Search results for: Ductile metal pipes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2790

Search results for: Ductile metal pipes

1860 Preliminary Study on Analysis of Pinching Motion Actuated by Electro-Active Polymers

Authors: Doo W. Lee, Soo J. Lee, Bye R. Yoon, Jae Y. Jho, Kyehan Rhee

Abstract:

Hand exoskeletons have been developed in order to assist daily activities for disabled and elder people. A figure exoskeleton was developed using ionic polymer metal composite (IPMC) actuators, and the performance of it was evaluated in this study. In order to study dynamic performance of a finger dummy performing pinching motion, force generating characteristics of an IPMC actuator and pinching motion of a thumb and index finger dummy actuated by IMPC actuators were analyzed. The blocking force of 1.54 N was achieved under 4 V of DC. A thumb and index finger dummy, which has one degree of freedom at the proximal joint of each figure, was manufactured by a three dimensional rapid prototyping. Each figure was actuated by an IPMC actuator, and the maximum fingertip force was 1.18 N. Pinching motion of a dummy was analyzed by two video cameras in vertical top and horizontal left end view planes. A figure dummy powered by IPMC actuators could perform flexion and extension motion of an index figure and a thumb.

Keywords: finger exoskeleton, ionic polymer metal composite, flexion and extension, motion analysis

Procedia PDF Downloads 238
1859 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.

Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics

Procedia PDF Downloads 275
1858 The Influence of Clayey Pellet Size on Adsorption Efficiency of Metal Ions Removal from Waste Printing Developer

Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Oros B. Ivana, Kecić S. Vesna

Abstract:

The adsorption efficiency of fired clayey pellets of 5 and 8 mm diameter size for Cu(II) and Zn(II) ions removal from a waste printing developer was studied. In order to investigate the influence of contact time, adsorbent mass and pellet size on the adsorption efficiency the batch mode was carried out. Faster uptake of copper ions was obtained with the fired clay pellets of 5 mm diameter size within 30 minutes. The pellets of 8 mm diameter size showed the higher equilibrium time (60 to 75 minutes) for copper and zinc ions. The results pointed out that adsorption efficiency increases with the increase of adsorbent mass. The maximal efficiency is different for Cu(II) and Zn(II) ions due to the pellet size. Therefore, the fired clay pellets of 5 mm diameter size present an effective adsorbent for Cu(II) ions removal (adsorption efficiency is 63.6%), whereas the fired clay pellets of 8 mm diameter size are the best alternative for Zn(II) ions removal (adsorption efficiency is 92.8%) from a waste printing developer.

Keywords: adsorption efficiency, clayey pellet, metal ions, waste printing developer

Procedia PDF Downloads 301
1857 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 301
1856 Effects of Turbulence Penetration on Valve Leakage in Nuclear Reactor Coolant System

Authors: Gupta Rajesh, Paudel Sagar, Sharma Utkarsh, Singh Amit Kumar

Abstract:

Thermal stratification has drawn much attention because of the malfunctions at various nuclear plants in U.S.A that raised significant safety concerns. The concerns due to this phenomenon relate to thermal stresses in branch pipes connected to the reactor coolant system piping. This stress limits the lifetime of the piping system, and even leading to penetrating cracks. To assess origin of valve damage in the pipeline, it is essential to determine the effect of turbulence penetration on valve leakage; since stratified flow is generally generated by turbulent penetration or valve leakage. As a result, we concluded with the help of coupled fluent-structural analysis that the pipe with less turbulence has less chance of failure there by requiring less maintenance.

Keywords: nuclear reactor coolant system, thermal stratification, turbulent penetration, coupled fluent-structural analysis, Von-Misses stress

Procedia PDF Downloads 293
1855 Investment Casting Conditions with Tourmaline In-Situ

Authors: Kageeporn Wongpreedee, Bongkot Phichaikamjornwut, Duangkhae Bootkul

Abstract:

The technique of stone in place casting had been established in jewelry production for two decades. However, the process were not widely used since it was limited to precious stones with high hardness and high stabililty at high temperature. This experiment were tested on tourmaline which is semi-precious gemstone having less hardness and less stability comparing to precious stones. The experiment were designed into two parts. The first part is to understand the phenomena of tourmaline under the heating conditions. Natural tourmaline stones were investigated and compared inclusions inside stones tested at temperature of 500 °C, 600 °C, and 700 °C. The second part is to cast the treated tourmaline with ion-implanation under the stones in place casting conditions. The results showed that stones were able to tolerate as much as at 700 °C showing the growths of inclusions inside the stones. The second part of this experiment were compared tourmaline with ion-implantation and natural tourmaline using on stones in place casting process at different stone setting types. The results showed that the cracks and inclustions of both treat and natural tourmaline with stones in place casting were propagate due to high stress of metal contractions. The stones with ion-implatation were more likely tolerate to cracks and inclusion propagations inside the stones.

Keywords: stone in place casting, tourmaline, ion implantation, metal contraction

Procedia PDF Downloads 218
1854 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process

Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy

Abstract:

In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.

Keywords: hydrogen production, water splitting, photocatalysts, Graphene

Procedia PDF Downloads 188
1853 Optimization of Gold Adsorption from Aqua-Regia Gold Leachate Using Baggase Nanoparticles

Authors: Oluwasanmi Teniola, Abraham Adeleke, Ademola Ibitoye, Moshood Shitu

Abstract:

To establish an economical and efficient process for the recovery of gold metal from refractory gold ore obtained from Esperando axis of Osun state Nigeria, the adsorption of gold (III) from aqua reqia leached solution of the ore using bagasse nanoparticles has been studied under various experimental variables using batch technique. The extraction percentage of gold (III) on the prepared bagasse nanoparticles was determined from its distribution coefficients as a function of solution pH, contact time, adsorbent, adsorbate concentrations, and temperature. The rate of adsorption of gold (III) on the prepared bagasse nanoparticles is dependent on pH, metal concentration, amount of adsorbate, stirring rate, and temperature. The adsorption data obtained fit into the Langmuir and Freundlich equations. Three different temperatures were used to determine the thermodynamic parameters of the adsorption of gold (III) on bagasse nanoparticles. The heat of adsorption was measured to be a positive value ΔHo = +51.23kJ/mol, which serves as an indication that the adsorption of gold (III) on bagasse nanoparticles is endothermic. Also, the negative value of ΔGo = -0.6205 kJ/mol at 318K shows the spontaneity of the process. As the temperature was increased, the value of ΔGo becomes more negative, indicating that an increase in temperature favors the adsorption process. With the application of optimal adsorption variables, the adsorption capacity of gold was 0.78 mg/g of the adsorbent, out of which 0.70 mg of gold was desorbed with 0.1 % thiourea solution.

Keywords: adsorption, bagasse, extraction, nanoparticles, recovery

Procedia PDF Downloads 155
1852 Assessment of Water Reuse Potential in a Metal Finishing Factory

Authors: Efe Gumuslu, Guclu Insel, Gülten Yuksek, Nilay Sayi Ucar, Emine Ubay Cokgor, Tuğba Olmez Hanci, Didem Okutman Tas, Fatoş Germirli Babuna, Derya Firat Ertem, Ökmen Yildirim, Özge Erturan, Betül Kirci

Abstract:

Although water reclamation and reuse are inseparable parts of sustainable production concept all around the world, current levels of reuse constitute only a small fraction of the total volume of industrial effluents. Nowadays, within the perspective of serious climate change, wastewater reclamation and reuse practices should be considered as a requirement. Industrial sector is one of the largest users of water sources. The OECD Environmental Outlook to 2050 predicts that global water demand for manufacturing will increase by 400% from 2000 to 2050 which is much larger than any other sector. Metal finishing industry is one of the industries that requires high amount of water during the manufacturing. Therefore, actions regarding the improvement of wastewater treatment and reuse should be undertaken on both economic and environmental sustainability grounds. Process wastewater can be reused for more purposes if the appropriate treatment systems are installed to treat the wastewater to the required quality level. Recent studies showed that membrane separation techniques may help in solving the problem of attaining a suitable quality of water that allows being recycled back to the process. The metal finishing factory where this study is conducted is one of the biggest white-goods manufacturers in Turkey. The sheet metal parts used in the cookers production have to be exposed to surface pre-treatment processes composed of degreasing, rinsing, nanoceramics coating and deionization rinsing processes, consecutively. The wastewater generating processes in the factory are enamel coating, painting and styrofoam processes. In the factory, the main source of water is the well water. While some part of the well water is directly used in the processes after passing through resin treatment, some portion of it is directed to the reverse osmosis treatment to obtain required water quality for enamel coating and painting processes. In addition to these processes another important source of water that can be considered as a potential water source is rainwater (3660 tons/year). In this study, process profiles as well as pollution profiles were assessed by a detailed quantitative and qualitative characterization of the wastewater sources generated in the factory. Based on the preliminary results the main water sources that can be considered for reuse in the processes were determined as painting and styrofoam processes.

Keywords: enamel coating, painting, reuse, wastewater

Procedia PDF Downloads 380
1851 Impact of Welding Wire Nickel Plating Process Parameters on Ni Layer Thickness

Authors: Sylwia Wiewiorowska, Zbigniew Muskalski

Abstract:

The article presents part of research on the development of nickel plated welding wire production technology, whose application will enable the elimination of the flaws of currently manufactured welding wires. The nickel plated welding wire will be distinguished by high quality, because the Ni layer which is deposited electrochemically onto it from acid baths is characterized by very good adhesion to the steel wire surface, while the ductile nickel well deforms plastically in the drawing process and the adhesion of the Ni layer increases in the drawing process due to the occurring process of diffusion between the Ni and the steel. The Ni layer obtained in the proposed technology, despite a smaller thickness than when the wire is coated with copper, is continuous and tight, thus ensuring high corrosion resistance, as well as unsusceptible to scaling, which should provide a product that meets requirements imposed by the market. The product will also reduce, to some extent, the amount of copper brought in to steel through recycling, while the wire coating nickel introduced to the weld in the welding process is expected, to a degree, to favorably influence its mechanical properties. The paper describes the tests of the process of nickel plating of f1.96 mm-diameter wires using various nickel plating baths with different process parameters.

Keywords: steel wire, properties, welding process, Ni layer

Procedia PDF Downloads 148
1850 Catalytic Combustion of Methane over Pd-Meox-CeO₂/Al₂O₃ (Me= Co or Ni) Catalysts

Authors: Silviya Todorova, Anton Naydenov, Ralitsa Velinova, Alexander Larin

Abstract:

Catalytic combustion of methane has been extensively investigated for emission control and power generation during the last decades. The alumina-supported palladium catalyst is widely accepted as the most active catalysts for catalytic combustion of methane. The activity of Pd/Al₂O₃ decreases during the time on stream, especially underwater vapor. The following order of activity in the reaction of complete oxidation of methane was established: Co₃O₄> CuO>NiO> Mn₂O₃> Cr₂O₃. It may be expected that the combination between Pd and these oxides could lead to the promising catalysts in the reaction of complete methane. In the present work, we investigate the activity of Pd/Al₂O₃ catalysts promoted with other metal oxides (MOx; M= Ni, Co, Ce). The Pd-based catalysts modified by metal oxide were prepared by sequential impregnation of Al₂O₃ with aqueous solutions of Me(NO₃)₂.6H₂O and Pd(NO₃)₂H₂O. All samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). An improvement of activity was observed after modification with different oxides. The results demonstrate that the Pd/Al₂O₃ catalysts modified with Co and Ce by impregnation with a common solution of respective salts, exhibit the most promising catalytic activity for methane oxidation. Most probably, the presence of Co₃O₄ and CeO₂ on catalytic surface increases surface oxygen and therefore leads to the better reactivity in methane combustion.

Keywords: methane combustion, palladium, Co-Ce, Ni-Ce

Procedia PDF Downloads 187
1849 Synthesis of 2-Aminoisocoumarinoselenazoles via Transition Metal-Free Alkylation and Ru(II)-Catalyzed [4+2] Alkyne Annulation

Authors: Sunil Kumar, Sandip Dhole, Deepak Salunke, Chung-ming Sun

Abstract:

Heterocycles bearing nitrogen, oxygen, and selenium are present in innumerable biologically active compounds. For instance, coumarin containing dicoumarol acts as naturally occurring anticoagulant. 2-Acylamido selenazole works as Store-Operated Calcium (SOC) channel regulator. Therefore, due to biologically significance of selenazole and coumarin and our quest to develop efficient methodologies for the synthesis of complex heterocycles, the trisubstituted angular isocoumarinoselenazole synthesis was proposed and achieved by starting from nitrobenzoic acid derivative, available commercially. Synthetic procedure involves three steps: i) the construction of 2-aminobenzoselenazoles, ii) their regioselective N-alkylation at position-2 and iii) alkyne insertion via Ru catalyzed C-H activation. Transition metal free synthesis of benzoselenazoles was successfully brought about by the addition/elimination reaction via intramolecular C-Se bond formation. In the next step, N-alkylation of selenazole furnished two regioisomers. Both the isomers exhibited different reactivity towards [4+2] alkyne annulation reaction. The fusion of α-pyrone ring on the benzo[1,3-d]selenazole skeleton was achieved via Ru(II)-catalyzed C-H activation and alkyne insertion. As evident from mechanism, the selenazole 'N' plays an important role for the experiential selectivity.

Keywords: alkylation, alkyne insertion, coumarin, selenazole

Procedia PDF Downloads 127
1848 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability

Procedia PDF Downloads 250
1847 Shear Strengthening of RC T-Beams by Means of CFRP Sheets

Authors: Omar A. Farghal

Abstract:

This research aimed to experimentally and analytically investigate the contribution of bonded web carbon fiber reinforced polymer (CFRP) sheets to the shear strength of reinforced concrete (RC) T-beams. Two strengthening techniques using CFRP strips were applied along the shear-span zone: the first one is vertical U-jacket and the later is vertical strips bonded to the beam sides only. Fibers of both U-jacket and side sheets were vertically oriented (θ = 90°). Test results showed that the strengthening technique with U-jacket CFRP sheets improved the shear strength particularly. Three mechanisms of failure were recognized for the tested beams depending upon the end condition of the bonded CFRP sheet. Although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket CFRP sheets showed more or less a ductile behavior at a higher loading level up to a load level just before failure. As a consequence, these beams approved an acceptable enhancement in the structural ductility. Moreover, the obtained results concerning both the strains induced in the CFRP sheets and the maximum loads are used to study the applicability of the analytical models proposed in this study (ACI code) to predict: the nominal shear strength of the strengthened beams.

Keywords: carbon fiber reinforced polymer, wrapping, ductility, shear strengthening

Procedia PDF Downloads 255
1846 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant

Procedia PDF Downloads 298
1845 Progressive Loading Effect of Co Over SiO2/Al2O3 Catalyst for Cox Free Hydrogen and Carbon Nanotubes Production via Catalytic Decomposition of Methane

Authors: Sushil Kumar Saraswat, K. K. Pant

Abstract:

Co metal supported on SiO2 and Al2O3 catalysts with a metal loading varied from 30 of 70 wt.% were evaluated for decomposition of methane to CO/CO2 free hydrogen and carbon nano materials. The catalytic runs were carried out from 550-800 oC under atmospheric pressure using fixed bed vertical flow reactor. The fresh and spent catalysts were characterized by BET surface area analyzer, TPR, XRD, SEM, TEM, and TG analysis. The data showed that 50% Co/Al2O3 catalyst exhibited remarkable higher activity and stability up to 10 h time-on-stream at 750 oC with respect to H2 production compared to rest of the catalysts. However, the catalytic activity and durability was greatly declined at a higher temperature. The main reason for the catalytic inhibition of Co containing SiO2 catalysts is the higher reduction temperature of Co2SiO4. TEM images illustrate that the carbon materials with various morphologies, carbon nanofibers (CNFs), helical-shaped CNFs, and branched CNFs depending on the catalyst composition and reaction temperature, were obtained. The TG data showed that a higher yield of MWCNTs was achieved over 50% Co/Al2O3 catalyst compared to other catalysts.

Keywords: carbon nanotubes, cobalt, hydrogen production, methane decomposition

Procedia PDF Downloads 323
1844 Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes

Authors: Muammer Kaya

Abstract:

The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives.

Keywords: e-waste, WEEE, recycling, metal recovery, hydrometallurgy, pirometallurgy, biometallurgy

Procedia PDF Downloads 357
1843 Enhanced Biosorption of Copper Ions by Luffa Cylindrica: Biosorbent Characterization and Batch Experiments

Authors: Nouacer Imane, Benalia Mokhtar, Djedid Mabrouk

Abstract:

The adsorption ability of a powdered activated carbons (PAC) derived from Luffa cylindrica investigated in an attempt to produce more economic and effective sorbents for the control of Cu(II) ion from industrial liquid streams. Carbonaceous sorbents derived from local luffa cylindrica, were prepared by chemical activation methods using ZnCl2 as activating reagents. Adsorption of Cu (II) from aqueous solutions was investigated. The effects of pH, initial adsorbent concentration, the effect of particle size, initial metal ion concentration and temperature were studied in batch experiments. The maximum adsorption capacity of copper onto grafted Luffa cylindrica fiber was found to be 14.23 mg/g with best fit for Langmuir adsorption isotherm. The values of thermodynamic parameters such as enthalpy change, ∆H (-0.823 kJ/mol), entropy change, ∆S (-9.35 J/molK) and free energy change, ∆G (−1.56 kJ/mol) were also calculated. Adsorption process was found spontaneous and exothermic in nature. Finally, the luffa cylindrica has been evaluated by FTIR, MO and x-ray diffraction in order to determine if the biosorption process modifies its chemical structure and morphology, respectively. Luffa cylindrica has been proven to be an efficient biomaterial useful for heavy metal separation purposes that is not altered by the process.

Keywords: adsorption, cadmium, isotherms, thermodynamic, luffa sponge

Procedia PDF Downloads 249
1842 Antioxidant Potential and Inhibition of Key Enzymes Linked to Alzheimer's Diseases and Diabetes Mellitus by Monoterpene-Rich Essential Oil from Sideritis Galatica Bornm. Endemic to Turkey

Authors: Gokhan Zengin, Cengiz Sarikurkcu, Abdurrahman Aktumsek, Ramazan Ceylan

Abstract:

The present study was designated to characterize the essential oil from S. galatica (SGEOs) and evaluate its antioxidant and enzyme inhibitory activities. Antioxidant capacity were tested different methods including free radical scavenging (DPPH, ABTS and NO), reducing power (FRAP and CUPRAC), metal chelating and phosphomolybdenum. Inhibitory activities were analyzed on acetylcholiesterase, butrylcholinesterase, α-amylase and α-glucosidase. SGEOs were chemically analyzed and identified by gas chromatography (GC) and gas chromatography/mass spectrophotometry (GC/MS). 23 components, representing 98.1% of SGEOs were identified. Monoterpene hydrocarbons (74.1%), especially α- (23.0%) and β-pinene (32.2%), were the main constituents in SGEOs. The main sesquiterpene hydrocarbons were β-caryophyllene (16.9%), Germacrene-D (1.2%) and Caryophyllene oxide (1.2%), respectively. Generally, SGEOs has shown moderate free radical, reducing power, metal chelating and enzyme inhibitory activities. These activities related to chemical profile in SGEOs. Our findings supported that the possible utility of SGEOs is a source of natural agents for food, cosmetics or pharmaceutical industries.

Keywords: sideritis galatica, antioxidant, monoterpenes, cholinesterase, anti-diabetic

Procedia PDF Downloads 440
1841 Printing Imperfections: Development of Buckling Patterns to Improve Strength of 3D Printed Steel Plated Elements

Authors: Ben Chater, Jingbang Pan, Mark Evernden, Jie Wang

Abstract:

Traditional structural steel manufacturing routes normally produce prismatic members with flat plate elements. In these members, plate instability in the lowest buckling mode often dominates failure. It is proposed in the current study to use a new technology of metal 3D printing to print steel-plated elements with predefined imperfection patterns that can lead to higher modes of failure with increased buckling resistances. To this end, a numerical modeling program is carried out to explore various combinations of predefined buckling waves with different amplitudes in stainless steel square hollow section stub columns. Their stiffness, strength, and material consumption against the traditional structural steel members with the same nominal dimensions are assessed. It is found that depending on the slenderness of the plate elements; it is possible for an ‘imperfect’ steel member to achieve up to a 30% increase in strength with just a 3% increase in the material consumption. The obtained results shed some light on the significant potential of the new metal 3D printing technology in achieving unprecedented material efficiency and economical design in the future steel construction industry.

Keywords: 3D printing, additive manufacturing, buckling resistance, steel plate buckling, structural optimisation

Procedia PDF Downloads 146
1840 The Environmental Effects of Amalgam Tooth Fillings

Authors: Abdulsalam I. Rafida, Abdulhmid M. Alkout, Abdultif M. Alroba

Abstract:

This study investigates the heavy metal content in the saliva of persons with amalgam tooth fillings. For this purpose, samples of saliva have been collected based on two factors i.e. the number of amalgam fillings in the mouth (one, two or three fillings), and the time factor i.e. the time since the fillings have been in place (less than a year and more than a year). Samples of saliva have also been collected from persons with no amalgam tooth fillings for control. The samples that have been collected so far, have been examined for the basic heavy metal content featuring amalgam, which include mercury (Hg) and silver (Ag). However, all the above mentioned elements have been detected in the samples of saliva of the persons with amalgam tooth fillings, though with varying amounts depending on the number of fillings. Thus, for persons with only one filling the average quantities were found to be 0.00061 ppm and 0.033 ppm for Hg and Ag respectively. On the other hand for persons with two fillings the average quantities were found to be 0.0012 ppm and 0.029 ppm for each of the two elements respectively. However, in order to understand the chemical reactions associated with amalgam tooth fillings in the mouth, the material have been treated outside the mouth using some nutrient media. Those media included drinking water, fizzy drinks and hot tea. All three media have been found to contain the three elements after amalgam treatment. Yet, the fizzy drink medium was found to contain the highest levels of those elements.

Keywords: amalgam, mercury, silver, fizzy drinks, media

Procedia PDF Downloads 198
1839 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: bearing, centrifugal casting, cylinder liners, robot

Procedia PDF Downloads 416
1838 Accumulation of Trace Metals in Leaf Vegetables Cultivated in High Traffic Areas in Ghent, Belgium

Authors: Veronique Troch, Wouter Van der Borght, Véronique De Bleeker, Bram Marynissen, Nathan Van der Eecken, Gijs Du Laing

Abstract:

Among the challenges associated with increased urban food production are health risks from food contamination, due to the higher pollution loads in urban areas, compared to rural sites. Therefore, the risks posed by industrial or traffic pollution of locally grown food, was defined as one of five high-priority issues of urban agriculture requiring further investigation. The impact of air pollution on urban horticulture is the subject of this study. More particular, this study focuses on the atmospheric deposition of trace metals on leaf vegetables cultivated in the city of Ghent, Belgium. Ghent is a particularly interesting study site as it actively promotes urban agriculture. Plants accumulate heavy metals by absorption from contaminated soils and through deposition on parts exposed to polluted air. Accumulation of trace metals in vegetation grown near roads has been shown to be significantly higher than those grown in rural areas due to traffic-related contaminants in the air. Studies of vegetables demonstrated, that the uptake and accumulation of trace metals differed among crop type, species, and among plant parts. Studies on vegetables and fruit trees in Berlin, Germany, revealed significant differences in trace metal concentrations depending on local traffic, crop species, planting style and parameters related to barriers between sampling site and neighboring roads. This study aims to supplement this scarce research on heavy metal accumulation in urban horticulture. Samples from leaf vegetables were collected from different sites, including allotment gardens, in Ghent. Trace metal contents on these leaf vegetables were analyzed by ICP-MS (inductively coupled plasma mass spectrometry). In addition, precipitation on each sampling site was collected by NILU-type bulk collectors and similarly analyzed for trace metals. On one sampling site, different parameters which might influence trace metal content in leaf vegetables were analyzed in detail. These parameters are distance of planting site to the nearest road, barriers between planting site and nearest road, and type of leaf vegetable. For comparison, a rural site, located farther from city traffic and industrial pollution, was included in this study. Preliminary results show that there is a high correlation between trace metal content in the atmospheric deposition and trace metal content in leaf vegetables. Moreover, a significant higher Pb, Cu and Fe concentration was found on spinach collected from Ghent, compared to spinach collected from a rural site. The distance of planting site to the nearest road significantly affected the accumulation of Pb, Cu, Mo and Fe on spinach. Concentrations of those elements on spinach increased with decreasing distance between planting site and the nearest road. Preliminary results did not show a significant effect of barriers between planting site and the nearest road on accumulation of trace metals on leaf vegetables. The overall goal of this study is to complete and refine existing guidelines for urban gardening to exclude potential health risks from food contamination. Accordingly, this information can help city governments and civil society in the professionalization and sustainable development of urban agriculture.

Keywords: atmospheric deposition, leaf vegetables, trace metals, traffic pollution, urban agriculture

Procedia PDF Downloads 241
1837 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content

Authors: S. Asreazad

Abstract:

This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.

Keywords: unsaturated soils, silty sand, clayey sand, triaxial test

Procedia PDF Downloads 332
1836 Design for Metal Additive Manufacturing: An Investigation of Key Design Application on Electron Beam Melting

Authors: Wadea Ameen, Abdulrahman Al-Ahmari, Osama Abdulhameed

Abstract:

Electron beam melting (EBM) is one of the modern additive manufacturing (AM) technologies. In EBM, the electron beam melts metal powder into a fully solid part layer by layer. Since EBM is a new technology, most designers are unaware of the capabilities and the limitations of EBM technology. Also, many engineers are facing many challenges to utilize the technology because of a lack of design rules for the technology. The aim of this study is to identify the capabilities and the limitations of EBM technology in fabrication of small features and overhang structures and develop a design rules that need to be considered by designers and engineers. In order to achieve this objective, a series of experiments are conducted. Several features having varying sizes were designed, fabricated, and evaluated to determine their manufacturability limits. In general, the results showed the capabilities and limitations of the EBM technology in fabrication of the small size features and the overhang structures. In the end, the results of these investigation experiments are used to develop design rules. Also, the results showed the importance of developing design rules for AM technologies in increasing the utilization of these technologies.

Keywords: additive manufacturing, design for additive manufacturing, electron beam melting, self-supporting overhang

Procedia PDF Downloads 149
1835 Assessment of Residual Stress on HDPE Pipe Wall Thickness

Authors: D. Sersab, M. Aberkane

Abstract:

Residual stresses, in high-density polyethylene (HDPE) pipes, result from a nonhomogeneous cooling rate that occurs between the inner and outer surfaces during the extrusion process in manufacture. Most known methods of measurements to determine the magnitude and profile of the residual stresses in the pipe wall thickness are layer removal and ring slitting method. The combined layer removal and ring slitting methods described in this paper involves measurement of the circumferential residual stresses with minimal local disturbance. The existing methods used for pipe geometry (ring slitting method) gives a single residual stress value at the bore. The layer removal method which is used more in flat plate specimen is implemented with ring slitting method. The method permits stress measurements to be made directly at different depth in the pipe wall and a well-defined residual stress profile was consequently obtained.

Keywords: residual stress, layer removal, ring splitting, HDPE, wall thickness

Procedia PDF Downloads 339
1834 Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia

Authors: Dessie Tibebe, Muluken Asmare, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare

Abstract:

The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy.

Keywords: electrochemical, treatment, aluminum, tannery effluent

Procedia PDF Downloads 114
1833 Early Stage Hydration of Wollastonite: Kinetic Aspects of the Metal-Proton Exchange Reaction

Authors: Nicolas Giraudo, Peter Thissen

Abstract:

In this paper we bring up new aspects of the metal proton exchange reaction (MPER, also called early stage hydration): (1) its dependence of the number of protons consumed by the preferential exchanged cations on the pH value applied at the water/wollastonite interface and (2) strong anisotropic characteristics detected in atomic force microscopy (AFM) and low energy ion scattering spectroscopy measurements (LEIS). First we apply density functional theory (DFT) calculations to compare the kinetics of the reaction on different wollastonite surfaces, and combine it with ab initio thermodynamics to set up a model describing (1) the release of Ca in exchange with H coming from the water/wollastonite interface, (2) the dependence of the MPER on the chemical potential of protons. In the second part of the paper we carried out in-situ AFM and inductive coupled plasma atomic emission spectroscopy (ICP-OES) measurements in order to evaluate the predicted values. While a good agreement is found in the basic and neutral regime (pH values from 14-4), an increasing mismatch appears in the acidic regime (pH value lower 4). This is finally explained by non-equilibrium etching, dominating over the MPER in the very acidic regime.

Keywords: anisotropy, calcium silicate, cement, density functional theory, hydration

Procedia PDF Downloads 280
1832 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain

Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper

Abstract:

Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.

Keywords: additive manufacturing, lean production, reproducibility, work safety

Procedia PDF Downloads 184
1831 Extracting the Failure Criterion to Evaluate the Strength of Cracked Drills under Torque Caused by Drilling

Authors: A. Falsafi, M. Dadkhah, S. Shahidi

Abstract:

The destruction and defeat of drill pipes and drill rigs in oil wells often combined with a combination of shear modulus II and III. In such a situation, the strength and load bearing capacity of the drill are evaluated based on the principles of fracture mechanics and crack growth criteria. In this paper, using the three-dimensional stress equations around the Turkish frontier, the relations of the tense-tense criterion (MTS) are extracted for the loading of the combined II and III modulus. It is shown that in crisp deflection under loading of combination II and III, the level of fracture is characterized by two different angles: the longitudinal angle of deflection θ and the angle of the deflection of the alpha. Based on the relationships obtained from the MTS criterion, the failure criteria, the longitudinal angle of the theta failure and the lateral angle of the failure of the alpha are presented. Also, the role of Poisson's coefficient on these parameters is investigated in these graphs.

Keywords: most tangential tension criterion, longitudinal angle of failure, side angle of fracture, drills crack

Procedia PDF Downloads 134