvia (56°36'31.9"N, 23°18'13.6"E) was collected and used for total RNA isolation with RNeasy Plant Mini Kit with minor modifications, followed by plant rRNA removal by a RiboMinus Plant Kit for RNA-Seq. HTS libraries were prepared using MGI Easy RNA Directional Library Prep Set for 16 reactions to obtain 150 bp pair-end reads. Libraries were pooled, circularized and cleaned and sequenced on DNBSEQ-G400 using PE150 flow cell. Additionally, all samples were tested by RT-PCR, and amplicons were directly sequenced by Sanger-based method. The contig representing the genome of BCaRV isolate Mara Eglite was deposited at European Nucleotide Archive under accession number OU015520. Those findings indicate a second evidence on the presence of this particular virus in the EU and further research on BCaRV prevalence in Ribes from other geographical areas should be performed. As there are no information on BCaRV impact on the host this should be investigated, regarding the fact that mixed infections with BRV and nucleorhabdoviruses are reported.Keywords: BCaRV, Betanucleorhabdovirus, Ribes, RNA-seq
Procedia PDF Downloads 184265 Effects of Prescribed Surface Perturbation on NACA 0012 at Low Reynolds Number
Authors: Diego F. Camacho, Cristian J. Mejia, Carlos Duque-Daza
Abstract:
The recent widespread use of Unmanned Aerial Vehicles (UAVs) has fueled a renewed interest in efficiency and performance of airfoils, particularly for applications at low and moderate Reynolds numbers, typical of this kind of vehicles. Most of previous efforts in the aeronautical industry, regarding aerodynamic efficiency, had been focused on high Reynolds numbers applications, typical of commercial airliners and large size aircrafts. However, in order to increase the levels of efficiency and to boost the performance of these UAV, it is necessary to explore new alternatives in terms of airfoil design and application of drag reduction techniques. The objective of the present work is to carry out the analysis and comparison of performance levels between a standard NACA0012 profile against another one featuring a wall protuberance or surface perturbation. A computational model, based on the finite volume method, is employed to evaluate the effect of the presence of geometrical distortions on the wall. The performance evaluation is achieved in terms of variations of drag and lift coefficients for the given profile. In particular, the aerodynamic performance of the new design, i.e. the airfoil with a surface perturbation, is examined under conditions of incompressible and subsonic flow in transient state. The perturbation considered is a shaped protrusion prescribed as a small surface deformation on the top wall of the aerodynamic profile. The ultimate goal by including such a controlled smooth artificial roughness was to alter the turbulent boundary layer. It is shown in the present work that such a modification has a dramatic impact on the aerodynamic characteristics of the airfoil, and if properly adjusted, in a positive way. The computational model was implemented using the unstructured, FVM-based open source C++ platform OpenFOAM. A number of numerical experiments were carried out at Reynolds number 5x104, based on the length of the chord and the free-stream velocity, and angles of attack 6° and 12°. A Large Eddy Simulation (LES) approach was used, together with the dynamic Smagorinsky approach as subgrid scale (SGS) model, in order to account for the effect of the small turbulent scales. The impact of the surface perturbation on the performance of the airfoil is judged in terms of changes in the drag and lift coefficients, as well as in terms of alterations of the main characteristics of the turbulent boundary layer on the upper wall. A dramatic change in the whole performance can be appreciated, including an arguably large level of lift-to-drag coefficient ratio increase for all angles and a size reduction of laminar separation bubble (LSB) for a twelve-angle-of-attack.Keywords: CFD, LES, Lift-to-drag ratio, LSB, NACA 0012 airfoil
Procedia PDF Downloads 388264 Inhibition of Mild Steel Corrosion in Hydrochloric Acid Medium Using an Aromatic Hydrazide Derivative
Authors: Preethi Kumari P., Shetty Prakasha, Rao Suma A.
Abstract:
Mild steel has been widely employed as construction materials for pipe work in the oil and gas production such as down hole tubular, flow lines and transmission pipelines, in chemical and allied industries for handling acids, alkalis and salt solutions due to its excellent mechanical property and low cost. Acid solutions are widely used for removal of undesirable scale and rust in many industrial processes. Among the commercially available acids hydrochloric acid is widely used for pickling, cleaning, de-scaling and acidization of oil process. Mild steel exhibits poor corrosion resistance in presence of hydrochloric acid. The high reactivity of mild steel in presence of hydrochloric acid is due to the soluble nature of ferrous chloride formed and the cementite phase (Fe3C) normally present in the steel is also readily soluble in hydrochloric acid. Pitting attack is also reported to be a major form of corrosion in mild steel in the presence of high concentrations of acids and thereby causing the complete destruction of metal. Hydrogen from acid reacts with the metal surface and makes it brittle and causes cracks, which leads to pitting type of corrosion. The use of chemical inhibitor to minimize the rate of corrosion has been considered to be the first line of defense against corrosion. In spite of long history of corrosion inhibition, a highly efficient and durable inhibitor that can completely protect mild steel in aggressive environment is yet to be realized. It is clear from the literature review that there is ample scope for the development of new organic inhibitors, which can be conveniently synthesized from relatively cheap raw materials and provide good inhibition efficiency with least risk of environmental pollution. The aim of the present work is to evaluate the electrochemical parameters for the corrosion inhibition behavior of an aromatic hydrazide derivative, 4-hydroxy- N '-[(E)-1H-indole-2-ylmethylidene)] benzohydrazide (HIBH) on mild steel in 2M hydrochloric acid using Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques at 30-60 °C. The results showed that inhibition efficiency increased with increase in inhibitor concentration and decreased marginally with increase in temperature. HIBH showed a maximum inhibition efficiency of 95 % at 8×10-4 M concentration at 30 °C. Polarization curves showed that HIBH act as a mixed-type inhibitor. The adsorption of HIBH on mild steel surface obeys the Langmuir adsorption isotherm. The adsorption process of HIBH at the mild steel/hydrochloric acid solution interface followed mixed adsorption with predominantly physisorption at lower temperature and chemisorption at higher temperature. Thermodynamic parameters for the adsorption process and kinetic parameters for the metal dissolution reaction were determined.Keywords: electrochemical parameters, EIS, mild steel, tafel polarization
Procedia PDF Downloads 337263 Implementation of Cord- Blood Derived Stem Cells in the Regeneration of Two Experimental Models: Carbon Tetrachloride and S. Mansoni Induced Liver Fibrosis
Authors: Manal M. Kame, Zeinab A. Demerdash, Hanan G. El-Baz, Salwa M. Hassan, Faten M. Salah, Wafaa Mansour, Olfat Hammam
Abstract:
Cord blood (CB) derived Unrestricted Somatic Stem Cells (USSCs) with their multipotentiality hold great promise in liver regeneration. This work aims at evaluation of the therapeutic potentiality of USSCs in two experimental models of chronic liver injury induced either by S. mansoni infection in balb/c mice or CCL4 injection in hamsters. Isolation, propagation, and characterization of USSCs from CB samples were performed. USSCs were induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. Cells of the third passage were transplanted in two models of liver fibrosis: (1) Twenty hamsters were induced to liver fibrosis by repeated i. p. injection of 100 μl CCl4 /hamster for 8 weeks. This model was designed as; 10 hamsters with liver fibrosis and treated with i.h. injection of 3x106 USSCs (USSCs transplanted group), 10 hamsters with liver fibrosis (pathological control group), and 10 hamsters with healthy livers (normal control group). (2) Murine chronics S.mansoni model: twenty mice were induced to liver fibrosis with S. mansoni ceracariae (60 cercariae/ mouse) using the tail immersion method and left for 12 weeks. This model was designed as; 10 mice with liver fibrosis were transplanted with i. v. injection of 1×106 USCCs (USSCs transplanted group). Other 2 groups were designed as in hamsters model. Animals were sacrificed 12 weeks after USSCs transplantation, and their liver sections were examined for detection of human hepatocyte-like cells by immunohistochemistry staining. Moreover, liver sections were examined for fibrosis level, and fibrotic indices were calculated. Sera of sacrificed animals were tested for liver functions. CB USSCs, with fibroblast-like morphology, expressed high levels of CD44, CD90, CD73 and CD105 and were negative for CD34, CD45, and HLA-DR. USSCs showed high expression of transcripts for Oct4 and Sox2 and were in vitro differentiated into osteoblasts, adipocytes. In both animal models, in vitro induced hepatocyte-like cells were confirmed by cytoplasmic expression of glycogen, alpha-fetoprotein, and cytokeratin18. Livers of USSCs transplanted group showed engraftment with human hepatocyte-like cells as proved by cytoplasmic expression of human alpha-fetoprotein, cytokeratin18, and OV6. In addition, livers of this group showed less fibrosis than the pathological control group. Liver functions in the form of serum AST & ALT level and serum total bilirubin level were significantly lowered in USSCs transplanted group than pathological control group (p < 0.001). Moreover, the fibrotic index was significantly lower (p< 0.001) in USSCs transplanted group than pathological control group. In addition liver sections, of i. v. injection of 1×106 USCCs of mice, stained with either H&E or sirius red showed diminished granuloma size and a relative decrease in hepatic fibrosis. Our experimental liver fibrosis models transplanted with CB-USSCs showed liver engraftment with human hepatocyte-like cells as well as signs of liver regeneration in the form of improvement in liver function assays and fibrosis level. These data provide hope that human CB- derived USSCs are introduced as multipotent stem cells with great potentiality in regenerative medicine & strengthens the concept of cellular therapy for the treatment of liver fibrosis.Keywords: cord blood, liver fibrosis, stem cells, transplantation
Procedia PDF Downloads 310262 Preparation, Solid State Characterization of Etraverine Co-Crystals with Improved Solubility for the Treatment of Human Immunodeficiency Virus
Authors: B. S. Muddukrishna, Karthik Aithal, Aravind Pai
Abstract:
Introduction: Preparation of binary cocrystals of Etraverine (ETR) by using Tartaric Acid (TAR) as a conformer was the main focus of this study. Etravirine is a Class IV drug, as per the BCS classification system. Methods: Cocrystals were prepared by slow evaporation technique. A mixture of total 500mg of ETR: TAR was weighed in molar ratios of 1:1 (371.72mg of ETR and 128.27mg of TAR). Saturated solution of Etravirine was prepared in Acetone: Methanol (50:50) mixture in which tartaric acid is dissolved by sonication and then this solution was stirred using a magnetic stirrer until the solvent got evaporated. Shimadzu FTIR – 8300 system was used to acquire the FTIR spectra of the cocrystals prepared. Shimadzu thermal analyzer was used to achieve DSC measurements. X-ray diffractometer was used to obtain the X-ray powder diffraction pattern. Shake flask method was used to determine the equilibrium dynamic solubility of pure, physical mixture and cocrystals of ETR. USP buffer (pH 6.8) containing 1% of Tween 80 was used as the medium. The pure, physical mixture and the optimized cocrystal of ETR were accurately weighed sufficient to maintain the sink condition and were filled in hard gelatine capsules (size 4). Electrolab-Tablet Dissolution tester using basket apparatus at a rotational speed of 50 rpm and USP phosphate buffer (900 mL, pH = 6.8, 37 ˚C) + 1% Tween80 as a media, was used to carry out dissolution. Shimadzu LC-10 series chromatographic system was used to perform the analysis with PDA detector. An Hypersil BDS C18 (150mm ×4.6 mm ×5 µm) column was used for separation with mobile phase comprising of a mixture of ace¬tonitrile and phosphate buffer 20mM, pH 3.2 in the ratio 60:40 v/v. The flow rate was 1.0mL/min and column temperature was set to 30°C. The detection was carried out at 304 nm for ETR. Results and discussions: The cocrystals were subjected to various solid state characterization and the results confirmed the formation of cocrystals. The C=O stretching vibration (1741cm-1) in tartaric acid was disappeared in the cocrystal and the peak broadening of primary amine indicates hydrogen bond formation. The difference in the melting point of cocrystals when compared to pure Etravirine (265 °C) indicates interaction between the drug and the coformer which proves that first ordered transformation i.e. melting endotherm has disappeared. The difference in 2θ values of pure drug and cocrystals indicates the interaction between the drug and the coformer. Dynamic solubility and dissolution studies were also conducted by shake flask method and USP apparatus one respectively and 3.6 fold increase in the dynamic solubility were observed and in-vitro dissolution study shows four fold increase in the solubility for the ETR: TAR (1:1) cocrystals. The ETR: TAR (1:1) cocrystals shows improved solubility and dissolution as compared to the pure drug which was clearly showed by solid state characterization and dissolution studies.Keywords: dynamic solubility, Etraverine, in vitro dissolution, slurry method
Procedia PDF Downloads 361261 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring
Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong
Abstract:
In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system
Procedia PDF Downloads 192260 A Proposed Treatment Protocol for the Management of Pars Interarticularis Pathology in Children and Adolescents
Authors: Paul Licina, Emma M. Johnston, David Lisle, Mark Young, Chris Brady
Abstract:
Background: Lumbar pars pathology is a common cause of pain in the growing spine. It can be seen in young athletes participating in at-risk sports and can affect sporting performance and long-term health due to its resistance to traditional management. There is a current lack of consensus of classification and treatment for pars injuries. Previous systems used CT to stage pars defects but could not assess early stress reactions. A modified classification is proposed that considers findings on MRI, significantly improving early treatment guidance. The treatment protocol is designed for patients aged 5 to 19 years. Method: Clinical screening identifies patients with a low, medium, or high index of suspicion for lumbar pars injury using patient age, sport participation and pain characteristics. MRI of the at-risk cohort enables augmentation of existing CT-based classification while avoiding ionising radiation. Patients are classified into five categories based on MRI findings. A type 0 lesion (stress reaction) is present when CT is normal and MRI shows high signal change (HSC) in the pars/pedicle on T2 images. A type 1 lesion represents the ‘early defect’ CT classification. The group previously referred to as a 'progressive stage' defect on CT can be split into 2A and 2B categories. 2As have HSC on MRI, whereas 2Bs do not. This distinction is important with regard to healing potential. Type 3 lesions are terminal stage defects on CT, characterised by pseudarthrosis. MRI shows no HSC. Results: Stress reactions (type 0) and acute fractures (1 and 2a) can heal and are treated in a custom-made hard brace for 12 weeks. It is initially worn 23 hours per day. At three weeks, patients commence basic core rehabilitation. At six weeks, in the absence of pain, the brace is removed for sleeping. Exercises are progressed to positions of daily living. Patients with continued pain remain braced 23 hours per day without exercise progression until becoming symptom-free. At nine weeks, patients commence supervised exercises out of the brace for 30 minutes each day. This allows them to re-learn muscular control without rigid support of the brace. At 12 weeks, bracing ceases and MRI is repeated. For patients with near or complete resolution of bony oedema and healing of any cortical defect, rehabilitation is focused on strength and conditioning and sport-specific exercise for the full return to activity. The length of this final stage is approximately nine weeks but depends on factors such as development and level of sports participation. If significant HSC remains on MRI, CT scan is considered to definitively assess cortical defect healing. For these patients, return to high-risk sports is delayed for up to three months. Chronic defects (2b and 3) cannot heal and are not braced, and rehabilitation follows traditional protocols. Conclusion: Appropriate clinical screening and imaging with MRI can identify pars pathology early. In those with potential for healing, we propose hard bracing and appropriate rehabilitation as part of a multidisciplinary management protocol. The validity of this protocol will be tested in future studies.Keywords: adolescents, MRI classification, pars interticularis, treatment protocol
Procedia PDF Downloads 153