Search results for: distributed sensor networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5815

Search results for: distributed sensor networks

4885 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array

Authors: Rachid Dehini, Brahim Berbaoui

Abstract:

The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.

Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)

Procedia PDF Downloads 335
4884 Nano-Plasmonic Diagnostic Sensor Using Ultraflat Single-Crystalline Au Nanoplate and Cysteine-Tagged Protein G

Authors: Hwang Ahreum, Kang Taejoon, Kim Bongsoo

Abstract:

Nanosensors for high sensitive detection of diseases have been widely studied to improve the quality of life. Here, we suggest robust nano-plasmonic diagnostic sensor using cysteine tagged protein G (Cys3-protein G) and ultraflat, ultraclean and single-crystalline Au nanoplates. Protein G formed on an ultraflat Au surface provides ideal background for dense and uniform immobilization of antibodies. The Au is highly stable in diverse biochemical environment and can immobilize antibodies easily through Au-S bonding, having been widely used for various biosensing applications. Especially, atomically smooth single-crystalline Au nanomaterials synthesized using chemical vapor transport (CVT) method are very suitable to fabricate reproducible sensitive sensors. As the C-reactive protein (CRP) is a nonspecific biomarker of inflammation and infection, it can be used as a predictive or prognostic marker for various cardiovascular diseases. Cys3-protein G immobilized uniformly on the Au nanoplate enable CRP antibody (anti-CRP) to be ordered in a correct orientation, making their binding capacity be maximized for CRP detection. Immobilization condition for the Cys3-protein G and anti-CRP on the Au nanoplate is optimized visually by AFM analysis. Au nanoparticle - Au nanoplate (NPs-on-Au nanoplate) assembly fabricated from sandwich immunoassay for CRP can reduce zero-signal extremely caused by nonspecific bindings, providing a distinct surface-enhanced Raman scattering (SERS) enhancement still in 10-18 M of CRP concentration. Moreover, the NP-on-Au nanoplate sensor shows an excellent selectivity against non-target proteins with high concentration. In addition, comparing with control experiments employing a Au film fabricated by e-beam assisted deposition and linker molecule, we validate clearly contribution of the Au nanoplate for the attomolar sensitive detection of CRP. We expect that the devised platform employing the complex of single-crystalline Au nanoplates and Cys3-protein G can be applied for detection of many other cancer biomarkers.

Keywords: Au nanoplate, biomarker, diagnostic sensor, protein G, SERS

Procedia PDF Downloads 259
4883 Understanding the Influence of Social Media on Individual’s Quality of Life Perceptions

Authors: Biljana Marković

Abstract:

Social networks are an integral part of our everyday lives, becoming an indispensable medium for communication in personal and business environments. New forms and ways of communication change the general mindset and significantly affect the quality of life of individuals. Quality of life is perceived as an abstract term, but often people are not aware that they directly affect the quality of their own lives, making minor but significant everyday choices and decisions. Quality of life can be defined broadly, but in the widest sense, it involves a subjective sense of satisfaction with one's life. Scientific knowledge about the impact of social networks on self-assessment of the quality of life of individuals is only just beginning to be researched. Available research indicates potential benefits as well as a number of disadvantages. In the context of the previous claims, the focus of the study conducted by the authors of this paper focuses on analyzing the impact of social networks on individual’s self-assessment of quality of life and the correlation between time spent on social networks, and the choice of content that individuals choose to share to present themselves. Moreover, it is aimed to explain how much and in what ways they critically judge the lives of others online. The research aspires to show the positive as well as negative aspects that social networks, primarily Facebook and Instagram, have on creating a picture of individuals and how they compare themselves with others. The topic of this paper is based on quantitative research conducted on a representative sample. An analysis of the results of the survey conducted online has elaborated a hypothesis which claims that content shared by individuals on social networks influences the image they create about themselves. A comparative analysis of the results obtained with the results of similar research has led to the conclusion about the synergistic influence of social networks on the feeling of the quality of life of respondents. The originality of this work is reflected in the approach of conducting research by examining attitudes about an individual's life satisfaction, the way he or she creates a picture of himself/herself through social networks, the extent to which he/she compares herself/himself with others, and what social media applications he/she uses. At the cognitive level, scientific contributions were made through the development of information concepts on quality of life, and at the methodological level through the development of an original methodology for qualitative alignment of respondents' attitudes using statistical analysis. Furthermore, at the practical level through the application of concepts in assessing the creation of self-image and the image of others through social networks.

Keywords: quality of life, social media, self image, influence of social media

Procedia PDF Downloads 130
4882 Experimental and Theoretical Study of Melt Viscosity in Injection Process

Authors: Chung-Chih Lin, Wen-Teng Wang, Chin-Chiuan Kuo, Chieh-Liang Wu

Abstract:

The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality.

Keywords: injection molding, melt viscosity, tensile test, pressure sensor bushing (PSB)

Procedia PDF Downloads 483
4881 Structural Protein-Protein Interactions Network of Breast Cancer Lung and Brain Metastasis Corroborates Conformational Changes of Proteins Lead to Different Signaling

Authors: Farideh Halakou, Emel Sen, Attila Gursoy, Ozlem Keskin

Abstract:

Protein–Protein Interactions (PPIs) mediate major biological processes in living cells. The study of PPIs as networks and analyze the network properties contribute to the identification of genes and proteins associated with diseases. In this study, we have created the sub-networks of brain and lung metastasis from primary tumor in breast cancer. To do so, we used seed genes known to cause metastasis, and produced their interactions through a network-topology based prioritization method named GUILDify. In order to have the experimental support for the sub-networks, we further curated them using STRING database. We proceeded by modeling structures for the interactions lacking complex forms in Protein Data Bank (PDB). The functional enrichment analysis shows that KEGG pathways associated with the immune system and infectious diseases, particularly the chemokine signaling pathway, are important for lung metastasis. On the other hand, pathways related to genetic information processing are more involved in brain metastasis. The structural analyses of the sub-networks vividly demonstrated their difference in terms of using specific interfaces in lung and brain metastasis. Furthermore, the topological analysis identified genes such as RPL5, MMP2, CCR5 and DPP4, which are already known to be associated with lung or brain metastasis. Additionally, we found 6 and 9 putative genes that are specific for lung and brain metastasis, respectively. Our analysis suggests that variations in genes and pathways contributing to these different breast metastasis types may arise due to change in tissue microenvironment. To show the benefits of using structural PPI networks instead of traditional node and edge presentation, we inspect two case studies showing the mutual exclusiveness of interactions and effects of mutations on protein conformation which lead to different signaling.

Keywords: breast cancer, metastasis, PPI networks, protein conformational changes

Procedia PDF Downloads 247
4880 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development

Procedia PDF Downloads 425
4879 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 160
4878 Numerical Tools for Designing Multilayer Viscoelastic Damping Devices

Authors: Mohammed Saleh Rezk, Reza Kashani

Abstract:

Auxiliary damping has gained popularity in recent years, especially in structures such as mid- and high-rise buildings. Distributed damping systems (typically viscous and viscoelastic) or reactive damping systems (such as tuned mass dampers) are the two types of damping choices for such structures. Distributed VE dampers are normally configured as braces or damping panels, which are engaged through relatively small movements between the structural members when the structure sways under wind or earthquake loading. In addition to being used as stand-alone dampers in distributed damping applications, VE dampers can also be incorporated into the suspension element of tuned mass dampers (TMDs). In this study, analytical and numerical tools for modeling and design of multilayer viscoelastic damping devices to be used in dampening the vibration of large structures are developed. Considering the limitations of analytical models for the synthesis and analysis of realistic, large, multilayer VE dampers, the emphasis of the study has been on numerical modeling using the finite element method. To verify the finite element models, a two-layer VE damper using ½ inch synthetic viscoelastic urethane polymer was built, tested, and the measured parameters were compared with the numerically predicted ones. The numerical model prediction and experimentally evaluated damping and stiffness of the test VE damper were in very good agreement. The effectiveness of VE dampers in adding auxiliary damping to larger structures is numerically demonstrated by chevron bracing one such damper numerically into the model of a massive frame subject to an abrupt lateral load. A comparison of the responses of the frame to the aforementioned load, without and with the VE damper, clearly shows the efficacy of the damper in lowering the extent of frame vibration.

Keywords: viscoelastic, damper, distributed damping, tuned mass damper

Procedia PDF Downloads 110
4877 Building Care Networks for Patients with Life-Limiting Illnesses: Perspectives from Health Care and Social Service Providers

Authors: Lindy Van Vliet, Saloni Phadke, Anthea Nelson, Ann Gallant

Abstract:

Comprehensive and compassionate palliative care and support requires an integrated system of care that draws on formal health and social service providers working together with community and informal networks to ensure that patients and families have access to the care they need. The objective of this study is to further explore and understand the community supports, services, and informal networks that health care professionals and social service providers rely on to allow their patients to die in their homes and communities. Drawing on an interpretivist, exploratory, qualitative design, our multidisciplinary research team (medicine, nursing and social work) conducted interviews with 15 health care and social service providers in the Ottawa region. Interview data was audio-recorded, transcribed and analyzed using a reflexive thematic analysis approach. The data deepens our understandings of the facilitators and barriers that arise as health care and social service providers attempt to build networks of care for patients with life limiting illnesses and families. Three main findings emerged: First, the variability that arises due to systemic barriers in accessing and providing care; second, the exceptionally challenging workload that providers are facing as they work to address complex social care needs (housing, disability, food security), along with escalating palliative care needs; and, finally, the lack of structural support that providers and informal care networks receive. Conclusion: These findings will facilitate and build stronger person-centred/relationship-centred principles and practices between providers, patients, community, and informal care networks by highlighting the systemic barriers to accessing and providing person-centred care. Further, they will have important implications for future partnerships in integrated care delivery programs and initiatives, community policies, education programs, and provincial and national palliative care strategies.

Keywords: public health palliative care, palliative care nursing, care networks, informal care, integrated health care

Procedia PDF Downloads 99
4876 Neural Style Transfer Using Deep Learning

Authors: Shaik Jilani Basha, Inavolu Avinash, Alla Venu Sai Reddy, Bitragunta Taraka Ramu

Abstract:

We can use the neural style transfer technique to build a picture with the same "content" as the beginning image but the "style" of the picture we've chosen. Neural style transfer is a technique for merging the style of one image into another while retaining its original information. The only change is how the image is formatted to give it an additional artistic sense. The content image depicts the plan or drawing, as well as the colors of the drawing or paintings used to portray the style. It is a computer vision programme that learns and processes images through deep convolutional neural networks. To implement software, we used to train deep learning models with the train data, and whenever a user takes an image and a styled image, the output will be as the style gets transferred to the original image, and it will be shown as the output.

Keywords: neural networks, computer vision, deep learning, convolutional neural networks

Procedia PDF Downloads 100
4875 Identification of Impact Load and Partial System Parameters Using 1D-CNN

Authors: Xuewen Yu, Danhui Dan

Abstract:

The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.

Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem

Procedia PDF Downloads 132
4874 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller

Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni

Abstract:

With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.

Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning

Procedia PDF Downloads 233
4873 Optimal Pressure Control and Burst Detection for Sustainable Water Management

Authors: G. K. Viswanadh, B. Rajasekhar, G. Venkata Ramana

Abstract:

Water distribution networks play a vital role in ensuring a reliable supply of clean water to urban areas. However, they face several challenges, including pressure control, pump speed optimization, and burst event detection. This paper combines insights from two studies to address these critical issues in Water distribution networks, focusing on the specific context of Kapra Municipality, India. The first part of this research concentrates on optimizing pressure control and pump speed in complex Water distribution networks. It utilizes the EPANET- MATLAB Toolkit to integrate EPANET functionalities into the MATLAB environment, offering a comprehensive approach to network analysis. By optimizing Pressure Reduce Valves (PRVs) and variable speed pumps (VSPs), this study achieves remarkable results. In the Benchmark Water Distribution System (WDS), the proposed PRV optimization algorithm reduces average leakage by 20.64%, surpassing the previous achievement of 16.07%. When applied to the South-Central and East zone WDS of Kapra Municipality, it identifies PRV locations that were previously missed by existing algorithms, resulting in average leakage reductions of 22.04% and 10.47%. These reductions translate to significant daily Water savings, enhancing Water supply reliability and reducing energy consumption. The second part of this research addresses the pressing issue of burst event detection and localization within the Water Distribution System. Burst events are a major contributor to Water losses and repair expenses. The study employs wireless sensor technology to monitor pressure and flow rate in real time, enabling the detection of pipeline abnormalities, particularly burst events. The methodology relies on transient analysis of pressure signals, utilizing Cumulative Sum and Wavelet analysis techniques to robustly identify burst occurrences. To enhance precision, burst event localization is achieved through meticulous analysis of time differentials in the arrival of negative pressure waveforms across distinct pressure sensing points, aided by nodal matrix analysis. To evaluate the effectiveness of this methodology, a PVC Water pipeline test bed is employed, demonstrating the algorithm's success in detecting pipeline burst events at flow rates of 2-3 l/s. Remarkably, the algorithm achieves a localization error of merely 3 meters, outperforming previously established algorithms. This research presents a significant advancement in efficient burst event detection and localization within Water pipelines, holding the potential to markedly curtail Water losses and the concomitant financial implications. In conclusion, this combined research addresses critical challenges in Water distribution networks, offering solutions for optimizing pressure control, pump speed, burst event detection, and localization. These findings contribute to the enhancement of Water Distribution System, resulting in improved Water supply reliability, reduced Water losses, and substantial cost savings. The integrated approach presented in this paper holds promise for municipalities and utilities seeking to improve the efficiency and sustainability of their Water distribution networks.

Keywords: pressure reduce valve, complex networks, variable speed pump, wavelet transform, burst detection, CUSUM (Cumulative Sum), water pipeline monitoring

Procedia PDF Downloads 92
4872 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties

Authors: Hsyi-En Cheng, Ying-Yi Liou

Abstract:

Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.

Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide

Procedia PDF Downloads 243
4871 Prosperous Digital Image Watermarking Approach by Using DCT-DWT

Authors: Prabhakar C. Dhavale, Meenakshi M. Pawar

Abstract:

In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacks

Keywords: watermarking, digital, DCT-DWT, security

Procedia PDF Downloads 425
4870 A New Method Presentation for Locating Fault in Power Distribution Feeders Considering DG

Authors: Rahman Dashti, Ehsan Gord

Abstract:

In this paper, an improved impedance based fault location method is proposed. In this method, online fault locating is performed using voltage and current information at the beginning of the feeder. Determining precise fault location in a short time increases reliability and efficiency of the system. The proposed method utilizes information about main component of voltage and current at the beginning of the feeder and distributed generation unit (DGU) in order to precisely locate different faults in acceptable time. To evaluate precision and accuracy of the proposed method, a 13-node is simulated and tested using MATLAB.

Keywords: distribution network, fault section determination, distributed generation units, distribution protection equipment

Procedia PDF Downloads 405
4869 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy

Abstract:

The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.

Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence

Procedia PDF Downloads 130
4868 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine

Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi

Abstract:

Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).

Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer

Procedia PDF Downloads 426
4867 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models

Authors: Yahia. Kourd, N. Guersi D. Lefebvre

Abstract:

In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.

Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor

Procedia PDF Downloads 645
4866 A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6

Authors: M. Moslehpour, S. Khorsandi

Abstract:

Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.

Keywords: NDP, IPsec, SEND, CGA, modifier, malicious node, self-computing, distributed-computing

Procedia PDF Downloads 280
4865 Managing Networks and Systems in the Modern Security Landscape: An Integrated Approach to Infrastructure Resilience

Authors: Oussama Yadine, Abdellah Jamali

Abstract:

The rapid evolution of today's technology ecosystem, marked by the fusion of cloud computing, IoT, and distributed systems, has introduced complex security challenges in network and systems administration. Our research develops a framework that seamlessly merges contemporary systems administration with advanced security engineering methodologies, particularly focusing on DevSecOps implementation and zero-trust architectural principles. Comprehensive testing and analysis across diverse organizational environments reveal that this unified approach achieves remarkable results: a 47% decrease in security-related incidents while consistently maintaining 99.9% system uptime. The framework delivers actionable guidelines for deploying secure infrastructure architectures, automating compliance oversight, and implementing dynamic security protocols. This integration effectively eliminates the historical divide between systems administration and security engineering, fostering an environment where operational efficiency and security resilience coexist harmoniously.

Keywords: network security, systems administration, security engineering, infrastructure resilience

Procedia PDF Downloads 5
4864 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks

Authors: Jérémie Ochin

Abstract:

Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.

Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition

Procedia PDF Downloads 33
4863 The Effect of Artificial Intelligence on International Law, Legal Security and Privacy Issues

Authors: Akram Waheb Nasef Alzordoky

Abstract:

The wars and armed conflicts have frequently ended in violations of global humanitarian law and regularly devote the maximum severe global crimes, which include war crimes, crimes towards humanity, aggression and genocide. But, simplest inside the XX century, the guideline changed into an articulated idea of establishing a frame of worldwide criminal justice so that you can prosecute those crimes and their perpetrators. The first steps on this subject were made with the aid of setting up the worldwide army tribunals for warfare crimes at Nuremberg and Tokyo, and the formation of ad hoc tribunals for the former Yugoslavia and Rwanda. Ultimately, the global criminal courtroom was established in Rome in 1998 with the aim of justice and that allows you to give satisfaction to the sufferers of crimes and their families. The aim of the paper was to provide an ancient and comparative analysis of the establishments of worldwide criminal justice primarily based on which those establishments de lege lata fulfilled the goals of individual criminal responsibility and justice. Moreover, the authors endorse de lege ferenda that the everlasting global crook Tribunal, in addition to the potential case, additionally takes over the current ICTY and ICTR cases.

Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures

Procedia PDF Downloads 27
4862 Design of SAE J2716 Single Edge Nibble Transmission Digital Sensor Interface for Automotive Applications

Authors: Jongbae Lee, Seongsoo Lee

Abstract:

Modern sensors often embed small-size digital controller for sensor control, value calibration, and signal processing. These sensors require digital data communication with host microprocessors, but conventional digital communication protocols are too heavy for price reduction. SAE J2716 SENT (single edge nibble transmission) protocol transmits direct digital waveforms instead of complicated analog modulated signals. In this paper, a SENT interface is designed in Verilog HDL (hardware description language) and implemented in FPGA (field-programmable gate array) evaluation board. The designed SENT interface consists of frame encoder/decoder, configuration register, tick period generator, CRC (cyclic redundancy code) generator/checker, and TX/RX (transmission/reception) buffer. Frame encoder/decoder is implemented as a finite state machine, and it controls whole SENT interface. Configuration register contains various parameters such as operation mode, tick length, CRC option, pause pulse option, and number of nibble data. Tick period generator generates tick signals from input clock. CRC generator/checker generates or checks CRC in the SENT data frame. TX/RX buffer stores transmission/received data. The designed SENT interface can send or receives digital data in 25~65 kbps at 3 us tick. Synthesized in 0.18 um fabrication technologies, it is implemented about 2,500 gates.

Keywords: digital sensor interface, SAE J2716, SENT, verilog HDL

Procedia PDF Downloads 308
4861 Framework for the Modeling of the Supply Chain Collaborative Planning Process

Authors: D. Pérez, M. M. E. Alemany

Abstract:

In this work a Framework to model the Supply Chain (SC) Collaborative Planning (CP) Process is proposed, and particularly its Decisional view. The main Framework contributions with regards to previous related works are the following, 1) the consideration of not only the Decision view, the most important one due to the Process type, but other additional three views which are the Physical, Organisation and Information ones, closely related and complementing the Decision View, 2) the joint consideration of two interdependence types, the Temporal (among Decision Centres belonging to different Decision Levels) and Spatial (among Decision Centres belonging to the same Decision Level) to support the distributed Decision-Making process in SC where several decision Centres interact among them in a collaborative manner.

Keywords: collaborative planning, decision view, distributed decision-making, framework

Procedia PDF Downloads 471
4860 The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery

Authors: Khadidja Belbachir, Hafida Belbachir

Abstract:

subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm.

Keywords: association rules, distributed data mining, partition, parallel algorithms

Procedia PDF Downloads 424
4859 Distant Speech Recognition Using Laser Doppler Vibrometer

Authors: Yunbin Deng

Abstract:

Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.

Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR

Procedia PDF Downloads 181
4858 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique

Authors: Dibakar Chakrabarty, Mebada Suiting

Abstract:

Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.

Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM

Procedia PDF Downloads 251
4857 Energy Efficient Routing Protocol with Ad Hoc On-Demand Distance Vector for MANET

Authors: K. Thamizhmaran, Akshaya Devi Arivazhagan, M. Anitha

Abstract:

On the case of most important systematic issue that must need to be solved in means of implementing a data transmission algorithm on the source of Mobile adhoc networks (MANETs). That is, how to save mobile nodes energy on meeting the requirements of applications or users as the mobile nodes are with battery limited. On while satisfying the energy saving requirement, hence it is also necessary of need to achieve the quality of service. In case of emergency work, it is necessary to deliver the data on mean time. Achieving quality of service in MANETs is also important on while. In order to achieve this requirement, Hence, we further implement the Energy-Aware routing protocol for system of Mobile adhoc networks were it being proposed, that on which saves the energy as on every node by means of efficiently selecting the mode of energy efficient path in the routing process by means of Enhanced AODV routing protocol.

Keywords: Ad-Hoc networks, MANET, routing, AODV, EAODV

Procedia PDF Downloads 373
4856 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol

Procedia PDF Downloads 220