Search results for: building energy prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13280

Search results for: building energy prediction

3740 Treatment of Cutting Oily-Wastewater by Sono-Fenton Process: Experimental Approach and Combined Process

Authors: Pisut Painmanakul, Thawatchai Chintateerachai, Supanid Lertlapwasin, Nusara Rojvilavan, Tanun Chalermsinsuwan, Nattawin Chawaloesphonsiya, Onanong Larpparisudthi

Abstract:

Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.

Keywords: cutting oily-wastewater, advance oxidation process, sono-fenton, combined process

Procedia PDF Downloads 347
3739 Development and Evaluation of Economical Self-cleaning Cement

Authors: Anil Saini, Jatinder Kumar Ratan

Abstract:

Now a day, the key issue for the scientific community is to devise the innovative technologies for sustainable control of urban pollution. In urban cities, a large surface area of the masonry structures, buildings, and pavements is exposed to the open environment, which may be utilized for the control of air pollution, if it is built from the photocatalytically active cement-based constructional materials such as concrete, mortars, paints, and blocks, etc. The photocatalytically active cement is formulated by incorporating a photocatalyst in the cement matrix, and such cement is generally known as self-cleaning cement In the literature, self-cleaning cement has been synthesized by incorporating nanosized-TiO₂ (n-TiO₂) as a photocatalyst in the formulation of the cement. However, the utilization of n-TiO₂ for the formulation of self-cleaning cement has the drawbacks of nano-toxicity, higher cost, and agglomeration as far as the commercial production and applications are concerned. The use of microsized-TiO₂ (m-TiO₂) in place of n-TiO₂ for the commercial manufacture of self-cleaning cement could avoid the above-mentioned problems. However, m-TiO₂ is less photocatalytically active as compared to n- TiO₂ due to smaller surface area, higher band gap, and increased recombination rate. As such, the use of m-TiO₂ in the formulation of self-cleaning cement may lead to a reduction in photocatalytic activity, thus, reducing the self-cleaning, depolluting, and antimicrobial abilities of the resultant cement material. So improvement in the photoactivity of m-TiO₂ based self-cleaning cement is the key issue for its practical applications in the present scenario. The current work proposes the use of surface-fluorinated m-TiO₂ for the formulation of self-cleaning cement to enhance its photocatalytic activity. The calcined dolomite, a constructional material, has also been utilized as co-adsorbent along with the surface-fluorinated m-TiO₂ in the formulation of self-cleaning cement to enhance the photocatalytic performance. The surface-fluorinated m-TiO₂, calcined dolomite, and the formulated self-cleaning cement were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), BET (Brunauer–Emmett–Teller) surface area, and energy dispersive X-ray fluorescence spectrometry (EDXRF). The self-cleaning property of the as-prepared self-cleaning cement was evaluated using the methylene blue (MB) test. The depolluting ability of the formulated self-cleaning cement was assessed through a continuous NOX removal test. The antimicrobial activity of the self-cleaning cement was appraised using the method of the zone of inhibition. The as-prepared self-cleaning cement obtained by uniform mixing of 87% clinker, 10% calcined dolomite, and 3% surface-fluorinated m-TiO₂ showed a remarkable self-cleaning property by providing 53.9% degradation of the coated MB dye. The self-cleaning cement also depicted a noteworthy depolluting ability by removing 5.5% of NOx from the air. The inactivation of B. subtiltis bacteria in the presence of light confirmed the significant antimicrobial property of the formulated self-cleaning cement. The self-cleaning, depolluting, and antimicrobial results are attributed to the synergetic effect of surface-fluorinated m-TiO₂ and calcined dolomite in the cement matrix. The present study opens an idea and route for further research for acile and economical formulation of self-cleaning cement.

Keywords: microsized-titanium dioxide (m-TiO₂), self-cleaning cement, photocatalysis, surface-fluorination

Procedia PDF Downloads 156
3738 Assessment of the Effectiveness of the Anti-Debris Flow Engineering Constructed to Reduce the Risk of Expected Debris Flow in the River Mletiskhevi by Computer Program RAMMS

Authors: Sopio Gogilava, Goga Chakhaia, Levan Tsulukidze, Zurab Laoshvili, Irina Khubulava, Shalva Bosikashvili, Teimuraz Gugushvili

Abstract:

Geoinformatics systems (GIS) integrated computer program RAMMS is widely used for forecasting debris flows and accordingly for the determination of anticipating risks with 85% accuracy. In view of the above, the work introduces new capabilities of the computer program RAMMS, which evaluates the effectiveness of anti-debris flow engineering construction, namely: the possibility of decreasing the expected velocity, kinetic energy, and output cone volume in the Mletiskhevi River. As a result of research has been determined that the anti-debris flow engineering construction designed to reduce the expected debris flow risk in the Mletiskhevi River is an effective environmental protection technology, that's why its introduction is promising.

Keywords: construction, debris flow, geoinformatics systems, program RAMMS

Procedia PDF Downloads 138
3737 Low-Temperature Silanization of Medical Vials: Chemical Bonding and Performance

Authors: Yuanping Yang, Ruolin Zhou, Xingyu Liu, Lianbin Wu

Abstract:

Based on the challenges of silanization of pharmaceutical glass packaging materials, the silicone oil high-temperature baking method consumes a lot of energy; silicone oil is generally physically adsorbed on the inner surface of the medical vials, leading to protein adsorption on the surface of the silicone oil and fall off, so that the number of particles in the drug solution increases, which brings potential risks to people. In this paper, a new silanizing method is proposed. High-efficiency silanization is achieved by grafting trimethylsilyl groups to the inner surface of medical vials by chemical bond at low temperatures. The inner wall of the vial successfully obtained stable hydrophobicity, and the water contact Angle of the surface reached 100°~110°. With the increase of silicified reagent concentration, the water resistance of corresponding treatment vials increased gradually. This treatment can effectively reduce the risk of pH value increase and sodium ion leaching.

Keywords: low-temperature silanization, medical vials, chemical bonding, hydrophobicity

Procedia PDF Downloads 74
3736 Building and Development of the Stock Market Institutional Infrastructure in Russia

Authors: Irina Bondarenko, Olga Vandina

Abstract:

The theory of evolutionary economics is the basis for preparation and application of methods forming the stock market infrastructure development concept. The authors believe that the basis for the process of formation and development of the stock market model infrastructure in Russia is the theory of large systems. This theory considers the financial market infrastructure as a whole on the basis of macroeconomic approach with the further definition of its aims and objectives. Evaluation of the prospects for interaction of securities market institutions will enable identifying the problems associated with the development of this system. The interaction of elements of the stock market infrastructure allows to reduce the costs and time of transactions, thereby freeing up resources of market participants for more efficient operation. Thus, methodology of the transaction analysis allows to determine the financial infrastructure as a set of specialized institutions that form a modern quasi-stable system. The financial infrastructure, based on international standards, should include trading systems, regulatory and supervisory bodies, rating agencies, settlement, clearing and depository organizations. Distribution of financial assets, reducing the magnitude of transaction costs, increased transparency of the market are promising tasks in the solution for questions of services level and quality increase provided by institutions of the securities market financial infrastructure. In order to improve the efficiency of the regulatory system, it is necessary to provide "standards" for all market participants. The development of a clear regulation for the barrier to the stock market entry and exit, provision of conditions for the development and implementation of new laws regulating the activities of participants in the securities market, as well as formulation of proposals aimed at minimizing risks and costs, will enable the achievement of positive results. The latter will be manifested in increasing the level of market participant security and, accordingly, the attractiveness of this market for investors and issuers.

Keywords: institutional infrastructure, financial assets, regulatory system, stock market, transparency of the market

Procedia PDF Downloads 127
3735 Urban Retrofitting Application Based on Social-Media to Model the Malioboro Smart Central Business Design through Statistical Regression Approach

Authors: Muhammad Hardyan Prastyanto, Aisah Azhari Marwangi, Yulinda Rizky Pratiwi

Abstract:

Globalization has become a driving force for the current technological developments. The presence of the Virtual Space provides opportunities for people to self-actualization through access to a wider world, quickly and easily. Cities that are part of the existence of life, witness the history of civilization over time, also has been the major object to upgrading on technological sector. A smart city is one where the government and citizenry are using the best available means, including ICT, to achieve their shared goals. This often includes economic development, environmental sustainability, and improved quality of life for citizens. Thus theory is the basis for research of this study. This study aimed to know the implementation of the Urban Retrofitting at Malioboro area based on Information and Communication Technologies. The method of this study is by reviewing the effectiveness of the E-commerce uses as a major system to identification the Malioboro Smart Central Business District. By using a significance level of 5 %, it can be concluded that addresses have a significant influence on the ratings obtained, namely regarding the location of the hotel establishment. But despite the use of the website does not have a significant influence on the rating of the hotel, using the website still has influence significantly on the rating, because the p -value (Sig.) of the variable website is not so much different from the significance level determined by the researcher. In the interpretation, if a hotel is located on the Pasar Kembang streets and not to use the website, so the hotel is likely to have a rating of the constant value which is 3.183. However, if a hotel located on the Sosrowijayan streets, so the hotel rating will be increased by 0,302. Then if a hotel has been using a website, so the hotel rating will increase by 0,264. It is possible to conclude the effectiveness of ICT’s (Website) uses and location to identification the urban retrofitting through increasing of building rating in Malioboro Central Business District.

Keywords: urban retrofitting, e-commerce, information and communication technology, statistic regression, SCBD, Malioboro

Procedia PDF Downloads 290
3734 Photocatalytic Degradation of Organic Pollutants Using Strontium Titanate Synthesized by Electrospinning Method

Authors: Hui-Hsin Huang, Yi-Feng Lin, Che-Chia Hu

Abstract:

To date, photocatalytic wastewater treatment using solar energy has attracted considerable attention. In this study, strontium titanates with various morphologies, i.e., nanofibers and cubic-like particles, were prepared as photocatalysts using the electrospinning (ES), solid-state (SS), and sol-gel (SG) methods. X-ray diffraction (XRD) analysis showed that ES and SS can be assigned to pure phase SrTiO3, while SG was referred to Sr2TiO4. These samples displayed optical absorption edges at 385-395 nm, indicating they can be activated in UV light irradiation. Scanning electron microscope (SEM) analyses revealed that ES SrTiO3 has a uniform fibrous structure with length and diameter of several microns and 100-200 nm, respectively. After loading of nanoparticulate Ag as a co-catalyst onto the surface of strontium titanates, ES sample exhibited highest photocatalytic activity to degrade methylene orange dye solution in comparison to that of SS and SG ones. These results indicate that Ag-loaded ES SrTiO3, which has a desirable SrTiO3 phase and a facile electron transfer along the preferential direction in fibrous structure, can be a promising photocatalyst.

Keywords: photocatalytic degradation, strontium titanate, electrospinning, co-catalyst

Procedia PDF Downloads 258
3733 Influence of Thermal Radiation on MHD Micropolar Fluid Flow, Heat and Mass Transfer over Vertical Flat Plate

Authors: Alouaoui Redha, Ferhat Samira, Bouaziz Mohamed Najib

Abstract:

In this work, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation as well as the skin friction coefficient and the both local Nusselt and local Sherwood numbers are significantly influenced by Magnetic parameter, material parameter and thermal radiation parameter.

Keywords: MHD, micropolar fluid, thermal radiation, heat and mass transfer, boundary layer

Procedia PDF Downloads 445
3732 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: substrates, electrodes, membranes, MFCs design, voltage

Procedia PDF Downloads 297
3731 Potential Applications and Future Prospects of Zinc Oxide Thin Films

Authors: Temesgen Geremew

Abstract:

ZnO is currently receiving a lot of attention in the semiconductor industry due to its unique characteristics. ZnO is widely used in solar cells, heat-reflecting glasses, optoelectronic bias, and detectors. In this composition, we provide an overview of the ZnO thin flicks' packages, methods of characterization, and implicit operations. They consist of Transmission spectroscopy, Raman spectroscopy, Field emigration surveying electron microscopy, and X-ray diffraction. This review content also demonstrates how ZnO thin flicks function in electrical components for piezoelectric bias, optoelectronics, detectors, and renewable energy sources. Zinc oxide (ZnO) thin films offer a captivating tapestry of possibilities due to their unique blend of electrical, optical, and mechanical properties. This review delves into the realm of their potential applications and future prospects, highlighting the pivotal contributions of research endeavors aimed at tailoring their functionalities.

Keywords: Zinc oxide, raman spectroscopy, thin films, piezoelectric devices

Procedia PDF Downloads 76
3730 Estimation of Effective Mechanical Properties of Linear Elastic Materials with Voids Due to Volume and Surface Defects

Authors: Sergey A. Lurie, Yury O. Solyaev, Dmitry B. Volkov-Bogorodsky, Alexander V. Volkov

Abstract:

The media with voids is considered and the method of the analytical estimation of the effective mechanical properties in the theory of elastic materials with voids is proposed. The variational model of the porous media is discussed, which is based on the model of the media with fields of conserved dislocations. It is shown that this model is fully consistent with the known model of the linear elastic materials with voids. In the present work, the generalized model of the porous media is proposed in which the specific surface properties are associated with the field of defects-pores in the volume of the deformed body. Unlike typical surface elasticity model, the strain energy density of the considered model includes the special part of the surface energy with the quadratic form of the free distortion tensor. In the result, the non-classical boundary conditions take modified form of the balance equations of volume and surface stresses. The analytical approach is proposed in the present work which allows to receive the simple enough engineering estimations for effective characteristics of the media with free dilatation. In particular, the effective flexural modulus and Poisson's ratio are determined for the problem of a beam pure bending. Here, the known voids elasticity solution was expanded on the generalized model with the surface effects. Received results allow us to compare the deformed state of the porous beam with the equivalent classic beam to introduce effective bending rigidity. Obtained analytical expressions for the effective properties depend on the thickness of the beam as a parameter. It is shown that the flexural modulus of the porous beam is decreased with an increasing of its thickness and the effective Poisson's ratio of the porous beams can take negative values for the certain values of the model parameters. On the other hand, the effective shear modulus is constant under variation of all values of the non-classical model parameters. Solutions received for a beam pure bending and the hydrostatic loading of the porous media are compared. It is shown that an analytical estimation for the bulk modulus of the porous material under hydrostatic compression gives an asymptotic value for the effective bulk modulus of the porous beam in the case of beam thickness increasing. Additionally, it is shown that the scale effects appear due to the surface properties of the porous media. Obtained results allow us to offer the procedure of an experimental identification of the non-classical parameters in the theory of the linear elastic materials with voids based on the bending tests for samples with different thickness. Finally, the problem of implementation of the Saint-Venant hypothesis for the transverse stresses in the porous beam are discussed. These stresses are different from zero in the solution of the voids elasticity theory, but satisfy the integral equilibrium equations. In this work, the exact value of the introduced surface parameter was found, which provides the vanishing of the transverse stresses on the free surfaces of a beam.

Keywords: effective properties, scale effects, surface defects, voids elasticity

Procedia PDF Downloads 403
3729 Perceptions and Governance of One Health in African Countries: A Workshop Report

Authors: Menouni Aziza, Chbihi Kaoutar, El Jaafari Samir

Abstract:

There is strong evidence connecting epidemics with the disruption of the human-animal-environment interaction. Despite the fact that several cases of emerging and endemic zoonotic diseases indifferent parts of Africa have been documented, there is limited data regarding which specific interventions are effective in preventing and managing the associated risks using a One Health approach. The aim of this study is to better understand perceptions and ongoing research related to interventions in Africa through the implementation of suitable projects and policies. A bibliometric review of the scientific literature on one health studies with a focus on African countries was conducted, followed by a qualitative survey among stakeholders involved in fields related to One Health research or management in the Africa, including veterinary experts, public health professionals, environmentalists and policy makers, to learn about determinants of their perceptions, as well as barriers to and promoters of successful interventions and governance. The project was concluded with an international workshop in March 2023, where a broad range of topics relevant to One Health were discussed. 94% of the respondents were aware of the importance of the One Health approach and strongly endorse it within their respective countries. The top reported barriers to One Health development in Africa included paucity of data, weak linkages and institutional communication between the different departments and the lack of funding. Key areas of improvement identified were the impact evaluation of current initiatives, awareness raising campaigns among citizens targeted at behavioral changes, capacity building of relevant professionals and stakeholders, as well as the implementation of adequate policies and enforcement of national and continental regulations, allowing for better coordination on the African level. All One Health sectors in Africa require strong governance and leadership, as well as inter-ministerial, inter-sectoral, and interdisciplinary cooperation.

Keywords: one health, perceptions, governance, Africa

Procedia PDF Downloads 62
3728 Thermal Buckling Analysis of Functionally Graded Beams with Various Boundary Conditions

Authors: Gholamreza Koochaki

Abstract:

This paper presents the buckling analysis of functionally graded beams with various boundary conditions. The first order shear deformation beam theory (Timoshenko beam theory) and the classical theory (Euler-Bernoulli beam theory) of Reddy have been applied to the functionally graded beams buckling analysis The material property gradient is assumed to be in thickness direction. The equilibrium and stability equations are derived using the total potential energy equations, classical theory and first order shear deformation theory assumption. The temperature difference and applied voltage are assumed to be constant. The critical buckling temperature of FG beams are upper than the isotropic ones. Also, the critical temperature is different for various boundary conditions.

Keywords: buckling, functionally graded beams, Hamilton's principle, Euler-Bernoulli beam

Procedia PDF Downloads 386
3727 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 122
3726 Experimental Verification and Finite Element Analysis of a Sliding Door System Used in Automotive Industry

Authors: C. Guven, M. Tufekci, E. Bayik, O. Gedik, M. Tas

Abstract:

A sliding door system is used in commercial vehicles and passenger cars to allow a larger unobstructed access to the interior for loading and unloading. The movement of a sliding door on vehicle body is ensured by mechanisms and tracks having special cross-section which is manufactured by roll forming and stretch bending process. There are three tracks and three mechanisms which are called upper, central and lower on a sliding door system. There are static requirements as strength on different directions, rigidity for mechanisms, and door drop off, door sag; dynamic requirements as high energy slam opening-closing and durability requirement to validate these products. In addition, there is a kinematic requirement to find out force values from door handle during manual operating. In this study, finite element analysis and physical test results which are realized for sliding door systems will be shared comparatively.

Keywords: finite element analysis, sliding door, experimental, verification, vehicle tests

Procedia PDF Downloads 328
3725 Comparative Evaluation of High Pure Mn3O4 Preparation Technique between the Conventional Process from Electrolytic Manganese and a Sustainable Approach Directly from Low-Grade Rhodochrosite

Authors: Fang Lian, Zefang Chenli, Laijun Ma, Lei Mao

Abstract:

Up to now, electrolytic process is a popular way to prepare Mn and MnO2 (EMD) with high purity. However, the conventional preparation process of manganese oxide such as Mn3O4 with high purity from electrolytic manganese metal is characterized by long production-cycle, high-pollution discharge and high energy consumption especially initially from low-grade rhodochrosite, the main resources for exploitation and applications in China. Moreover, Mn3O4 prepared from electrolytic manganese shows large particles, single morphology beyond the control and weak chemical activity. On the other hand, hydrometallurgical method combined with thermal decomposition, hydrothermal synthesis and sol-gel processes has been widely studied because of its high efficiency, low consumption and low cost. But the key problem in direct preparation of manganese oxide series from low-grade rhodochrosite is to remove completely the multiple impurities such as iron, silicon, calcium and magnesium. It is urgent to develop a sustainable approach to high pure manganese oxide series with character of short process, high efficiency, environmentally friendly and economical benefit. In our work, the preparation technique of high pure Mn3O4 directly from low-grade rhodochrosite ore (13.86%) was studied and improved intensively, including the effective leaching process and the short purifying process. Based on the same ion effect, the repeated leaching of rhodochrosite with sulfuric acid is proposed to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. Moreover, the repeated leaching process could make full use of sulfuric acid and lower the cost of the raw material. With the aid of theoretical calculation, Ba(OH)2 was chosen to adjust the pH value of manganese sulfate solution and BaF2 to remove Ca2+ and Mg2+ completely in the process of purifying. Herein, the recovery ratio of manganese and removal ratio of the impurity were evaluated via chemical titration and ICP analysis, respectively. Comparison between conventional preparation technique from electrolytic manganese and a sustainable approach directly from low-grade rhodochrosite have also been done herein. The results demonstrate that the extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. The heavy metal impurities has been decreased to less than 1ppm, and the content of calcium, magnesium and sodium has been decreased to less than 20ppm, which meet standards of high pure reagent for energy and electronic materials. In compare with conventional technique from electrolytic manganese, the power consumption has been reduced to ≤2000 kWh/t(product) in our short-process approach. Moreover, comprehensive recovery rate of manganese increases significantly, and the wastewater generated from our short-process approach contains low content of ammonia/ nitrogen about 500 mg/t(product) and no toxic emissions. Our study contributes to the sustainable application of low-grade manganese ore. Acknowledgements: The authors are grateful to the National Science and Technology Support Program of China (No.2015BAB01B02) for financial support to the work.

Keywords: leaching, high purity, low-grade rhodochrosite, manganese oxide, purifying process, recovery ratio

Procedia PDF Downloads 246
3724 Nanostructure Antireflective Sol-Gel Silica Coatings for Solar Collectors

Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

Sol-gel technology is a promising manufacturing method to produce anti reflective silica thin films for solar energy applications. So to improve the properties of the films, controlling parameter of the sol - gel method is very important. In this study, soaking treatment effect on optical properties of silica anti reflective thin films was investigated. UV-Visible Spectroscopy, Fourier-Transformed Infrared Spectrophotometer and Field Emission Scanning Electron Microscopy was used for the characterization of silica thin films. Results showed that all nanoporous silica layers cause to considerable reduction of light reflections compared with uncoated glasses. With single layer deposition, the amount of reduction depends on the dipping time of coating and has an optimal time. Also, it was found that solar transmittance increased from 91.5% for the bare slide up to 97.5% for the best made sample corresponding to two deposition cycles.

Keywords: sol–gel, silica thin films, anti reflective coatings, optical properties, soaking treatment

Procedia PDF Downloads 452
3723 A Comparison of qCON/qNOX to the Bispectral Index as Indices of Antinociception in Surgical Patients Undergoing General Anesthesia with Laryngeal Mask Airway

Authors: Roya Yumul, Ofelia Loani Elvir-Lazo, Sevan Komshian, Ruby Wang, Jun Tang

Abstract:

BACKGROUND: An objective means for monitoring the anti-nociceptive effects of perioperative medications has long been desired as a way to provide anesthesiologists information regarding a patient’s level of antinociception and preclude any untoward autonomic responses and reflexive muscular movements from painful stimuli intraoperatively. To this end, electroencephalogram (EEG) based tools including BIS and qCON were designed to provide information about the depth of sedation while qNOX was produced to inform on the degree of antinociception. The goal of this study was to compare the reliability of qCON/qNOX to BIS as specific indicators of response to nociceptive stimulation. METHODS: Sixty-two patients undergoing general anesthesia with LMA were included in this study. Institutional Review Board (IRB) approval was obtained, and informed consent was acquired prior to patient enrollment. Inclusion criteria included American Society of Anesthesiologists (ASA) class I-III, 18 to 80 years of age, and either gender. Exclusion criteria included the inability to consent. Withdrawal criteria included conversion to the endotracheal tube and EEG malfunction. BIS and qCON/qNOX electrodes were simultaneously placed on all patients prior to induction of anesthesia and were monitored throughout the case, along with other perioperative data, including patient response to noxious stimuli. All intraoperative decisions were made by the primary anesthesiologist without influence from qCON/qNOX. Student’s t-distribution, prediction probability (PK), and ANOVA were used to statistically compare the relative ability to detect nociceptive stimuli for each index. Twenty patients were included for the preliminary analysis. RESULTS: A comparison of overall intraoperative BIS, qCON and qNOX indices demonstrated no significant difference between the three measures (N=62, p> 0.05). Meanwhile, index values for qNOX (62±18) were significantly higher than those for BIS (46±14) and qCON (54±19) immediately preceding patient responses to nociceptive stimulation in a preliminary analysis (N=20, * p= 0.0408). Notably, certain hemodynamic measurements demonstrated a significant increase in response to painful stimuli (MAP increased from 74 ±13 mm Hg at baseline to 84 ± 18 mm Hg during noxious stimuli [p= 0.032] and HR from 76 ± 12 BPM at baseline to 80 ± 13 BPM during noxious stimuli [p=0.078] respectively). CONCLUSION: In this observational study, BIS and qCON/qNOX provided comparable information on patients’ level of sedation throughout the course of an anesthetic. Meanwhile, increases in qNOX values demonstrated a superior correlation to an imminent response to stimulation relative to all other indices

Keywords: antinociception, BIS, general anesthesia, LMA, qCON/qNOX

Procedia PDF Downloads 126
3722 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer

Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang

Abstract:

Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.

Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network

Procedia PDF Downloads 318
3721 Floor Response Spectra of RC Frames: Influence of the Infills on the Seismic Demand on Non-Structural Components

Authors: Gianni Blasi, Daniele Perrone, Maria Antonietta Aiello

Abstract:

The seismic vulnerability of non-structural components is nowadays recognized to be a key issue in performance-based earthquake engineering. Recent loss estimation studies, as well as the damage observed during past earthquakes, evidenced how non-structural damage represents the highest rate of economic loss in a building and can be in many cases crucial in a life-safety view during the post-earthquake emergency. The procedures developed to evaluate the seismic demand on non-structural components have been constantly improved and recent studies demonstrated how the existing formulations provided by main Standards generally ignore features which have a sensible influence on the definition of the seismic acceleration/displacements subjecting non-structural components. Since the influence of the infills on the dynamic behaviour of RC structures has already been evidenced by many authors, it is worth to be noted that the evaluation of the seismic demand on non-structural components should consider the presence of the infills as well as their mechanical properties. This study focuses on the evaluation of time-history floor acceleration in RC buildings; which is a useful mean to perform seismic vulnerability analyses of non-structural components through the well-known cascade method. Dynamic analyses are performed on an 8-storey RC frame, taking into account the presence of the infills; the influence of the elastic modulus of the panel on the results is investigated as well as the presence of openings. Floor accelerations obtained from the analyses are used to evaluate the floor response spectra, in order to define the demand on non-structural components depending on the properties of the infills. Finally, the results are compared with formulations provided by main International Standards, in order to assess the accuracy and eventually define the improvements required according to the results of the present research work.

Keywords: floor spectra, infilled RC frames, non-structural components, seismic demand

Procedia PDF Downloads 322
3720 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 348
3719 Effects of Dimensional Sizes of Mould on the Volumetric Shrinkage Strain of Lateric Soil

Authors: John E. Sani, Moses George

Abstract:

The paper presents the result of a laboratory study carried out on lateritic soil to determine the effects of dimensional size on the volumetric shrinkage strain (VSS) using three mould sizes i.e. split former mould, proctor mould and California bearing ratio (CBR) mould at three energy levels; British standard light (BSL), West African standard (WAS) and British standard heavy (BSH) respectively. Compactions were done at different molding water content of -2 % to +6 % optimum moisture content (OMC). At -2% to +2% molding water content for the split former mould the volumetric shrinkage strain met the requirement of not more than 4% while at +4% and +6% only the WAS and BSH met the requirement. The proctor mould and the CBR mould on the other hand gave a lower value of volumetric shrinkage strain in all compactive effort and the values are lower than the 4% safe VSS value.

Keywords: lateritic soil, volumetric shrinkage strain, molding water content, compactive effort

Procedia PDF Downloads 521
3718 Predicting Reading Comprehension in Spanish: The Evidence for the Simple View Model

Authors: Gabriela Silva-Maceda, Silvia Romero-Contreras

Abstract:

Spanish is a more transparent language than English given that it has more direct correspondences between sounds and letters. It has become important to understand how decoding and linguistic comprehension contribute to reading comprehension in the framework of the widely known Simple View Model. This study aimed to identify the level of prediction by these two components in a sample of 1st to 4th grade children attending two schools in central Mexico (one public and one private). Within each school, ten children were randomly selected in each grade level, and their parents were asked about reading habits and socioeconomic information. In total, 79 children completed three standardized tests measuring decoding (pseudo-word reading), linguistic comprehension (understanding of paragraphs) and reading comprehension using subtests from the Clinical Evaluation of Language Fundamentals-Spanish, Fourth Edition, and the Test de Lectura y Escritura en Español (LEE). The data were analyzed using hierarchical regression, with decoding as a first step and linguistic comprehension as a second step. Results showed that decoding accounted for 19.2% of the variance in reading comprehension, while linguistic comprehension accounted for an additional 10%, adding up to 29.2% of variance explained: F (2, 75)= 15.45, p <.001. Socioeconomic status derived from parental questionnaires showed a statistically significant association with the type of school attended, X2 (3, N= 79) = 14.33, p =.002. Nonetheless when analyzing the Simple View components, only decoding differences were statistically significant (t = -6.92, df = 76.81, p < .001, two-tailed); reading comprehension differences were also significant (t = -3.44, df = 76, p = .001, two-tailed). When socioeconomic status was included in the model, it predicted a 5.9% unique variance, even when already accounting for Simple View components, adding to a 35.1% total variance explained. This three-predictor model was also significant: F (3, 72)= 12.99, p <.001. In addition, socioeconomic status was significantly correlated with the amount of non-textbook books parents reported to have at home for both adults (rho = .61, p<.001) and children (rho= .47, p<.001). Results converge with a large body of literature finding socioeconomic differences in reading comprehension; in addition this study suggests that these differences were also present in decoding skills. Although linguistic comprehension differences between schools were expected, it is argued that the test used to collect this variable was not sensitive to linguistic differences, since it came from a test to diagnose clinical language disabilities. Even with this caveat, results show that the components of the Simple View Model can predict less than a third of the variance in reading comprehension in Spanish. However, the results also suggest that a fuller model of reading comprehension is obtained when considering the family’s socioeconomic status, given the potential differences shown by the socioeconomic status association with books at home, factors that are particularly important in countries where inequality gaps are relatively large.

Keywords: decoding, linguistic comprehension, reading comprehension, simple view model, socioeconomic status, Spanish

Procedia PDF Downloads 320
3717 Genomic Adaptation to Local Climate Conditions in Native Cattle Using Whole Genome Sequencing Data

Authors: Rugang Tian

Abstract:

In this study, we generated whole-genome sequence (WGS) data from110 native cattle. Together with whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of different cattle populations. Our findings revealed clustering of cattle groups in line with their geographic locations. We identified noticeable genetic diversity between indigenous cattle breeds and commercial populations. Among all studied cattle groups, lower genetic diversity measures were found in commercial populations, however, high genetic diversity were detected in some local cattle, particularly in Rashoki and Mongolian breeds. Our search for potential genomic regions under selection in native cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis.

Keywords: cattle, whole-genome, population structure, adaptation

Procedia PDF Downloads 60
3716 Effect of Welding Current on Mechanical Properties and Microstructure of Tungsten Inert Gas Welding of Type-304 Austenite Stainless Steel

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

The aim of this paper is to study the effect of welding current on the microstructure and the mechanical properties. Material characterizations were conducted on a 6 mm thick plates of type-304 austenite stainless steel, welded by TIG welding process at two different welding currents of 150 A (Sample F3) and 170 A (Sample F4). The tensile strength and the elongation obtained from sample F4 weld were approximately 584 MPa and 19.3 %; which were higher than sample F3 weld. The average microhardness value of sample F4 weld was found to be 235.7 HV, while that of sample F3 weld was 233.4 HV respectively. Homogenous distribution of iron (Fe), chromium (Cr) and nickel (Ni) were observed at the welded joint of the two samples. The energy dispersive spectroscopy (EDS) analysis revealed that Fe, Cr, and Ni made up the composition formed in the weld zone. The optimum welding current of 170 A for TIG welding of type-304 austenite stainless steel can be recommended for high-tech industrial applications.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 188
3715 Development of a Three-Dimensional-Flywheel Robotic System

Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu

Abstract:

In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.

Keywords: gyro, gimbal, lagrange equation, spherical robots

Procedia PDF Downloads 309
3714 Improving Predictions of Coastal Benthic Invertebrate Occurrence and Density Using a Multi-Scalar Approach

Authors: Stephanie Watson, Fabrice Stephenson, Conrad Pilditch, Carolyn Lundquist

Abstract:

Spatial data detailing both the distribution and density of functionally important marine species are needed to inform management decisions. Species distribution models (SDMs) have proven helpful in this regard; however, models often focus only on species occurrences derived from spatially expansive datasets and lack the resolution and detail required to inform regional management decisions. Boosted regression trees (BRT) were used to produce high-resolution SDMs (250 m) at two spatial scales predicting probability of occurrence, abundance (count per sample unit), density (count per km2) and uncertainty for seven coastal seafloor taxa that vary in habitat usage and distribution to examine prediction differences and implications for coastal management. We investigated if small scale regionally focussed models (82,000 km2) can provide improved predictions compared to data-rich national scale models (4.2 million km2). We explored the variability in predictions across model type (occurrence vs abundance) and model scale to determine if specific taxa models or model types are more robust to geographical variability. National scale occurrence models correlated well with broad-scale environmental predictors, resulting in higher AUC (Area under the receiver operating curve) and deviance explained scores; however, they tended to overpredict in the coastal environment and lacked spatially differentiated detail for some taxa. Regional models had lower overall performance, but for some taxa, spatial predictions were more differentiated at a localised ecological scale. National density models were often spatially refined and highlighted areas of ecological relevance producing more useful outputs than regional-scale models. The utility of a two-scale approach aids the selection of the most optimal combination of models to create a spatially informative density model, as results contrasted for specific taxa between model type and scale. However, it is vital that robust predictions of occurrence and abundance are generated as inputs for the combined density model as areas that do not spatially align between models can be discarded. This study demonstrates the variability in SDM outputs created over different geographical scales and highlights implications and opportunities for managers utilising these tools for regional conservation, particularly in data-limited environments.

Keywords: Benthic ecology, spatial modelling, multi-scalar modelling, marine conservation.

Procedia PDF Downloads 75
3713 Developing a Toolkit of Undergraduate Nursing Student’ Desirable Characteristics (TNDC) : An application Item Response Theory

Authors: Parinyaporn Thanaboonpuang, Siridej Sujiva, Shotiga Pasiphul

Abstract:

The higher education reform that integration of nursing programmes into the higher education system. Learning outcomes represent one of the essential building blocks for transparency within higher education systems and qualifications. The purpose of this study is to develop a toolkit of undergraduate nursing student’desirable characteristics assessment on Thai Qualifications Framework for Higher education and to test psychometric property for this instrument. This toolkit seeks to improve on the Computer Multimedia test. There are three skills to be examined: Cognitive skill, Responsibility and Interpersonal Skill, and Information Technology Skill. The study was conduct in 4 phases. In Phase 1. Based on developed a measurement model and Computer Multimedia test. Phase 2 two round focus group were conducted, to determine the content validity of measurement model and the toolkit. In Phase 3, data were collected using a multistage random sampling of 1,156 senior undergraduate nursing student were recruited to test psychometric property. In Phase 4 data analysis was conducted by descriptive statistics, item analysis, inter-rater reliability, exploratory factor analysis and confirmatory factor analysis. The resulting TNDC consists of 74 items across the following four domains: Cognitive skill, Interpersonal Skill, Responsibility and Information Technology Skill. The value of Cronbach’ s alpha for the four domains were .781, 807, .831, and .865, respectively. The final model in confirmatory factor analysis fit quite well with empirical data. The TNDC was found to be appropriate, both theoretically and statistically. Due to these results, it is recommended that the toolkit could be used in future studies for Nursing Program in Thailand.

Keywords: toolkit, nursing student’ desirable characteristics, Thai qualifications framework

Procedia PDF Downloads 530
3712 Influence of Microstructure on Deformation Mechanisms and Mechanical Properties of Additively Manufactured Steel

Authors: Etienne Bonnaud, David Lindell

Abstract:

Correlations between microstructure, deformation mechanisms, and mechanical properties in additively manufactured 316L steel components have been investigated. Mechanical properties in the vertical direction (building direction) and in the horizontal direction (in plane directions) are markedly different. Vertically built specimens show lower yield stress but higher elongation than their horizontally built counterparts. Microscopic observations by electron back scattered diffraction (EBSD) for both build orientations reveal a strong [110] fiber texture in the build direction but different grain morphologies. These microstructures are used as input in subsequent crystal plasticity numerical simulations to understand their influence on the deformation mechanisms and the mechanical properties. Mean field simulations using a visco plastic self consistent (VPSC) model were carried out first but did not give results consistent with the tensile test experiments. A more detailed full-field model had to be used based on the Visco Plastic Fast Fourier Transform (VPFTT) method. A more accurate microstructure description was then input to the simulation model, where thin vertical regions of smaller grains were also taken into account. It turned out that these small grain clusters were responsible for the discrepancies in yield stress and hardening. Texture and morphology have a strong effect on mechanical properties. The different mechanical behaviors between vertically and horizontally printed specimens could be explained by means of numerical full-field crystal plasticity simulations, and the presence of thin clusters of smaller grains was shown to play a central role in the deformation mechanisms.

Keywords: additive manufacturing, crystal plasticity, full-field simulations, mean-field simulations, texture

Procedia PDF Downloads 66
3711 Re-Thinking Design/Build Curriculum in a Virtual World

Authors: Bruce Wrightsman

Abstract:

Traditionally, in architectural education, we develop studio projects with learning agendas that try to minimize conflict and reveal clear design objectives. Knowledge is gleaned only tacitly through confronting the reciprocity of site and form, space and light, structure and envelope. This institutional reality can limit student learning to the latent learning opportunities they will have to confront later in practice. One intent of academic design-build projects is to address the learning opportunities which one can discover in the messy grey areas of design. In this immersive experience, students confront the limitations of classroom learning and are exposed to challenges that demand collaborative practice. As a result, design-build has been widely adopted in an attempt to address perceived deficiencies in design education vis a vis the integration of building technology and construction. Hands-on learning is not a new topic, as espoused by John Dewey, who posits a debate between static and active learning in his book Democracy and Education. Dewey espouses the concept that individuals should become participants and not mere observers of what happens around them. Advocates of academic design-build programs suggest a direct link between Dewey’s speculation. These experiences provide irreplaceable life lessons: that real-world decisions have real-life consequences. The goal of the paper is not to confirm or refute the legitimacy and efficacy of online virtual learning. Rather, the paper aims to foster a deeper, honest discourse on the meaning of ‘making’ in architectural education and present projects that confronted the burdens of a global pandemic and developed unique teaching strategies that challenged design thinking as an observational and constructive effort to expand design student’s making skills and foster student agency.

Keywords: design/build, making, remote teaching, architectural curriculum

Procedia PDF Downloads 74