Search results for: Complex fuzzy evolution equations
8232 Nonlinear Free Vibrations of Functionally Graded Cylindrical Shells
Authors: Alexandra Andrade Brandão Soares, Paulo Batista Gonçalves
Abstract:
Using a modal expansion that satisfies the boundary and continuity conditions and expresses the modal couplings characteristic of cylindrical shells in the nonlinear regime, the equations of motion are discretized using the Galerkin method. The resulting algebraic equations are solved by the Newton-Raphson method, thus obtaining the nonlinear frequency-amplitude relation. Finally, a parametric analysis is conducted to study the influence of the geometry of the shell, the gradient of the functional material and vibration modes on the degree and type of nonlinearity of the cylindrical shell, which is the main contribution of this research work.Keywords: cylindrical shells, dynamics, functionally graded material, nonlinear vibrations
Procedia PDF Downloads 668231 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes
Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi
Abstract:
Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.Keywords: bergman model, nonlinear control, back stepping, sliding mode control
Procedia PDF Downloads 3838230 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling
Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie
Abstract:
Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling
Procedia PDF Downloads 938229 Universality and Synchronization in Complex Quadratic Networks
Authors: Anca Radulescu, Danae Evans
Abstract:
The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity
Procedia PDF Downloads 3098228 3D Codes for Unsteady Interaction Problems of Continuous Mechanics in Euler Variables
Authors: M. Abuziarov
Abstract:
The designed complex is intended for the numerical simulation of fast dynamic processes of interaction of heterogeneous environments susceptible to the significant formability. The main challenges in solving such problems are associated with the construction of the numerical meshes. Currently, there are two basic approaches to solve this problem. One is using of Lagrangian or Lagrangian Eulerian grid associated with the boundaries of media and the second is associated with the fixed Eulerian mesh, boundary cells of which cut boundaries of the environment medium and requires the calculation of these cut volumes. Both approaches require the complex grid generators and significant time for preparing the code’s data for simulation. In this codes these problems are solved using two grids, regular fixed and mobile local Euler Lagrange - Eulerian (ALE approach) accompanying the contact and free boundaries, the surfaces of shock waves and phase transitions, and other possible features of solutions, with mutual interpolation of integrated parameters. For modeling of both liquids and gases, and deformable solids the Godunov scheme of increased accuracy is used in Lagrangian - Eulerian variables, the same for the Euler equations and for the Euler- Cauchy, describing the deformation of the solid. The increased accuracy of the scheme is achieved by using 3D spatial time dependent solution of the discontinuity problem (3D space time dependent Riemann's Problem solver). The same solution is used to calculate the interaction at the liquid-solid surface (Fluid Structure Interaction problem). The codes does not require complex 3D mesh generators, only the surfaces of the calculating objects as the STL files created by means of engineering graphics are given by the user, which greatly simplifies the preparing the task and makes it convenient to use directly by the designer at the design stage. The results of the test solutions and applications related to the generation and extension of the detonation and shock waves, loading the constructions are presented.Keywords: fluid structure interaction, Riemann's solver, Euler variables, 3D codes
Procedia PDF Downloads 4398227 Lamb Waves in Plates Subjected to Uniaxial Stresses
Authors: Munawwar Mohabuth, Andrei Kotousov, Ching-Tai Ng
Abstract:
On the basis of the finite deformation theory, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses.Keywords: acoustoelasticity, dispersion, finite deformation, lamb waves
Procedia PDF Downloads 4688226 Using Locus Equations for Berber Consonants Labiovellarization
Authors: Ali Benali Djouher Leila
Abstract:
Labiovelarization of velar consonants and labials is a very widespread phenomenon. It is attested in all the major northern Berber dialects. Only the Tuareg is totally unaware of it. But, even within the large Berber-speaking regions of the north, it is very unstable: it may be completely absent in certain dialects (such as the Bougie region in Kabylie), and its extension and frequency can vary appreciably between the dialects which know it. Some dialects of Great Kabylia or the Chleuh domain, for example, "labiovélarize" more than others from the same region. Thus, in Great Kabylia, the adjective "large" will be pronounced: amqqwran with the At Yiraten and amqqran with the At Yanni, a few kilometers away. One of the problems with them is deciding whether it is one or two phonemes. All the criteria used by linguists in this kind of case lead to the conclusion that they are unique phonemes (a phoneme and not a succession of two phonemes, / k + w /, for example). The phonetic and phonological criteria are moreover clearly confirmed by the morphological data since, in the system of verbal alternations, these complex segments are treated as single phonemes: agree, "to draw, to fetch water," akwer, "to fly," have exactly the same morphology as as "jealous," arem" taste," Ames, "dirty" or afeg, "steal" ... verbs with two radical consonants (type aCC). At the level of notation, both scientific and usual, it is, therefore, necessary to represent the labiovélarized by a single letter, possibly accompanied by a diacritic. In fact, actual practices are diverse. - The scientific representation of type does not seem adequate for current use because its realization is easy only on a microcomputer. The Berber Documentation File used a small ° (of n °) above the writing line: k °, g ° ... which has the advantage of being easy to achieve since it is part of general typographical conventions in Latin script and that it is present on a typewriter keyboard. Mouloud Mammeri, then the Berber Study Group of Vincennes (Tisuraf review), and a majority of Kabyle practitioners over the last twenty years have used the succession "consonant +" semi-vowel / w / "(CW) on the same line of writing; for all the reasons explained previously, this practice is not a good solution and should be abandoned, especially as it particularizes Kabyle in the Berber ensemble. In this study, we were interested in two velar consonants, / g / and / k /, labiovellarized: / gw / and the / kw / (we adopted the addition of the "w") for the representation for ease of writing in graphical mode. It is a question of trying to characterize these four consonants in order to see if they have different places of articulation and if they are distinct (if these velars are distinct from their labiovellarized counterpart). This characterization is done using locus equations.Keywords: berber consonants;, labiovelarization, locus equations, acoustical caracterization, kabylian dialect, algerian language
Procedia PDF Downloads 768225 Electrochemical Top-Down Synthesis of Nanostructured Support and Catalyst Materials for Energy Applications
Authors: Peter M. Schneider, Batyr Garlyyev, Sebastian A. Watzele, Aliaksandr S. Bandarenka
Abstract:
Functional nanostructures such as nanoparticles are a promising class of materials for energy applications due to their unique properties. Bottom-up synthetic routes for nanostructured materials often involve multiple synthesis steps and the use of surfactants, reducing agents, or stabilizers. This results in complex and extensive synthesis protocols. In recent years, a novel top-down synthesis approach to form metal nanoparticles has been established, in which bulk metal wires are immersed in an electrolyte (primarily alkali earth metal based) and subsequently subjected to a high alternating potential. This leads to the generation of nanoparticles dispersed in the electrolyte. The main advantage of this facile top-down approach is that there are no reducing agents, surfactants, or precursor solutions. The complete synthesis can be performed in one pot involving one main step with consequent washing and drying of the nanoparticles. More recent studies investigated the effect of synthesis parameters such as potential amplitude, frequency, electrolyte composition, and concentration on the size and shape of the nanoparticles. Here, we investigate the electrochemical erosion of various metal wires such as Ti, Pt, Pd, and Sn in various electrolyte compositions via this facile top-down technique and its experimental optimization to successfully synthesize nanostructured materials for various energy applications. As an example, for Pt and Pd, homogeneously distributed nanoparticles on carbon support can be obtained. These materials can be used as electrocatalyst materials for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), respectively. In comparison, the top-down erosion of Sn wires leads to the formation of nanoparticles, which have great potential as oxygen evolution reaction (OER) support materials. The application of the technique on Ti wires surprisingly leads to the formation of nanowires, which show a high surface area and demonstrate great potential as an alternative support material to carbon.Keywords: ORR, electrochemistry, electrocatalyst, synthesis
Procedia PDF Downloads 838224 Development of Coastal Inundation–Inland and River Flow Interface Module Based on 2D Hydrodynamic Model
Authors: Eun-Taek Sin, Hyun-Ju Jang, Chang Geun Song, Yong-Sik Han
Abstract:
Due to the climate change, the coastal urban area repeatedly suffers from the loss of property and life by flooding. There are three main causes of inland submergence. First, when heavy rain with high intensity occurs, the water quantity in inland cannot be drained into rivers by increase in impervious surface of the land development and defect of the pump, storm sewer. Second, river inundation occurs then water surface level surpasses the top of levee. Finally, Coastal inundation occurs due to rising sea water. However, previous studies ignored the complex mechanism of flooding, and showed discrepancy and inadequacy due to linear summation of each analysis result. In this study, inland flooding and river inundation were analyzed together by HDM-2D model. Petrov-Galerkin stabilizing method and flux-blocking algorithm were applied to simulate the inland flooding. In addition, sink/source terms with exponentially growth rate attribute were added to the shallow water equations to include the inland flooding analysis module. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. The applications of developed model gave satisfactory results, and provided accurate prediction in comprehensive flooding analysis. To consider the coastal surge, another module was developed by adding seawater to the existing Inland Flooding-River Inundation binding module for comprehensive flooding analysis. Based on the combined modules, the Coastal Inundation – Inland & River Flow Interface was simulated by inputting the flow rate and depth data in artificial flume. Accordingly, it was able to analyze the flood patterns of coastal cities over time. This study is expected to help identify the complex causes of flooding in coastal areas where complex flooding occurs, and assist in analyzing damage to coastal cities. Acknowledgements—This research was supported by a grant ‘Development of the Evaluation Technology for Complex Causes of Inundation Vulnerability and the Response Plans in Coastal Urban Areas for Adaptation to Climate Change’ [MPSS-NH-2015-77] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of Korea.Keywords: flooding analysis, river inundation, inland flooding, 2D hydrodynamic model
Procedia PDF Downloads 3638223 An Axiomatic Approach to Constructing an Applied Theory of Possibility
Authors: Oleksii Bychkov
Abstract:
The fundamental difference between randomness and vagueness is that the former requires statistical research. These issues were studied by Zadeh L, Dubois D., Prad A. The theory of possibility works with expert assessments, hypotheses, etc. gives an idea of the characteristics of the problem situation, the nature of the goals and real limitations. Possibility theory examines experiments that are not repeated. The article discusses issues related to the formalization of a fuzzy, uncertain idea of reality. The author proposes to expand the classical model of the theory of possibilities by introducing a measure of necessity. The proposed model of the theory of possibilities allows us to extend the measures of possibility and necessity onto a Boolean while preserving the properties of the measure. Thus, upper and lower estimates are obtained to describe the fact that the event will occur. Knowledge of the patterns that govern mass random, uncertain, fuzzy events allows us to predict how these events will proceed. The article proposed for publication quite fully reveals the essence of the construction and use of the theory of probability and the theory of possibility.Keywords: possibility, artificial, modeling, axiomatics, intellectual approach
Procedia PDF Downloads 358222 An Iterative Family for Solution of System of Nonlinear Equations
Authors: Sonia Sonia
Abstract:
This paper presents a family of iterative scheme for solving nonlinear systems of equations which have wide application in sciences and engineering. The proposed iterative family is based upon some parameters which generates many different iterative schemes. This family is completely derivative free and uses first of divided difference operator. Moreover some numerical experiments are performed and compared with existing methods. Analysis of convergence shows that the presented family has fourth-order of convergence. The dynamical behaviour of proposed family and local convergence have also been discussed. The numerical performance and convergence region comparison demonstrates that proposed family is efficient.Keywords: convergence, divided difference operator, nonlinear system, Newton's method
Procedia PDF Downloads 2378221 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach
Authors: M. Khoshab, M. J. Sedigh
Abstract:
Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.Keywords: dynamic system, lag on supply demand, market stability, supply demand model
Procedia PDF Downloads 2958220 Diagnosis of Static Eccentricity in 400 kW Induction Machine Based on the Analysis of Stator Currents
Authors: Saleh Elawgali
Abstract:
Current spectrums of a four pole-pair, 400 kW induction machine were calculated for the cases of full symmetry and static eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. Zooms of the current spectrums, around the 50 Hz fundamental harmonic as well as of the main slot harmonic zone, were included. The spectrums included refer to both calculated and measured currents.Keywords: diagnostic, harmonic, induction machine, spectrum
Procedia PDF Downloads 5258219 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 2858218 Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain
Authors: Gonzalez Carlos, Martinez Fransisco
Abstract:
There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction.Keywords: GMPM, 5% damped pseudo-response spectra, models of seismic prediction, PSHA
Procedia PDF Downloads 768217 Fuzzy Control of Thermally Isolated Greenhouse Building by Utilizing Underground Heat Exchanger and Outside Weather Conditions
Authors: Raghad Alhusari, Farag Omar, Moustafa Fadel
Abstract:
A traditional greenhouse is a metal frame agricultural building used for cultivation plants in a controlled environment isolated from external climatic changes. Using greenhouses in agriculture is an efficient way to reduce the water consumption, where agriculture field is considered the biggest water consumer world widely. Controlling greenhouse environment yields better productivity of plants but demands an increase of electric power. Although various control approaches have been used towards greenhouse automation, most of them are applied to traditional greenhouses with ventilation fans and/or evaporation cooling system. Such approaches are still demanding high energy and water consumption. The aim of this research is to develop a fuzzy control system that minimizes water and energy consumption by utilizing outside weather conditions and underground heat exchanger to maintain the optimum climate of the greenhouse. The proposed control system is implemented on an experimental model of thermally isolated greenhouse structure with dimensions of 6x5x2.8 meters. It uses fans for extracting heat from the ground heat exchanger system, motors for automatic open/close of the greenhouse windows and LED as lighting system. The controller is integrated also with environmental condition sensors. It was found that using the air-to-air horizontal ground heat exchanger with 90 mm diameter and 2 mm thickness placed 2.5 m below the ground surface results in decreasing the greenhouse temperature of 3.28 ˚C which saves around 3 kW of consumed energy. It also eliminated the water consumption needed in evaporation cooling systems which are traditionally used for cooling the greenhouse environment.Keywords: automation, earth-to-air heat exchangers, fuzzy control, greenhouse, sustainable buildings
Procedia PDF Downloads 1318216 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 3378215 Sliding Mode Speed Controller of Photovoltaic Pumping System
Authors: Kessal Abdelhalim, Zebiri Fouad, Rahmani Lazhar
Abstract:
This paper presents an analysis by which the dynamic performances of a permanent magnet brushless DC (PMBLDC) motor is controlled through a hysteresis current loop and an outer speed loop with different controllers. The dynamics of the photovoltaic pumping drive system with sliding mode speed controllers are presented. The proposed structure is constituted of photovoltaic generator associated to DC-DC converter controlled by fuzzy logic to ensure the maximum power point tracking. The PWM signals are generated by the interaction of the motor speed closed-loop system and the current hysteresis. The motor reference current is compared with the motor speed feedback signal. The considered model has been implemented in Matlab/Simpower environment. The results show the effectiveness of the proposed method to increase the performance of the water pumping system.Keywords: photovoltaic, permanent magnet brushless DC (PMBLDC) motor, MPPT, speed control, fuzzy, sliding mode
Procedia PDF Downloads 6788214 OpenMP Parallelization of Three-Dimensional Magnetohydrodynamic Code FOI-PERFECT
Authors: Jiao F. Huang, Shi Chen, Shu C. Duan, Gang H. Wang
Abstract:
Due to its complex spatial structure as well as dynamic temporal evolution, an analytic solution of an X-pinch process is out of question, and numerical simulation becomes an important tool in X-pinch studies. Intrinsically, simulations of X-pinch are three-dimensional (3D) because of the specific structure of its load. Furthermore, in order to resolve both its μm-scales and ns-durations, fine spatial mesh grid and short time steps are usually adopted. The resulting large computational scales make the parallelization of codes a vital problem to be solved if any practical simulations are to be carried out. In this work, we report OpenMP parallelization of our 3D magnetohydrodynamic (MHD) code FOI-PERFECT. Results of test runs confirm that computational efficiency has been improved after parallelization, and both the sequential and parallel versions give the same physical results under the same initial conditions.Keywords: MHD simulation, OpenMP, parallelization, X-pinch
Procedia PDF Downloads 3408213 Output Voltage Analysis of CMOS Colpitts Oscillator with Short Channel Device
Authors: Maryam Ebrahimpour, Amir Ebrahimi
Abstract:
This paper presents the steady-state amplitude analysis of MOS Colpitts oscillator with short channel device. The proposed method is based on a large signal analysis and the nonlinear differential equations that govern the oscillator circuit behaviour. Also, the short channel effects are considered in the proposed analysis and analytical equations for finding the steady-state oscillation amplitude are derived. The output voltage calculated from this analysis is in excellent agreement with simulations for a wide range of circuit parameters.Keywords: colpitts oscillator, CMOS, electronics, circuits
Procedia PDF Downloads 3528212 Structural Alteration of MoS₂ by Incorporating Fe, Co Composite for an Enhanced Oxygen Evolution Reaction
Authors: Krishnamoorthy Sathiyan, Shanti Gopal Patra, Ronen Bar-Ziv, Tomer Zidki
Abstract:
Developing efficient non-noble metal catalysts that are cheap and durable for oxygen evolution reaction (OER) is a great challenge. Moreover, altering the electronic structure of the catalyst and structural engineering of the materials provide a new direction for enhancing the OER. Herein, we have successfully synthesized Fe and Co incorporated MoS₂ catalysts, which show improved catalytic activity for OER when compared with MoS₂, Fe-MoS₂, and Co-MoS₂. It was found that at an optimal ratio of Fe and Co, the electronic and structural modification of MoS₂ occurs, which leads to change in orientation and thereby enhances the active catalytic sites on the edges, which are more exposed for OER. The nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray analysis (EDX), Elemental Mapping, transmission electron microscope (TEM), and high-resolution transmission electron microscope (HR-TEM) analysis. Among all, a particular ratio of FeCo-MoS₂ exhibits a much smaller onset with better catalytic current density. The remarkable catalytic activity is mainly attributed to the synergistic effect from the Fe and Co. Most importantly, our work provides an essential insight in altering the electronic structure of MoS₂ based materials by incorporating promoters such as Co and Fe in an optimal amount, which enhances OER activity.Keywords: electrocatalysts, molybdenum disulfide, oxygen evolution reaction, transition metals
Procedia PDF Downloads 1318211 An Inquiry into the Usage of Complex Systems Models to Examine the Effects of the Agent Interaction in a Political Economic Environment
Authors: Ujjwall Sai Sunder Uppuluri
Abstract:
Group theory is a powerful tool that researchers can use to provide a structural foundation for their Agent Based Models. These Agent Based models are argued by this paper to be the future of the Social Science Disciplines. More specifically, researchers can use them to apply evolutionary theory to the study of complex social systems. This paper illustrates one such example of how theoretically an Agent Based Model can be formulated from the application of Group Theory, Systems Dynamics, and Evolutionary Biology to analyze the strategies pursued by states to mitigate risk and maximize usage of resources to achieve the objective of economic growth. This example can be applied to other social phenomena and this makes group theory so useful to the analysis of complex systems, because the theory provides the mathematical formulaic proof for validating the complex system models that researchers build and this will be discussed by the paper. The aim of this research, is to also provide researchers with a framework that can be used to model political entities such as states on a 3-dimensional plane. The x-axis representing resources (tangible and intangible) available to them, y the risks, and z the objective. There also exist other states with different constraints pursuing different strategies to climb the mountain. This mountain’s environment is made up of risks the state faces and resource endowments. This mountain is also layered in the sense that it has multiple peaks that must be overcome to reach the tallest peak. A state that sticks to a single strategy or pursues a strategy that is not conducive to the climbing of that specific peak it has reached is not able to continue advancement. To overcome the obstacle in the state’s path, it must innovate. Based on the definition of a group, we can categorize each state as being its own group. Each state is a closed system, one which is made up of micro level agents who have their own vectors and pursue strategies (actions) to achieve some sub objectives. The state also has an identity, the inverse being anarchy and/or inaction. Finally, the agents making up a state interact with each other through competition and collaboration to mitigate risks and achieve sub objectives that fall within the primary objective. Thus, researchers can categorize the state as an organism that reflects the sum of the output of the interactions pursued by agents at the micro level. When states compete, they employ a strategy and that state which has the better strategy (reflected by the strategies pursued by her parts) is able to out-compete her counterpart to acquire some resource, mitigate some risk or fulfil some objective. This paper will attempt to illustrate how group theory combined with evolutionary theory and systems dynamics can allow researchers to model the long run development, evolution, and growth of political entities through the use of a bottom up approach.Keywords: complex systems, evolutionary theory, group theory, international political economy
Procedia PDF Downloads 1408210 Receptive Vocabulary Development in Adolescents and Adults with Down Syndrome
Authors: Esther Moraleda Sepúlveda, Soraya Delgado Matute, Paula Salido Escudero, Raquel Mimoso García, M Cristina Alcón Lancho
Abstract:
Although there is some consensus when it comes to establishing the lexicon as one of the strengths of language in people with Down Syndrome (DS), little is known about its evolution throughout development and changes based on age. The objective of this study was to find out if there are differences in receptive vocabulary between adolescence and adulthood. In this research, 30 people with DS between 11 and 40 years old, divided into two age ranges (11-18; 19 - 30) and matched in mental age, were evaluated through the Peabody Vocabulary Test. The results show significant differences between both groups in favor of the group with the oldest chronological age and a direct correlation between chronological age and receptive vocabulary development, regardless of mental age. These data support the natural evolution of the passive lexicon in people with DS.Keywords: down syndrome, language, receptive vocabulary, adolescents, adults
Procedia PDF Downloads 2058209 Urban Development from the Perspective of Lou Gang Polder System: Taihu Lake, Huzhou as an Example
Authors: Wei Bin Shen
Abstract:
Lou Gang world irrigation project heritage in Taihu Lake is a systematic irrigation project integrating water conservancy, ecology and culture. Through the methods of historical documents and field investigation, this paper deeply analyzes the formation history, connotation and value of Lou Gang polder system: Lou Gang heritage, describes in detail the relationship between Lou Gang polder system in Taihu Lake and the development and evolution of Huzhou City, and initially explores the protection and Utilization Strategies of Lou Gang water conservancy cultural heritage resources in Taihu Lake from the current situation.Keywords: Lou Gang, protection strategy, urban evolution, waterconservancyculturalheritage
Procedia PDF Downloads 1708208 A Quantum Leap: Developing Quantum Semi-Structured Complex Numbers to Solve the “Division by Zero” Problem
Authors: Peter Jean-Paul, Shanaz Wahid
Abstract:
The problem of division by zero can be stated as: “what is the value of 0 x 1/0?” This expression has been considered undefined by mathematicians because it can have two equally valid solutions either 0 or 1. Recently semi-structured complex number set was invented to solve “division by zero”. However, whilst the number set had some merits it was considered to have a poor theoretical foundation and did not provide a quality solution to “division by zero”. Moreover, the set lacked consistency in simple algebraic calculations producing contradictory results when dividing by zero. To overcome these issues this research starts by treating the expression " 0 x 1/0" as a quantum mechanical system that produces two tangled results 0 and 1. Dirac Notation (a tool from quantum mechanics) was then used to redefine the unstructured unit p in semi-structured complex numbers so that p represents the superposition of two results (0 and 1) and collapses into a single value when used in algebraic expressions. In the process, this paper describes a new number set called Quantum Semi-structured Complex Numbers that provides a valid solution to the problem of “division by zero”. This research shows that this new set (1) forms a “Field”, (2) can produce consistent results when solving division by zero problems, (3) can be used to accurately describe systems whose mathematical descriptions involve division by zero. This research served to provide a firm foundation for Quantum Semi-structured Complex Numbers and support their practical use.Keywords: division by zero, semi-structured complex numbers, quantum mechanics, Hilbert space, Euclidean space
Procedia PDF Downloads 1578207 Problem Solving: Process or Product? A Mathematics Approach to Problem Solving in Knowledge Management
Authors: A. Giannakopoulos, S. B. Buckley
Abstract:
Problem solving in any field is recognised as a prerequisite for any advancement in knowledge. For example in South Africa it is one of the seven critical outcomes of education together with critical thinking. As a systematic way to problem solving was initiated in mathematics by the great mathematician George Polya (the father of problem solving), more detailed and comprehensive ways in problem solving have been developed. This paper is based on the findings by the author and subsequent recommendations for further research in problem solving and critical thinking. Although the study was done in mathematics, there is no doubt by now in almost anyone’s mind that mathematics is involved to a greater or a lesser extent in all fields, from symbols, to variables, to equations, to logic, to critical thinking. Therefore it stands to reason that mathematical principles and learning cannot be divorced from any field. In management of knowledge situations, the types of problems are similar to mathematics problems varying from simple to analogical to complex; from well-structured to ill-structured problems. While simple problems could be solved by employees by adhering to prescribed sequential steps (the process), analogical and complex problems cannot be proceduralised and that diminishes the capacity of the organisation of knowledge creation and innovation. The low efficiency in some organisations and the low pass rates in mathematics prompted the author to view problem solving as a product. The authors argue that using mathematical approaches to knowledge management problem solving and treating problem solving as a product will empower the employee through further training to tackle analogical and complex problems. The question the authors asked was: If it is true that problem solving and critical thinking are indeed basic skills necessary for advancement of knowledge why is there so little literature of knowledge management (KM) about them and how they are connected and advance KM?This paper concludes with a conceptual model which is based on general accepted principles of knowledge acquisition (developing a learning organisation), knowledge creation, sharing, disseminating and storing thereof, the five pillars of knowledge management (KM). This model, also expands on Gray’s framework on KM practices and problem solving and opens the doors to a new approach to training employees in general and domain specific areas problems which can be adapted in any type of organisation.Keywords: critical thinking, knowledge management, mathematics, problem solving
Procedia PDF Downloads 5988206 Synthesis, Structural, Spectroscopic and Nonlinear Optical Properties of New Picolinate Complex of Manganese (II) Ion
Authors: Ömer Tamer, Davut Avcı, Yusuf Atalay
Abstract:
Novel picolinate complex of manganese(II) ion, [Mn(pic)2] [pic: picolinate or 2-pyridinecarboxylate], was prepared and fully characterized by single crystal X-ray structure determination. The manganese(II) complex was characterized by FT-IR, FT-Raman and UV–Vis spectroscopic techniques. The C=O, C=N and C=C stretching vibrations were found to be strong and simultaneously active in IR and spectra. In order to support these experimental techniques, density functional theory (DFT) calculations were performed at Gaussian 09W. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, the calculated data show that the predicted geometries can reproduce the structural parameters. The molecular modeling and calculations of IR, Raman and UV-vis spectra were performed by using DFT levels. Nonlinear optical (NLO) properties of synthesized complex were evaluated by the determining of dipole moment (µ), polarizability (α) and hyperpolarizability (β). Obtained results demonstrated that the manganese(II) complex is a good candidate for NLO material. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was analyzed using natural bond orbital (NBO) analysis. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) which is also known the frontier molecular orbitals were simulated, and obtained energy gap confirmed that charge transfer occurs within manganese(II) complex. Molecular electrostatic potential (MEP) for synthesized manganese(II) complex displays the electrophilic and nucleophilic regions. From MEP, the the most negative region is located over carboxyl O atoms while positive region is located over H atoms.Keywords: DFT, picolinate, IR, Raman, nonlinear optic
Procedia PDF Downloads 5008205 Evolution of the Environmental Justice Concept
Authors: Zahra Bakhtiari
Abstract:
This article explores the development and evolution of the concept of environmental justice, which has shifted from being dominated by white and middle-class individuals to a civil struggle by marginalized communities against environmental injustices. Environmental justice aims to achieve equity in decision-making and policy-making related to the environment. The concept of justice in this context includes four fundamental aspects: distribution, procedure, recognition, and capabilities. Recent scholars have attempted to broaden the concept of justice to include dimensions of participation, recognition, and capabilities. Focusing on all four dimensions of environmental justice is crucial for effective planning and policy-making to address environmental issues. Ignoring any of these aspects can lead to the failure of efforts and the waste of resources.Keywords: environmental justice, distribution, procedure, recognition, capabilities
Procedia PDF Downloads 938204 An Evaluation of Barriers to Implement Reverse Logistics: A Case Study of Indian Fastener Industry
Authors: D. Garg, S. Luthra, A. Haleem
Abstract:
Reverse logistics (RL) is supposed to be a systematic procedure that helps in improving the environmental hazards and maintain business sustainability for industries. Industries in Indian are now opting for adoption of RL techniques in business. But, RL practices are not popular in Indian industries because of many barriers for its successful implementation. Therefore, need arises to identify and evaluate the barriers to implement RL practices by taking an Indian industries perspective. Literature review approach and case study approach have been adapted to identify relevant barriers to implement RL practices. Further, Fuzzy Decision Making Trial and Evaluation Laboratory methodology has been brought into use for evaluating causal relationships among the barriers to implement RL practices. Seven barriers out of ten barriers have been categorized into the cause group and remaining into effect group. This research will help Indian industries to manage these barriers towards effective implementing RL practices.Keywords: barriers, decision making trial and evaluation laboratory (DEMATEL), fuzzy set theory, Indian industries, reverse logistics (RL)
Procedia PDF Downloads 3298203 Study of the Microstructural Evolution and Precipitation Kinetic in AZ91 Alloys
Authors: A. Azizi, M. Toubane, L. Chetibi
Abstract:
Differential scanning calorimetry (DSC) is a widely used technique for the study of phase transformations, particularly in the study of precipitation. The kinetic of the precipitation and dissolution is always related to the concept of activation energy Ea. The determination of the activation energy gives important information about the kinetic of the precipitation reaction. In this work, we were interested in the study of the isothermal and non-isothermal treatments on the decomposition of the supersaturated solid solution in the alloy AZ91 (Mg-9 Al-Zn 1-0.2 Mn. mass fraction %), using Differential Calorimetric method. Through this method, the samples were heat treated up to 425° C, using different rates. To calculate the apparent activation energies associated with the formation of precipitated phases, we used different isoconversional methods. This study was supported by other analysis: X-ray diffraction and microhardness measurements.Keywords: calorimetric, activation energy, AZ91 alloys, microstructural evolution
Procedia PDF Downloads 441