Search results for: intelligent monitoring system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19968

Search results for: intelligent monitoring system

19038 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines

Authors: Nicolae Constantin, Ştefan Sorohan

Abstract:

The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.

Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities

Procedia PDF Downloads 342
19037 User Authentication Using Graphical Password with Sound Signature

Authors: Devi Srinivas, K. Sindhuja

Abstract:

This paper presents architecture to improve surveillance applications based on the usage of the service oriented paradigm, with smart phones as user terminals, allowing application dynamic composition and increasing the flexibility of the system. According to the result of moving object detection research on video sequences, the movement of the people is tracked using video surveillance. The moving object is identified using the image subtraction method. The background image is subtracted from the foreground image, from that the moving object is derived. So the Background subtraction algorithm and the threshold value is calculated to find the moving image by using background subtraction algorithm the moving frame is identified. Then, by the threshold value the movement of the frame is identified and tracked. Hence, the movement of the object is identified accurately. This paper deals with low-cost intelligent mobile phone-based wireless video surveillance solution using moving object recognition technology. The proposed solution can be useful in various security systems and environmental surveillance. The fundamental rule of moving object detecting is given in the paper, then, a self-adaptive background representation that can update automatically and timely to adapt to the slow and slight changes of normal surroundings is detailed. While the subtraction of the present captured image and the background reaches a certain threshold, a moving object is measured to be in the current view, and the mobile phone will automatically notify the central control unit or the user through SMS (Short Message System). The main advantage of this system is when an unknown image is captured by the system it will alert the user automatically by sending an SMS to user’s mobile.

Keywords: security, graphical password, persuasive cued click points

Procedia PDF Downloads 539
19036 Comparative Performance of Standing Whole Body Monitor and Shielded Chair Counter for In-vivo Measurements

Authors: M. Manohari, S. Priyadharshini, K. Bajeer Sulthan, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

In-vivo monitoring facility at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, caters to the monitoring of internal exposure of occupational radiation workers from various radioactive facilities of IGCAR. Internal exposure measurement is done using Na(Tl) based Scintillation detectors. Two types of whole-body counters, namely Shielded Chair Counter (SC) and Standing Whole-Body Monitor (SWBM), are being used. The shielded Chair is based on a NaI detector of 20.3 cm diameter and 10.15 cm thick. The chair of the system is shielded using lead shots of 10 cm lead equivalent and the detector with 8 cm lead bricks. Counting geometry is sitting geometry. Calibration is done using 95 percentile BOMAB phantom. The minimum Detectable Activity (MDA) for 137Cs for the 60s is 1150 Bq. Standing Wholebody monitor (SWBM) has two NaI(Tl) detectors of size 10.16 x 10.16 x 40.64 cm3 positioned serially, one over the other. It has a shielding thickness of 5cm lead equivalent. Counting is done in standup geometry. Calibration is done with the help of Ortec Phantom, having a uniform distribution of mixed radionuclides for the thyroid, thorax and pelvis. The efficiency of SWBM is 2.4 to 3.5 times higher than that of the shielded chair in the energy range of 279 to 1332 keV. MDA of 250 Bq for 137Cs can be achieved with a counting time of 60s. MDA for 131I in the thyroid was estimated as 100 Bq from the MDA of whole-body for one-day post intake. Standing whole body monitor is better in terms of efficiency, MDA and ease of positioning. In case of emergency situations, the optimal MDAs for in-vivo monitoring service are 1000 Bq for 137Cs and 100 Bq for 131I. Hence, SWBM is more suitable for the rapid screening of workers as well as the public in the case of an emergency. While a person reports for counting, there is a potential for external contamination. In SWBM, there is a feasibility to discriminate them as the subject can be counted in anterior or posterior geometry which is not possible in SC.

Keywords: minimum detectable activity, shielded chair, shielding thickness, standing whole body monitor

Procedia PDF Downloads 48
19035 Building Information Modelling (BIM) and Unmanned Aerial Vehicles (UAV) Technologies in Road Construction Project Monitoring and Management: Case Study of a Project in Cyprus

Authors: Yiannis Vacanas, Kyriacos Themistocleous, Athos Agapiou, Diofantos Hadjimitsis

Abstract:

Building Information Modelling (BIM) technology is considered by construction professionals as a very valuable process in modern design, procurement and project management. Construction professionals of all disciplines can use a single 3D model which BIM technology provides, to design a project accurately and furthermore monitor the progress of construction works effectively and efficiently. Unmanned Aerial Vehicles (UAVs), a technology initially developed for military applications, is now without any difficulty accessible and has already been used by commercial industries, including the construction industry. UAV technology has mainly been used for collection of images that allow visual monitoring of building and civil engineering projects conditions in various circumstances. UAVs, nevertheless, have undergone significant advances in equipment capabilities and now have the capacity to acquire high-resolution imagery from many angles in a cost effective manner, and by using photogrammetry methods, someone can determine characteristics such as distances, angles, areas, volumes and elevations of an area within overlapping images. In order to examine the potential of using a combination of BIM and UAV technologies in construction project management, this paper presents the results of a case study of a typical road construction project where the combined use of the two technologies was used in order to achieve efficient and accurate as-built data collection of the works progress, with outcomes such as volumes, and production of sections and 3D models, information necessary in project progress monitoring and efficient project management.

Keywords: BIM, project management, project monitoring, UAV

Procedia PDF Downloads 304
19034 Research on Adaptable Development Strategy of Medical Architecture Based on the Background of Current Era

Authors: Jiani Gao, Qingping Luo, Xinlei Fang

Abstract:

In order to try to achieve better rights and interests for both doctors and patients in the new medical environment, the paper will focus on the renewal and development of medical buildings. In today's highly developed society, many factors have a profound guiding significance for the development of medical buildings. By doing social research, the paper has found that these factors come from all aspects. These factors include the optimization of traditional medical model, rapid alternation of medical technology and equipment, the reform of the social, medical security system, changes in the age structure of the population, the birth of intelligent medical care under the Internet, and the deepening of the concept of green sustainable building development, etc. The purpose of this paper is to capture sensitively these various factors that may affect the evolution of medical buildings in the context of the current era, and to put forward, by using an adaptable development strategy, some feasible suggestions on the design of medical buildings when facing these changes and challenges. Specifically speaking, the adaptable development strategy includes some basic principles and methods, such as using modular design, adopting scalable streamline, selecting a long-span structural system and using replaceable materials and components, etc.

Keywords: medical architecture, adaptable development, medical model, space design

Procedia PDF Downloads 163
19033 Utilizing Quicklime (Calcium Oxide) for Self-Healing Properties in Innovation of Coconut Husk Fiber Bricks

Authors: Christian Gabriel Mariveles, Darelle Jay Gallardo, Leslie Dayaoen, Laurenz Paul Diaz

Abstract:

True experimental research with descriptive analysis was conducted. Utilizing Quicklime (Calcium Oxide) for self-healing properties of coconut husk fibre concrete brick. There are 2 setups established: the first one has the 1:1:2 ratio of calcium oxide, cement and sand, and the second one has a 2:1:2 ratio of the same variables. The bricks are made from the residences along Barangay Greater Lagro. The mixture of sand and cement is mixed with coconut husk fibers and then molded with different ratios in the molder. After the drying of cement, the researchers tested the bricks in the laboratory for compressive strength. The brick with the highest PSI is picked by the researchers to drop into freefall testing, and it makes remarkable remarks as it is deformed after dropping to different heights with a maximum of 20 feet. Unfortunately, the self-healing capabilities were not observed during the 12 weeks of monitoring. However, the brick was weighed after 12 weeks of monitoring, and it increased in weight by 0.030 kg. from 1.833 kg. to 1.863 kg. meaning that this ratio 2 has the potential to self-heal, but 12 weeks of monitoring by the researchers is not enough to conclude that it has a significant difference.

Keywords: self healing, coconut husk bricks, research, calcium oxide, utilizing quicklime

Procedia PDF Downloads 47
19032 Geographic Information System Cloud for Sustainable Digital Water Management: A Case Study

Authors: Mohamed H. Khalil

Abstract:

Water is one of the most crucial elements which influence human lives and development. Noteworthy, over the last few years, GIS plays a significant role in optimizing water management systems, especially after exponential developing in this sector. In this context, the Egyptian government initiated an advanced ‘GIS-Web Based System’. This system is efficiently designed to tangibly assist and optimize the complement and integration of data between departments of Call Center, Operation and Maintenance, and laboratory. The core of this system is a unified ‘Data Model’ for all the spatial and tabular data of the corresponding departments. The system is professionally built to provide advanced functionalities such as interactive data collection, dynamic monitoring, multi-user editing capabilities, enhancing data retrieval, integrated work-flow, different access levels, and correlative information record/track. Noteworthy, this cost-effective system contributes significantly not only in the completeness of the base-map (93%), the water network (87%) in high level of details GIS format, enhancement of the performance of the customer service, but also in reducing the operating costs/day-to-day operations (~ 5-10 %). In addition, the proposed system facilitates data exchange between different departments (Call Center, Operation and Maintenance, and laboratory), which allowed a better understanding/analyzing of complex situations. Furthermore, this system reflected tangibly on: (i) dynamic environmental monitor/water quality indicators (ammonia, turbidity, TDS, sulfate, iron, pH, etc.), (ii) improved effectiveness of the different water departments, (iii) efficient deep advanced analysis, (iv) advanced web-reporting tools (daily, weekly, monthly, quarterly, and annually), (v) tangible planning synthesizing spatial and tabular data; and finally, (vi) scalable decision support system. It is worth to highlight that the proposed future plan (second phase) of this system encompasses scalability will extend to include integration with departments of Billing and SCADA. This scalability will comprise advanced functionalities in association with the existing one to allow further sustainable contributions.

Keywords: GIS Web-Based, base-map, water network, decision support system

Procedia PDF Downloads 100
19031 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 134
19030 Leadership in the Era of AI: Growing Organizational Intelligence

Authors: Mark Salisbury

Abstract:

The arrival of artificially intelligent avatars and the automation they bring is worrying many of us, not only for our livelihood but for the jobs that may be lost to our kids. We worry about what our place will be as human beings in this new economy where much of it will be conducted online in the metaverse – in a network of 3D virtual worlds – working with intelligent machines. The Future of Leadership was written to address these fears and show what our place will be – the right place – in this new economy of AI avatars, automation, and 3D virtual worlds. But to be successful in this new economy, our job will be to bring wisdom to our workplace and the marketplace. And we will use AI avatars and 3D virtual worlds to do it. However, this book is about more than AI and the avatars that we will work with in the metaverse. It’s about building Organizational intelligence (OI) -- the capability of an organization to comprehend and create knowledge relevant to its purpose; in other words, it is the intellectual capacity of the entire organization. To increase organizational intelligence requires a new kind of knowledge worker, a wisdom worker, that requires a new kind of leadership. This book begins your story for how to become a leader of wisdom workers and be successful in the emerging wisdom economy. After this presentation, conference participants will be able to do the following: Recognize the characteristics of the new generation of wisdom workers and how they differ from their predecessors. Recognize that new leadership methods and techniques are needed to lead this new generation of wisdom workers. Apply personal and professional values – personal integrity, belief in something larger than yourself, and keeping the best interest of others in mind – to improve your work performance and lead others. Exhibit an attitude of confidence, courage, and reciprocity of sharing knowledge to increase your productivity and influence others. Leverage artificial intelligence to accelerate your ability to learn, augment your decision-making, and influence others.Utilize new technologies to communicate with human colleagues and intelligent machines to develop better solutions more quickly.

Keywords: metaverse, generative artificial intelligence, automation, leadership, organizational intelligence, wisdom worker

Procedia PDF Downloads 47
19029 Human Factors Integration of Chemical, Biological, Radiological and Nuclear Response: Systems and Technologies

Authors: Graham Hancox, Saydia Razak, Sue Hignett, Jo Barnes, Jyri Silmari, Florian Kading

Abstract:

In the event of a Chemical, Biological, Radiological and Nuclear (CBRN) incident rapidly gaining, situational awareness is of paramount importance and advanced technologies have an important role to play in improving detection, identification, monitoring (DIM) and patient tracking. Understanding how these advanced technologies can fit into current response systems is essential to ensure they are optimally designed, usable and meet end-users’ needs. For this reason, Human Factors (Ergonomics) methods have been used within an EU Horizon 2020 project (TOXI-Triage) to firstly describe (map) the hierarchical structure in a CBRN response with adapted Accident Map (AcciMap) methodology. Secondly, Hierarchical Task Analysis (HTA) has been used to describe and review the sequence of steps (sub-tasks) in a CBRN scenario response as a task system. HTA methodology was then used to map one advanced technology, ‘Tag and Trace’, which tags an element (people, sample and equipment) with a Near Field Communication (NFC) chip in the Hot Zone to allow tracing of (monitoring), for example casualty progress through the response. This HTA mapping of the Tag and Trace system showed how the provider envisaged the technology being used, allowing for review and fit with the current CBRN response systems. These methodologies have been found to be very effective in promoting and supporting a dialogue between end-users and technology providers. The Human Factors methods have given clear diagrammatic (visual) representations of how providers see their technology being used and how end users would actually use it in the field; allowing for a more user centered approach to the design process. For CBRN events usability is critical as sub-optimum design of technology could add to a responders’ workload in what is already a chaotic, ambiguous and safety critical environment.

Keywords: AcciMap, CBRN, ergonomics, hierarchical task analysis, human factors

Procedia PDF Downloads 225
19028 Assessment of Occupational Health and Safety Conditions of Health Care Workers in Barangay Health Centers in a Selected City in Metro Manila

Authors: Deinzel R. Uezono, Vivien Fe F. Fadrilan-Camacho, Bianca Margarita L. Medina, Antonio Domingo R. Reario, Trisha M. Salcedo, Luke Wesley P. Borromeo

Abstract:

The environment of health care workers is considered one of the most hazardous settings due to the nature of their work. In developing countries especially, the Philippines, this continues to be overlooked in terms of programs and services on occupational health and safety (OHS). One possible reason for this is the existing information gap on OHS which limits data comparability and impairs effective monitoring and assessment of interventions. To address this gap, there is a need to determine the current conditions of Filipino health care workers in their workplace. This descriptive cross-sectional study assessed the occupational health and safety conditions of health care workers in barangay health centers in a selected city in Metro Manila, Philippines by: (1) determining the hazards present in the workplace; (2) determining the most common self-reported medical problems; and (3) describing the elements of an OHS system based on the six building blocks of health system. Assessment was done through walkthrough survey, self-administered questionnaire, and key informant interview. Data analysis was done using Epi Info 7 and NVivo 11. Results revealed different health hazards present in the workplace particularly biological hazards (exposure to sick patients and infectious specimens), physical hazards (inadequate space and/or lighting), chemical hazards (toxic reagents and flammable chemicals), and ergonomic hazards (activities requiring repetitive motion and awkward posture). Additionally, safety hazards (improper capping of syringe and lack of fire safety provisions) were also observed. Meanwhile, the most commonly self-reported chronic diseases among health care workers (N=336) were hypertension (20.24%, n=68) and diabetes (12.50%, n=42). Top commonly self-reported symptoms were colds (66.07%, n=222), coughs (63.10%, n=212), headache (55.65%, n=187), and muscle pain (50.60%, n=170) while other diseases were influenza (16.96%, n=57) and UTI (15.48%, n=52). In terms of the elements of the OHS system, a general policy on occupational health and safety was found to be lacking and in effect, an absence of health and safety committee overseeing the implementing and monitoring of the policy. No separate budget specific for OHS programs and services was also found to be a limitation. As a result, no OHS personnel and trainings/seminar were identified. No established information system for OHS was in place. In conclusion, health and safety hazards were observed to be present across the barangay health centers visited in a selected city in Metro Manila. Medical conditions identified as most commonly self-reported were hypertension and diabetes for chronic diseases; colds, coughs, headache, and muscle pain for medical symptoms; and influenza and UTI for other diseases. As for the elements of the occupational health and safety system, there was a lack in the general components of the six building blocks of the health system.

Keywords: health hazards, occupational health and safety, occupational health and safety system, safety hazards

Procedia PDF Downloads 190
19027 Monitoring of Key Indicators of Sustainable Tourism in the Jalapão State Park/Tocantins: A Case Study of Environmental Indicators

Authors: Veruska C. Dutra, Afonso R. Aquino

Abstract:

Since the 1980s, global tourism activity has consolidated worldwide to become an important economic contributor, and consequently, the sociocultural and environmental impacts are starting to become evidenced. This raises the need of discussing about actions for sustainable tourism that should be linked not only to the economy, but also to the environment and social aspects. The work that is going to be presented is part of a doctoral research project in Sciences undertaken at the Sao Paulo University, Brazil. It aims to analyze whether the monitoring of the tourism sector with a focus on sustainability is applicable or not, through those indicators, put in a case study in the Jalapão State Park (JSP) conservation unit, in the state of Tocantins, Brazil. This is a study of an interdisciplinary nature that had the deductive method as its guide. We concluded that the key points of the sustainable tourism, when analyzed with the focal point in environmental indicators, are an important evaluation and quantification tool of that activity in the study locus. It displayed itself as an adequate tool for monitoring, thus decoding, the main environmental impacts that occur in tourism regions and their intensity, which is made possible through analysis, and has the objective to trace ways to prevent and correct the presented impacts.

Keywords: indicators, tourism, sustainability, Jalapão

Procedia PDF Downloads 334
19026 Health Status Monitoring of COVID-19 Patient's through Blood Tests and Naïve-Bayes

Authors: Carlos Arias-Alcaide, Cristina Soguero-Ruiz, Paloma Santos-Álvarez, Adrián García-Romero, Inmaculada Mora-Jiménez

Abstract:

Analysing clinical data with computers in such a way that have an impact on the practitioners’ workflow is a challenge nowadays. This paper provides a first approach for monitoring the health status of COVID-19 patients through the use of some biomarkers (blood tests) and the simplest Naïve Bayes classifier. Data of two Spanish hospitals were considered, showing the potential of our approach to estimate reasonable posterior probabilities even some days before the event.

Keywords: Bayesian model, blood biomarkers, classification, health tracing, machine learning, posterior probability

Procedia PDF Downloads 237
19025 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 89
19024 Geostatistical Models to Correct Salinity of Soils from Landsat Satellite Sensor: Application to the Oran Region, Algeria

Authors: Dehni Abdellatif, Lounis Mourad

Abstract:

The new approach of applied spatial geostatistics in materials sciences, agriculture accuracy, agricultural statistics, permitted an apprehension of managing and monitoring the water and groundwater qualities in a relationship with salt-affected soil. The anterior experiences concerning data acquisition, spatial-preparation studies on optical and multispectral data has facilitated the integration of correction models of electrical conductivity related with soils temperature (horizons of soils). For tomography apprehension, this physical parameter has been extracted from calibration of the thermal band (LANDSAT ETM+6) with a radiometric correction. Our study area is Oran region (Northern West of Algeria). Different spectral indices are determined such as salinity and sodicity index, the Combined Spectral Reflectance Index (CSRI), Normalized Difference Vegetation Index (NDVI), emissivity, Albedo, and Sodium Adsorption Ratio (SAR). The approach of geostatistical modeling of electrical conductivity (salinity), appears to be a useful decision support system for estimating corrected electrical resistivity related to the temperature of surface soils, according to the conversion models by substitution, the reference temperature at 25°C (where hydrochemical data are collected with this constraint). The Brightness temperatures extracted from satellite reflectance (LANDSAT ETM+) are used in consistency models to estimate electrical resistivity. The confusions that arise from the effects of salt stress and water stress removed followed by seasonal application of the geostatistical analysis in Geographic Information System (GIS) techniques investigation and monitoring the variation of the electrical conductivity in the alluvial aquifer of Es-Sénia for the salt-affected soil.

Keywords: geostatistical modelling, landsat, brightness temperature, conductivity

Procedia PDF Downloads 443
19023 Improving Monitoring and Fault Detection of Solar Panels Using Arduino Mega in WSN

Authors: Ali Al-Dahoud, Mohamed Fezari, Thamer Al-Rawashdeh, Ismail Jannoud

Abstract:

Monitoring and detecting faults on a set of Solar panels, using a wireless sensor network (WNS) is our contribution in this paper, This work is part of the project we are working on at Al-Zaytoonah University. The research problem has been exposed by engineers and technicians or operators dealing with PV panels maintenance, in order to monitor and detect faults within solar panels which affect considerably the energy produced by the solar panels. The proposed solution is based on installing WSN nodes with appropriate sensors for more often occurred faults on the 45 solar panels installed on the roof of IT faculty. A simulation has been done on nodes distribution and a study for the design of a node with appropriate sensors taking into account the priorities of the processing faults. Finally, a graphic user interface is designed and adapted to telemonitoring panels using WSN. The primary tests of hardware implementation gave interesting results, the sensors calibration and interference transmission problem have been solved. A friendly GUI using high level language Visial Basic was developed to carry out the monitoring process and to save data on Exel File.

Keywords: Arduino Mega microcnotroller, solar panels, fault-detection, simulation, node design

Procedia PDF Downloads 467
19022 Design of Regular Communication Area for Infrared Electronic-Toll-Collection Systems

Authors: Wern-Yarng Shieh, Chao Qian, Bingnan Pei

Abstract:

A design of communication area for infrared electronic-toll-collection systems to provide an extended communication interval in the vehicle traveling direction and regular boundary between contiguous traffic lanes is proposed. By utilizing two typical low-cost commercial infrared LEDs with different half-intensity angles Φ1/2 = 22° and 10°, the radiation pattern of the emitter is designed to properly adjust the spatial distribution of the signal power. The aforementioned purpose can be achieved with an LED array in a three-piece structure with appropriate mounting angles. With this emitter, the influence of the mounting parameters, including the mounting height and mounting angles of the on-board unit and road-side unit, on the system performance in terms of the received signal strength and communication area are investigated. The results reveal that, for our emitter proposed in this paper, the ideal "long-and-narrow" characteristic of the communication area is very little affected by these mounting parameters. An optimum mounting configuration is also suggested.

Keywords: dedicated short-range communication (DSRC), electronic toll collection (ETC), infrared communication, intelligent transportation system (ITS), multilane free flow

Procedia PDF Downloads 340
19021 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: distributed optical strain sensing, rock bolt, bedding shear, sandstone tunnel

Procedia PDF Downloads 164
19020 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation

Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau

Abstract:

In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.

Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa

Procedia PDF Downloads 162
19019 Verifying the Performance of the Argon-41 Monitoring System from Fluorine-18 Production for Medical Applications

Authors: Nicole Virgili, Romolo Remetti

Abstract:

The aim of this work is to characterize, from radiation protection point of view, the emission into the environment of air contaminated by argon-41. In this research work, 41Ar is produced by a TR19PET cyclotron, operated at 19 MeV, installed at 'A. Gemelli' University Hospital, Rome, Italy, for fluorine-18 production. The production rate of 41Ar has been calculated on the basis of the scheduled operation cycles of the cyclotron and by utilising proper production algorithms. Then extensive Monte Carlo calculations, carried out by MCNP code, have allowed to determine the absolute detection efficiency to 41Ar gamma rays of a Geiger Muller detector placed in the terminal part of the chimney. Results showed unsatisfactory detection efficiency values and the need for integrating the detection system with more efficient detectors.

Keywords: Cyclotron, Geiger Muller detector, MCNPX, argon-41, emission of radioactive gas, detection efficiency determination

Procedia PDF Downloads 156
19018 System Survivability in Networks

Authors: Asma Ben Yaghlane, Mohamed Naceur Azaiez

Abstract:

We consider the problem of attacks on networks. We define the concept of system survivability in networks in the presence of intelligent threats. Our setting of the problem assumes a flow to be sent from one source node to a destination node. The attacker attempts to disable the network by preventing the flow to reach its destination while the defender attempts to identify the best path-set to use to maximize the chance of arrival of the flow to the destination node. Our concept is shown to be different from the classical concept of network reliability. We distinguish two types of network survivability related to the defender and to the attacker of the network, respectively. We prove that the defender-based-network survivability plays the role of a lower bound while the attacker-based-network survivability plays the role of an upper bound of network reliability. We also prove that both concepts almost never agree nor coincide with network reliability. Moreover, we use the shortest-path problem to determine the defender-based-network survivability and the min-cut problem to determine the attacker-based-network survivability. We extend the problem to a variety of models including the minimum-spanning-tree problem and the multiple source-/destination-network problems.

Keywords: defense/attack strategies, information, networks, reliability, survivability

Procedia PDF Downloads 399
19017 Development of a Spatial Data for Renal Registry in Nigeria Health Sector

Authors: Adekunle Kolawole Ojo, Idowu Peter Adebayo, Egwuche Sylvester O.

Abstract:

Chronic Kidney Disease (CKD) is a significant cause of morbidity and mortality across developed and developing nations and is associated with increased risk. There are no existing electronic means of capturing and monitoring CKD in Nigeria. The work is aimed at developing a spatial data model that can be used to implement renal registries required for tracking and monitoring the spatial distribution of renal diseases by public health officers and patients. In this study, we have developed a spatial data model for a functional renal registry.

Keywords: renal registry, health informatics, chronic kidney disease, interface

Procedia PDF Downloads 223
19016 BIM4Cult Leveraging BIM and IoT for Enhancing Fire Safety in Historical Buildings

Authors: Anastasios Manos, Despina Elisabeth Filippidou

Abstract:

Introduction: Historical buildings are an inte-gral part of the cultural heritage of every place, and beyond the obvious need for protection against risks, they have specific requirements regarding the handling of hazards and disasters such as fire, floods, earthquakes, etc. Ensuring high levels of protection and safety for these buildings is impera-tive for two distinct but interconnected reasons: a) they themselves constitute cultural heritage, and b) they are often used as museums/cultural spaces, necessitating the protection of both human life (vis-itors and workers) and the cultural treasures they house. However, these buildings present serious constraints in implementing the necessary measures to protect them from destruction due to their unique architecture, construction methods, and/or the structural materials used in the past, which have created an existing condition that is sometimes challenging to reshape and operate within the framework of modern regulations and protection measures. One of the most devastating risks that threaten historical buildings is fire. Catastrophic fires demonstrate the need for timely evaluation of fire safety measures in historical buildings. Recog-nizing the criticality of protecting historical build-ings from the risk of fire, the Confederation of Fire Protection Associations in Europe (CFPA E) issued specific guidelines in 2013 (CFPA-E Guideline No 30:2013 F) for the fire protection of historical buildings at the European level. However, until now, few actions have been implemented towards leveraging modern technologies in the field of con-struction and maintenance of buildings, such as Building Information Modeling (BIM) and the Inter-net of Things (IoT), for the protection of historical buildings from risks like fires, floods, etc. The pro-ject BIM4Cult has bee developed in order to fill this gap. It is a tool for timely assessing and monitoring of the fire safety level of historical buildings using BIM and IoT technologies in an integrated manner. The tool serves as a decision support expert system for improving the fire safety of historical buildings by continuously monitoring, controlling and as-sessing critical risk factors for fire.

Keywords: Iot, fire, BIM, expert system

Procedia PDF Downloads 75
19015 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability

Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto

Abstract:

Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.

Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT

Procedia PDF Downloads 798
19014 RFID Logistic Management with Cold Chain Monitoring: Cold Store Case Study

Authors: Mira Trebar

Abstract:

Logistics processes of perishable food in the supply chain include the distribution activities and the real time temperature monitoring to fulfil the cold chain requirements. The paper presents the use of RFID (Radio Frequency Identification) technology as an identification tool of receiving and shipping activities in the cold store. At the same time, the use of RFID data loggers with temperature sensors is presented to observe and store the temperatures for the purpose of analyzing the processes and having the history data available for traceability purposes and efficient recall management.

Keywords: logistics, warehouse, RFID device, cold chain

Procedia PDF Downloads 634
19013 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment

Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan

Abstract:

In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.

Keywords: border security, sensors, abnormal activity detection, ontologies

Procedia PDF Downloads 482
19012 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm

Authors: Haozhe Xiang

Abstract:

With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.

Keywords: deep learning, graph convolutional network, attention mechanism, LSTM

Procedia PDF Downloads 76
19011 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 321
19010 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery

Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats

Abstract:

Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.

Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform

Procedia PDF Downloads 460
19009 Real-Time Kinetic Analysis of Labor-Intensive Repetitive Tasks Using Depth-Sensing Camera

Authors: Sudip Subedi, Nipesh Pradhananga

Abstract:

The musculoskeletal disorders, also known as MSDs, are common in construction workers. MSDs include lower back injuries, knee injuries, spinal injuries, and joint injuries, among others. Since most construction tasks are still manual, construction workers often need to perform repetitive, labor-intensive tasks. And they need to stay in the same or an awkward posture for an extended time while performing such tasks. It induces significant stress to the joints and spines, increasing the risk of getting into MSDs. Manual monitoring of such tasks is virtually impossible with the handful of safety managers in a construction site. This paper proposes a methodology for performing kinetic analysis of the working postures while performing such tasks in real-time. Skeletal of different workers will be tracked using a depth-sensing camera while performing the task to create training data for identifying the best posture. For this, the kinetic analysis will be performed using a human musculoskeletal model in an open-source software system (OpenSim) to visualize the stress induced by essential joints. The “safe posture” inducing lowest stress on essential joints will be computed for different actions involved in the task. The identified “safe posture” will serve as a basis for real-time monitoring and identification of awkward and unsafe postural behaviors of construction workers. Besides, the temporal simulation will be carried out to find the associated long-term effect of repetitive exposure to such observed postures. This will help to create awareness in workers about potential future health hazards and encourage them to work safely. Furthermore, the collected individual data can then be used to provide need-based personalized training to the construction workers.

Keywords: construction workers’ safety, depth sensing camera, human body kinetics, musculoskeletal disorders, real time monitoring, repetitive labor-intensive tasks

Procedia PDF Downloads 138