Search results for: the force field analysis
33579 Transcranial Electric Field Treatments on Redox-Toxic Iron Deposits in Transgenic Alzheimer’s Disease Mouse Models: The Electroceutical Targeting of Alzheimer’s Disease
Authors: Choi Younshick, Lee Wonseok, Lee Jaemeun, Park Sun-Hyun, Kim Sunwoung, Park Sua, Kim Eun Ho, Kim Jong-Ki
Abstract:
Iron accumulation in the brain accelerates Alzheimer’s disease progression. To cure iron toxicity, we assessed the therapeutic effects of noncontact transcranial electric field stimulation to the brain on toxic iron deposits in either the Aβ-fibril structure or the Aβ plaque in a mouse model of Alzheimer’s disease (AD). A capacitive electrode-based alternating electric field (AEF) was applied to a suspension of magnetite (Fe₃O₄) to measure the field-sensitized electro-Fenton effect and resultant reactive oxygen species (ROS) generation. The increase in ROS generation compared to the untreated control was both exposure-time and AEF-frequency dependent. The frequency-specific exposure of AEF to 0.7–1.4 V/cm on a magnetite-bound Aβ-fibril or a transgenic Alzheimer’s disease (AD) mouse model revealed the removal of intraplaque ferrous magnetite iron deposit and Aβ-plaque burden together at the same time compared to the untreated control. The results of the behavioral tests show an improvement in impaired cognitive function following AEF treatment on the AD mouse model. Western blot assay found some disease-modifying biological responses, including down-regulating ferroptosis, neuroinflammation and reactive astrocytes that eventually made cognitive improvement feasible. Tissue clearing and 3D-imaging analysis revealed no induced damage to the neuronal structures of normal brain tissue following AEF treatment. In conclusion, our results suggest that the effective degradation of magnetite-bound amyloid fibrils or plaques in the AD brain by the electro-Fenton effect from electric field-sensitized magnetite offers a potential electroceutical treatment option for AD.Keywords: electroceutical, intraplaque magnetite, alzheimer’s disease, transcranial electric field, electro-fenton effect
Procedia PDF Downloads 7033578 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network
Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park
Abstract:
This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.Keywords: anti-splash device, P/V valve, sloshing, artificial neural network
Procedia PDF Downloads 58833577 Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman
Authors: Hamdy M. Youssef
Abstract:
In this work, the usual Euler–Bernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam.Keywords: nanobeam, vibration, constant magnetic field, ramp-type thermal loading, non-Fourier heat conduction law
Procedia PDF Downloads 13633576 Geotechnical Engineering Solutions for Adaptation
Authors: Johnstone Walubengo Wangusi
Abstract:
Geotechnical engineering is a multidisciplinary field that encompasses the study of soil, rock, and groundwater properties and their interactions with civil engineering structures. This research paper provides an in-depth overview of geotechnical engineering, covering its fundamental principles, applications in civil infrastructure projects, and the challenges faced by practitioners in the field. Through a comprehensive examination of soil mechanics, foundation design, slope stability analysis, and geotechnical site investigation techniques, this paper aims to highlight the importance of geotechnical engineering in ensuring the safety, stability, and sustainability of infrastructure development. Additionally, it discusses emerging trends, innovative technologies, and future directions in geotechnical engineering research and practice.Keywords: sustainable geotechnical engineering solutions, education and training for future generations geotechnical engineers, integration of geotechnical engineering and structural engineering, use of AI in geotechnical engineering modelling
Procedia PDF Downloads 5533575 A Mathematical Description of a Growing Cell Colony Based on the Mechanical Bidomain Model
Authors: Debabrata Auddya, Bradley J. Roth
Abstract:
The mechanical bidomain model is used to describe a colony of cells growing on a substrate. Analytical expressions are derived for the intracellular and extracellular displacements. Mechanotransduction events are driven by the difference between the displacements in the two spaces, corresponding to the force acting on integrins. The equation for the displacement consists of two terms: one proportional to the radius that is the same in the intracellular and extracellular spaces (the monodomain term) and one that is proportional to a modified Bessel function that is responsible for mechanotransduction (the bidomain term). The model predicts that mechanotransduction occurs within a few length constants of the colony’s edge, and an expression for the length constant contains the intracellular and extracellular shear moduli and the spring constant of the integrins coupling the two spaces. The model predictions are qualitatively consistent with experiments on human embryonic stem cell colonies, in which differentiation is localized near the edge.Keywords: cell colony, integrin, mechanical bidomain model, stem cell, stress-strain, traction force
Procedia PDF Downloads 23733574 Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation
Authors: Pardeep Bishnoi, Mayank Srivastava, Mrityunjay Kumar Sinha
Abstract:
This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied.Keywords: pressure contour, surface tension, volume of fluid, velocity field
Procedia PDF Downloads 40333573 Synthesis of High-Antifouling Ultrafiltration Polysulfone Membranes Incorporating Low Concentrations of Graphene Oxide
Authors: Abdulqader Alkhouzaam, Hazim Qiblawey, Majeda Khraisheh
Abstract:
Membrane treatment for desalination and wastewater treatment is one of the promising solutions to affordable clean water. It is a developing technology throughout the world and considered as the most effective and economical method available. However, the limitations of membranes’ mechanical and chemical properties restrict their industrial applications. Hence, developing novel membranes was the focus of most studies in the water treatment and desalination sector to find new materials that can improve the separation efficiency while reducing membrane fouling, which is the most important challenge in this field. Graphene oxide (GO) is one of the materials that have been recently investigated in the membrane water treatment sector. In this work, ultrafiltration polysulfone (PSF) membranes with high antifouling properties were synthesized by incorporating different loadings of GO. High-oxidation degree GO had been synthesized using a modified Hummers' method. The synthesized GO was characterized using different analytical techniques including elemental analysis, Fourier transform infrared spectroscopy - universal attenuated total reflectance sensor (FTIR-UATR), Raman spectroscopy, and CHNSO elemental analysis. CHNSO analysis showed a high oxidation degree of GO represented by its oxygen content (50 wt.%). Then, ultrafiltration PSF membranes incorporating GO were fabricated using the phase inversion technique. The prepared membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM) and showed a clear effect of GO on PSF physical structure and morphology. The water contact angle of the membranes was measured and showed better hydrophilicity of GO membranes compared to pure PSF caused by the hydrophilic nature of GO. Separation properties of the prepared membranes were investigated using a cross-flow membrane system. Antifouling properties were studied using bovine serum albumin (BSA) and humic acid (HA) as model foulants. It has been found that GO-based membranes exhibit higher antifouling properties compared to pure PSF. When using BSA, the flux recovery ratio (FRR %) increased from 65.4 ± 0.9 % for pure PSF to 84.0 ± 1.0 % with a loading of 0.05 wt.% GO in PSF. When using HA as model foulant, FRR increased from 87.8 ± 0.6 % to 93.1 ± 1.1 % with 0.02 wt.% of GO in PSF. The pure water permeability (PWP) decreased with loadings of GO from 181.7 L.m⁻².h⁻¹.bar⁻¹ of pure PSF to 181.1, and 157.6 L.m⁻².h⁻¹.bar⁻¹ with 0.02 and 0.05 wt.% GO respectively. It can be concluded from the obtained results that incorporating low loading of GO could enhance the antifouling properties of PSF hence improving its lifetime and reuse.Keywords: antifouling properties, GO based membranes, hydrophilicity, polysulfone, ultrafiltration
Procedia PDF Downloads 14233572 Factors Affecting in Soil Analysis Technique Adopted by the Southern Region Farmers, Syria
Authors: Moammar Dayoub
Abstract:
The study aimed to know the reality of farmers and determine the extent of adoption of the recommendations of the fertilizer and the difficulties and problems they face. The study was conducted on a random sample of farmers consist of 95 farmers who had analysed their field soil in scientific research centres in agricultural southern region through the form specially prepared for this purpose, the results showed that the rate of adoption of the fertilizer recommendations whole amounted to an average of 36.9% in the southern region, The degree of adoption was 34.7% in the region. The results showed that 41% of farmers did not implement the recommendations because of the non-convenient analysis, and 34% due to neglect, and 15% due to the weather and an environment, while 10% of them for lack of manure in the suitable time. The study also revealed that Independent factors affecting the continuing adoption of soil analysis are: farms experience, sampling method in farmer’s schools, irrigated area, and personal knowledge of farmers in analysing the soil. Also, show that the application of fertilizer recommendations led to increased production by 15-20%, this analysis emphasizes the importance of soil analysis and adherence to the recommendations of the research centres.Keywords: adoption, recommendations of the fertilizer, soil analysis, southern region
Procedia PDF Downloads 16833571 Multi-Criteria Evaluation of IDS Architectures in Cloud Computing
Authors: Elmahdi Khalil, Saad Enniari, Mostapha Zbakh
Abstract:
Cloud computing promises to increase innovation and the velocity with witch applications are deployed, all while helping any enterprise meet most IT service needs at a lower total cost of ownership and higher return investment. As the march of cloud continues, it brings both new opportunities and new security challenges. To take advantages of those opportunities while minimizing risks, we think that Intrusion Detection Systems (IDS) integrated in the cloud is one of the best existing solutions nowadays in the field. The concept of intrusion detection was known since past and was first proposed by a well-known researcher named Anderson in 1980's. Since that time IDS's are evolving. Although, several efforts has been made in the area of Intrusion Detection systems for cloud computing environment, many attacks still prevail. Therefore, the work presented in this paper proposes a multi criteria analysis and a comparative study between several IDS architectures designated to work in a cloud computing environments. To achieve this objective, in the first place we will search in the state of the art of several consistent IDS architectures designed to work in a cloud environment. Whereas, in a second step we will establish the criteria that will be useful for the evaluation of architectures. Later, using the approach of multi criteria decision analysis Mac Beth (Measuring Attractiveness by a Categorical Based Evaluation Technique we will evaluate the criteria and assign to each one the appropriate weight according to their importance in the field of IDS architectures in cloud computing. The last step is to evaluate architectures against the criteria and collecting results of the model constructed in the previous steps.Keywords: cloud computing, cloud security, intrusion detection/prevention system, multi-criteria decision analysis
Procedia PDF Downloads 46833570 Functionalized SPIO Conjugated with Doxorubicin for Tumor Diagnosis and Chemotherapy Enhanced by Applying Magnetic Fields
Authors: Po-Chin Liang, Yung-Chu Chen, Chi-Feng Chiang, Yun-Ping Lin, Wen-Yuan Hsieh, Win-Li Lin
Abstract:
The aim of this study was to develop super paramagnetic iron oxide (SPIO) nano-particles comprised of a magnetic Fe3O4 core and a shell of aqueous stable self-doped polyethylene glycol (PEG) with a high loading of doxorubicin (SPIO-PEG-D) for tumor theranostics. The in-vivo MRI study showed that there was a stronger T2-weighted signal enhancement for the group under a magnetic field, and hence it indicated that this group had a better accumulation of SPIO-PEG than the group without a magnetic field. In the anticancer evaluation of SPIO-PEG-D, the group with a magnetic field displayed a significantly smaller tumor size than the group without. The overall results show that SPIO-PEG-D nanoparticles have the potential for the application of MRI/monitoring chemotherapy and the therapy can be locally enhanced by applying an external magnetic field.Keywords: super paramagnetic iron oxide nano particles, doxorubicin, chemotherapy, MRI, magnetic fields
Procedia PDF Downloads 59733569 Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials
Authors: Jefto Terzovic, Ana Kontic, Isidora Ilic
Abstract:
In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials.Keywords: laminated glass, laminated plexiglass, aseismic stiffening, experiment, laboratory testing, computer model, finite element method
Procedia PDF Downloads 7733568 Characteristics of Silicon Integrated Vertical Carbon Nanotube Field-Effect Transistors
Authors: Jingqi Li
Abstract:
A new vertical carbon nanotube field effect transistor (CNTFET) has been developed. The source, drain and gate are vertically stacked in this structure. The carbon nanotubes are put on the side wall of the vertical stack. Unique transfer characteristics which depend on both silicon type and the sign of drain voltage have been observed in silicon integrated CNTFETs. The significant advantage of this CNTFET is that the short channel of the transistor can be fabricated without using complicate lithography technique.Keywords: carbon nanotubes, field-effect transistors, electrical property, short channel fabrication
Procedia PDF Downloads 35933567 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)
Authors: Shaher Bano, Samia Fida, Asif Israr
Abstract:
The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews
Procedia PDF Downloads 23433566 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns
Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani
Abstract:
Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.Keywords: equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity
Procedia PDF Downloads 25533565 Enhanced Exchange Bias in Poly-crystalline Compounds through Oxygen Vacancy and B-site Disorder
Authors: Koustav Pal, Indranil Das
Abstract:
In recent times, perovskite and double perovskite (DP) systems attracts lot of interest as they provide a rich material platform for studying emergent functionalities like near-room-temperature ferromagnetic (FM) insulators, exchange bias (EB), magnetocaloric effects, colossal magnetoresistance, anisotropy, etc. These interesting phenomena emerge because of complex couplings between spin, charge, orbital, and lattice degrees of freedom in these systems. Various magnetic phenomena such as exchange bias, spin glass, memory effect, colossal magneto-resistance, etc. can be modified and controlled through antisite (B-site) disorder or controlling oxygen concentration of the material. By controlling oxygen concentration in SrFe0.5Co0.5O3 – δ (SFCO) (δ ∼ 0.3), we achieve intrinsic exchange bias effect with a large exchange bias field (∼1.482 Tesla) and giant coercive field (∼1.454 Tesla). Now we modified the B-site by introducing 10% iridium in the system. This modification give rise to the exchange bias field as high as 1.865 tesla and coercive field 1.863 tesla. Our work aims to investigate the effect of oxygen deficiency and B-site effect on exchange bias in oxide materials for potential technological applications. Structural characterization techniques including X-ray diffraction, scanning tunneling microscopy, and transmission electron microscopy were utilized to determine crystal structure and particle size. X-ray photoelectron spectroscopy was used to identify valence states of the ions. Magnetic analysis revealed that oxygen deficiency resulted in a large exchange bias due to a significant number of ionic mixtures. Iridium doping was found to break interaction paths, resulting in various antiferromagnetic and ferromagnetic surfaces that enhance exchange bias.Keywords: coercive field, disorder, exchange bias, spin glass
Procedia PDF Downloads 7533564 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley
Authors: Bijit Kalita, K. V. N. Surendra
Abstract:
The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor
Procedia PDF Downloads 12233563 The Publication Impact of London’s Air Ambulance on the Field of Pre-Hospital Medicine and Its Application to Air Ambulances Internationally: A Bibliometric Analysis
Authors: Maria Ahmad, Alexandra Valetopoulou, Michael D. Christian
Abstract:
Background: London’s Air Ambulance (LAA) provides advanced pre-hospital trauma care across London, bringing specialist resources and expert trauma teams to patients. Since its inception 32 years ago, LAA has treated over 40,000 pre-hospital patients and significantly contributed to pre-hospital patient care in London. To the authors’ best knowledge, this is the first analysis to quantify the magnitude of the publication impact of LAA on the international field of pre-hospital medicine. Method: We searched the Scopus, Web of Science, Google Scholar and PubMed databases to identify LAA focused articles. These were defined as articles on the topic of pre-hospital medicine which either utilised data from LAA, or focused on LAA patients, or were authored by LAA clinicians. A bibliometric analysis was conducted and the impact of each eligible article was classified as either: high (article directly influenced the change or creation of clinical guidelines); medium (the article was referenced in clinical guidelines or had >20 Google Scholar citations or >10 PubMed citations); or low impact (article had <20 Google Scholar citations or <10 PubMed citations). Results: The literature search yielded 1,120 articles in total. 198 articles met our inclusion criteria, and their full text was analysed to determine the level of impact. 19 articles were classified as high-impact, 76 as medium-impact, and 103 as low-impact. 20 of the 76 medium-impact articles were referenced in clinical guidelines but had not prompted changes to the guidelines. Conclusion: To our knowledge, this review is the first to quantify the significant publication impact of LAA within the field of pre-hospital medicine over the last 32 years. LAA publications have focused on and driven clinical innovations in trauma care, particularly in pre-hospital anaesthesia, haemorrhage control, and major incidents, with many impacting national and international guidelines. We recommend a greater emphasis on multidisciplinary pre-hospital collaboration in publications in future research and quality improvement projects across all pre-hospital services.Keywords: air ambulance, pre-hospital medicine, London’s Air Ambulance, London HEMS
Procedia PDF Downloads 7433562 Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force
Authors: Vivi Anggraini, Afshin Asadi, Bujang B. K. Huat
Abstract:
Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths.Keywords: flexural strength, durabilty, lime, coir fibers, bending force, ductility
Procedia PDF Downloads 46433561 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint
Authors: M. Najafi, F. Rahimi Dehgolan
Abstract:
In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.Keywords: non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method
Procedia PDF Downloads 36833560 Estimation of Particle Size Distribution Using Magnetization Data
Authors: Navneet Kaur, S. D. Tiwari
Abstract:
Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs.Keywords: anisotropy, magnetization, nanoparticles, superparamagnetism
Procedia PDF Downloads 14133559 Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum
Authors: Ju-Hyung Kim, Dae-Ho Mun, Hong-Gun Park
Abstract:
When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum.Keywords: floating floor, heavy-weight impact, prediction, vibration
Procedia PDF Downloads 37033558 Raman, Atomic Force Microscopy and Mass Spectrometry for Isotopic Ratios Methods Used to Investigate Human Dentine and Enamel
Authors: Nicoleta Simona Vedeanu, Rares Stiufiuc, Dana Alina Magdas
Abstract:
A detailed knowledge of the teeth structure is mandatory to understand and explain the defects and the dental pathology, but especially to take a correct decision regarding dental prophylaxis and treatment. The present work is an alternative study to the traditional investigation methods used in dentistry, a study based on the use of modern, sensitive physical methods to investigate human enamel and dentin. For the present study, several teeth collected from patients of different ages were used for structural and dietary investigation. The samples were investigated by Raman spectroscopy for the molecular structure analysis of dentin and enamel, atomic force microscopy (AFM) to view the dental topography at the micrometric size and mass spectrometry for isotopic ratios as a fingerprint of patients’ personal diet. The obtained Raman spectra and their interpretation are in good correlation with the literature and may give medical information by comparing affected dental structures with healthy ones. AFM technique gave us the possibility to study in details the dentin and enamel surface to collect information about dental hardness or dental structural changes. δ¹³C values obtained for the studied samples can be classified in C4 category specific to young people and children diet (sweets, cereals, juices, pastry). The methods used in this attempt furnished important information about dentin and enamel structure and dietary habits and each of the three proposed methods can be extended at a larger level in the study of the teeth structure.Keywords: AFM, dentine, enamel, Raman spectroscopy
Procedia PDF Downloads 14433557 Dynamic Analysis of the Heat Transfer in the Magnetically Assisted Reactor
Authors: Tomasz Borowski, Dawid Sołoducha, Rafał Rakoczy, Marian Kordas
Abstract:
The application of magnetic field is essential for a wide range of technologies or processes (i.e., magnetic hyperthermia, bioprocessing). From the practical point of view, bioprocess control is often limited to the regulation of temperature at constant values favourable to microbial growth. The main aim of this study is to determine the effect of various types of electromagnetic fields (i.e., static or alternating) on the heat transfer in a self-designed magnetically assisted reactor. The experimental set-up is equipped with a measuring instrument which controlled the temperature of the liquid inside the container and supervised the real-time acquisition of all the experimental data coming from the sensors. Temperature signals are also sampled from generator of magnetic field. The obtained temperature profiles were mathematically described and analyzed. The parameters characterizing the response to a step input of a first-order dynamic system were obtained and discussed. For example, the higher values of the time constant means slow signal (in this case, temperature) increase. After the period equal to about five-time constants, the sample temperature nearly reached the asymptotic value. This dynamical analysis allowed us to understand the heating effect under the action of various types of electromagnetic fields. Moreover, the proposed mathematical description can be used to compare the influence of different types of magnetic fields on heat transfer operations.Keywords: heat transfer, magnetically assisted reactor, dynamical analysis, transient function
Procedia PDF Downloads 16833556 The Power House of Mind: Determination of Action
Authors: Sheetla Prasad
Abstract:
The focus issue of this article is to determine the mechanism of mind with geometrical analysis of human face. Research paradigm has been designed for study of spatial dynamic of face and it was found that different shapes of face have their own function for determine the action of mind. The functional ratio (FR) of face has determined the behaviour operation of human beings. It is not based on the formulistic approach of prediction but scientific dogmatism and mathematical analysis is the root of the prediction of behaviour. For analysis, formulae were developed and standardized. It was found that human psyche is designed in three forms; manipulated, manifested and real psyche. Functional output of the psyche has been determined by degree of energy flow in the psyche and reserve energy for future. Face is the recipient and transmitter of energy but distribution and control is the possible by mind. Mind directs behaviour. FR indicates that the face is a power house of energy and as per its geometrical domain force of behaviours has been designed and actions are possible in the nature of individual. The impact factor of this study is the promotion of human capital for job fitness objective and minimization of criminalization in society.Keywords: functional ratio, manipulated psyche, manifested psyche, real psyche
Procedia PDF Downloads 45133555 Analysis of Three-Dimensional Cracks in an Isotropic Medium by the Semi-Analytical Method
Authors: Abdoulnabi Tavangari, Nasim Salehzadeh
Abstract:
We presume a cylindrical medium that is under a uniform loading and there is a penny shaped crack located in the center of cylinder. In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, according to the RITZ method and by considering a cylindrical coordinate system as the main coordinate and a local polar coordinate, the mode-I SIF of threedimensional penny-shaped crack is obtained. In this method the unknown coefficients will be obtained with minimizing the potential energy that is including the strain energy and the external force work. By using the hook's law, stress fields will be obtained and then by using the Irvine equations, the amount of SIF will be obtained near the edge of the crack. This question has been solved for extreme medium in the Tada handbook and the result of the present research has been compared with that.Keywords: three-dimensional cracks, penny-shaped crack, stress intensity factor, fracture mechanics, Ritz method
Procedia PDF Downloads 39433554 Analysis of the Inverse Kinematics for 5 DOF Robot Arm Using D-H Parameters
Authors: Apurva Patil, Maithilee Kulkarni, Ashay Aswale
Abstract:
This paper proposes an algorithm to develop the kinematic model of a 5 DOF robot arm. The formulation of the problem is based on finding the D-H parameters of the arm. Brute Force iterative method is employed to solve the system of non linear equations. The focus of the paper is to obtain the accurate solutions by reducing the root mean square error. The result obtained will be implemented to grip the objects. The trajectories followed by the end effector for the required workspace coordinates are plotted. The methodology used here can be used in solving the problem for any other kinematic chain of up to six DOF.Keywords: 5 DOF robot arm, D-H parameters, inverse kinematics, iterative method, trajectories
Procedia PDF Downloads 20133553 Injury Pattern of Field Hockey Players at Different Field Position during Game and Practice
Authors: Sujay Bisht
Abstract:
The purpose of the study was to assess and examines the pattern of injury among the field hockey players at different field position during practice & game. It was hypothesized that the backfield might have the height rate of injury, followed by midfield. Methods: university level and national level male field hockey (N=60) are selected as a subject and requested to respond an anon questionnaire. Personal characteristics of each and individual players were also collected like (age, height, weight); field hockey professional information (level of play, year of experience, playing surface); players injury history (site, types, cause etc). The rates of injury per athlete per year were also calculated. Result: Around half of the injury occurred were to the lower limbs (49%) followed by head and face (30%), upper limbs (19%) and torso region (2%). Injuries included concussion, wounds, broken nose, ligament sprain, dislocation, fracture, and muscles strain and knee injury. The ligament sprain is the highest rate (40%) among the other types of injuries. After investigation and evaluation backfield players had the highest rate of risk of injury (1.10 injury/athletes-year) followed by midfield players (0.70 injury/athlete-year), forward players (0.45 injury/athlete-year) & goalkeeper was (0.37 injury/athlete-year). Conclusion: Due to the different field position the pattern & rate of injury were different. After evaluation, lower limbs had the highest rate of injury followed by head and face, upper limbs and torso respectively. It also revealed that not only there is a difference in the rate of injury between playing the position, but also in the types of injury sustain at a different position.Keywords: trauma, sprain, strain, astroturf, acute injury
Procedia PDF Downloads 22433552 Field Trips inside Digital Game Environments
Authors: Amani Alsaqqaf, Frederick W. B. Li
Abstract:
Field trips are essential methods of learning in different subjects, and in recent times, there has been a reduction in the number of field trips (FTs) across all learning levels around the world. Virtual field trips (VFTs) in game environments provide FT experience based on the experiential learning theory (ELT). A conceptual framework for designing virtual field trip games (VFTGs) is developed with an aim to support game designers and educators to produce an effective FT experience where technology would enhance education. The conceptual framework quantifies ELT as an internal economy to link learning elements to game mechanics such as feedback loops which leads to facilitating VFTGs design and implementation. This study assesses the conceptual framework for designing VFTGs by investigating the possibility of applying immersive VFTGs in a secondary classroom and compare them with traditional learning that uses video clips and PowerPoint slides from the viewpoint of students’ perceived motivation, presence, and learning. The assessment is achieved by evaluating the learning performance and learner experience of a prototype VFT game, Island of Volcanoes. A quasi-experiment was conducted with 60 secondary school students. The findings of this study are that the VFTG enhanced learning performance to a better level than did the traditional way of learning, and in addition, it provided motivation and a general feeling of presence in the VFTG environment.Keywords: conceptual framework, game-based learning, game design, virtual field trip game
Procedia PDF Downloads 23433551 The Impact of Reducing Road Traffic Speed in London on Noise Levels: A Comparative Study of Field Measurement and Theoretical Calculation
Authors: Jessica Cecchinelli, Amer Ali
Abstract:
The continuing growth in road traffic and the resultant impact on the level of pollution and safety especially in urban areas have led local and national authorities to reduce traffic speed and flow in major towns and cities. Various boroughs of London have recently reduced the in-city speed limit from 30mph to 20mph mainly to calm traffic, improve safety and reduce noise and vibration. This paper reports the detailed field measurements using noise sensor and analyser and the corresponding theoretical calculations and analysis of the noise levels on a number of roads in the central London Borough of Camden where speed limit was reduced from 30mph to 20mph in all roads except the major routes of the ‘Transport for London (TfL)’. The measurements, which included the key noise levels and scales at residential streets and main roads, were conducted during weekdays and weekends normal and rush hours. The theoretical calculations were done according to the UK procedure ‘Calculation of Road Traffic Noise 1988’ and with conversion to the European L-day, L-evening, L-night, and L-den and other important levels. The current study also includes comparable data and analysis from previously measured noise in the Borough of Camden and other boroughs of central London. Classified traffic flow and speed on the roads concerned were observed and used in the calculation part of the study. Relevant data and description of the weather condition are reported. The paper also reports a field survey in the form of face-to-face interview questionnaires, which was carried out in parallel with the field measurement of noise, in order to ascertain the opinions and views of local residents and workers in the reduced speed zones of 20mph. The main findings are that the reduction in speed had reduced the noise pollution on the studied zones and that the measured and calculated noise levels for each speed zone are closely matched. Among the other findings was that of the field survey of the opinions and views of the local residents and workers in the reduced speed 20mph zones who supported the scheme and felt that it had improved the quality of life in their areas giving a sense of calmness and safety particularly for families with children, the elderly, and encouraged pedestrians and cyclists. The key conclusions are that lowering the speed limit in built-up areas would not just reduce the number of serious accidents but it would also reduce the noise pollution and promote clean modes of transport particularly walking and cycling. The details of the site observations and the corresponding calculations together with critical comparative analysis and relevant conclusions will be reported in the full version of the paper.Keywords: noise calculation, noise field measurement, road traffic noise, speed limit in london, survey of people satisfaction
Procedia PDF Downloads 42333550 The Current Status of Middle Class Internet Use in China: An Analysis Based on the Chinese General Social Survey 2015 Data and Semi-Structured Investigation
Authors: Abigail Qian Zhou
Abstract:
In today's China, the well-educated middle class, with stable jobs and above-average income, are the driving force behind its Internet society. Through the analysis of data from the 2015 Chinese General Social Survey and 50 interviewees, this study investigates the current situation of this group’s specific internet usage. The findings of this study demonstrate that daily life among the members of this socioeconomic group is closely tied to the Internet. For Chinese middle class, the Internet is used to socialize and entertain self and others. It is also used to search for and share information as well as to build their identities. The empirical results of this study will provide a reference, supported by factual data, for enterprises seeking to target the Chinese middle class through online marketing efforts.Keywords: middle class, Internet use, network behaviour, online marketing, China
Procedia PDF Downloads 118