Search results for: satellite thermal images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6299

Search results for: satellite thermal images

5399 Computation of ΔV Requirements for Space Debris Removal Using Orbital Transfer

Authors: Sadhvi Gupta, Charulatha S.

Abstract:

Since the dawn of the early 1950s humans have launched numerous vehicles in space. Be it from rockets to rovers humans have done tremendous growth in the technology sector. While there is mostly upside for it for humans the only major downside which cannot be ignored now is the amount of junk produced in space due to it i.e. space debris. All this space junk amounts from objects we launch from earth which so remains in orbit until it re-enters the atmosphere. Space debris can be of various sizes mainly the big ones are of the dead satellites floating in space and small ones can consist of various things like paint flecks, screwdrivers, bolts etc. Tracking of small space debris whose size is less than 10 cm is impossible and can have vast implications. As the amount of space debris increases in space the chances of it hitting a functional satellite also increases. And it is extremely costly to repair or recover the satellite once hit by a revolving space debris. So the proposed solution is, Actively removing space debris while keeping space sustainability in mind. For this solution a total of 8 modules will be launched in LEO and in GEO and these models will be placed in their desired orbits through Hohmann transfer and for that calculating ΔV values is crucial. After which the modules will be placed in their designated positions in STK software and thorough analysis is conducted.

Keywords: space debris, Hohmann transfer, STK, delta-V

Procedia PDF Downloads 86
5398 Analysis Thermal of Composite Material in Cold Systems

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes

Abstract:

Given the unquestionable need of environmental preservation of discarded industrial residues, The scrape of tires have been seen as a salutary alternative for addictive in concrete, asphalt production and of other composites materials. In this work, grew a composite the base of scrape of tire as reinforcement and latex as matrix, to be used as insulating thermal in "cold" systems (0º). Analyzed the acting of the material was what plays the thermal conservation when submitted the flow of heat. Verified the temperature profiles in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. As a consequence, in function of the answers of the system, conclusions were reached.

Keywords: cold system, latex, flow of heat, asphalt production

Procedia PDF Downloads 462
5397 Deformation and Strength of Heat-Shielding Materials in a Long-Term Storage of Aircraft

Authors: Lyudmila L. Gracheva

Abstract:

Thermal shield is a multi-layer structure that consists of layers made of different materials. The use of composite materials (CM) reinforced with carbon fibers in rocket technologies (shells, bearings, wings, fairings, inter-step compartments, etc.) is due to a possibility of reducing the weight while increasing a structural strength. Structures made of a unidirectional carbon fiber reinforced plastic based on an epoxy resin are used as load-bearing skins for aircraft fairings. The results of an experimental study of the physical and mechanical properties of epoxy carbon fiber reinforced plastics depending on temperature for different storage times of products are presented. With an increasing temperature, the physical and mechanical properties of CM are determined by the thermal and deformation properties of the components and the geometry of their distribution. Samples for the study were cut from natural skins of the head fairings.

Keywords: composite material, thermal deformation, carbon fiber, heat shield, epoxy resin, thermal expansion

Procedia PDF Downloads 57
5396 A Comparative Analysis of Thermal Performance of Building Envelope Types over Time

Authors: Aram Yeretzian, Yaser Abunnasr, Zahraa Makki, Betina Abi Habib

Abstract:

Developments in architectural building typologies that are informed by prevalent construction techniques and socio-cultural practices generate different adaptations in the building envelope. While different building envelope types exhibit different climate responsive passive strategies, the individual and comparative thermal performance analysis resulting from these technologies is yet to be understood. This research aims to develop this analysis by selecting three building envelope types from three distinct building traditions by measuring the heat transmission in the city of Beirut. The three typical residential buildings are selected from the 1920s, 1940s, and 1990s within the same street to ensure similar climatic and urban conditions. Climatic data loggers are installed inside and outside of the three locations to measure indoor and outdoor temperatures, relative humidity, and heat flow. The analysis of the thermal measurements is complemented by site surveys on window opening, lighting, and occupancy in the three selected locations and research on building technology from the three periods. Apart from defining the U-value of the building envelopes, the collected data will help evaluate the indoor environments with respect to the thermal comfort zone. This research, thus, validates and contextualizes the role of building technologies in relation to climate responsive design.

Keywords: architecture, wall construction, envelope performance, thermal comfort

Procedia PDF Downloads 234
5395 Retina Registration for Biometrics Based on Characterization of Retinal Feature Points

Authors: Nougrara Zineb

Abstract:

The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general.

Keywords: fovea, optic disc, registration, retinal images

Procedia PDF Downloads 266
5394 Experimental Investigation of the Thermal Conductivity of Neodymium and Samarium Melts by a Laser Flash Technique

Authors: Igor V. Savchenko, Dmitrii A. Samoshkin

Abstract:

The active study of the properties of lanthanides has begun in the late 50s of the last century, when methods for their purification were developed and metals with a relatively low content of impurities were obtained. Nevertheless, up to date, many properties of the rare earth metals (REM) have not been experimentally investigated, or insufficiently studied. Currently, the thermal conductivity and thermal diffusivity of lanthanides have been studied most thoroughly in the low-temperature region and at moderate temperatures (near 293 K). In the high-temperature region, corresponding to the solid phase, data on the thermophysical characteristics of the REM are fragmentary and in some cases contradictory. Analysis of the literature showed that the data on the thermal conductivity and thermal diffusivity of light REM in the liquid state are few in number, little informative (only one point corresponds to the liquid state region), contradictory (the nature of the thermal conductivity change with temperature is not reproduced), as well as the results of measurements diverge significantly beyond the limits of the total errors. Thereby our experimental results allow to fill this gap and to clarify the existing information on the heat transfer coefficients of neodymium and samarium in a wide temperature range from the melting point up to 1770 K. The measurement of the thermal conductivity of investigated metallic melts was carried out by laser flash technique on an automated experimental setup LFA-427. Neodymium sample of brand NM-1 (99.21 wt % purity) and samarium sample of brand SmM-1 (99.94 wt % purity) were cut from metal ingots and then ones were annealed in a vacuum (1 mPa) at a temperature of 1400 K for 3 hours. Measuring cells of a special design from tantalum were used for experiments. Sealing of the cell with a sample inside it was carried out by argon-arc welding in the protective atmosphere of the glovebox. The glovebox was filled with argon with purity of 99.998 vol. %; argon was additionally cleaned up by continuous running through sponge titanium heated to 900–1000 K. The general systematic error in determining the thermal conductivity of investigated metallic melts was 2–5%. The approximation dependences and the reference tables of the thermal conductivity and thermal diffusivity coefficients were developed. New reliable experimental data on the transport properties of the REM and their changes in phase transitions can serve as a scientific basis for optimizing the industrial processes of production and use of these materials, as well as ones are of interest for the theory of thermophysical properties of substances, physics of metals, liquids and phase transformations.

Keywords: high temperatures, laser flash technique, liquid state, metallic melt, rare earth metals, thermal conductivity, thermal diffusivity

Procedia PDF Downloads 198
5393 A Method for Rapid Evaluation of Ore Breakage Parameters from Core Images

Authors: A. Nguyen, K. Nguyen, J. Jackson, E. Manlapig

Abstract:

With the recent advancement in core imaging systems, a large volume of high resolution drill core images can now be collected rapidly. This paper presents a method for rapid prediction of ore-specific breakage parameters from high resolution mineral classified core images. The aim is to allow for a rapid assessment of the variability in ore hardness within a mineral deposit with reduced amount of physical breakage tests. This method sees its application primarily in project evaluation phase, where proper evaluation of the variability in ore hardness of the orebody normally requires prolong and costly metallurgical test work program. Applying this image-based texture analysis method on mineral classified core images, the ores are classified according to their textural characteristics. A small number of physical tests are performed to produce a dataset used for developing the relationship between texture classes and measured ore hardness. The paper also presents a case study in which this method has been applied on core samples from a copper porphyry deposit to predict the ore-specific breakage A*b parameter, obtained from JKRBT tests.

Keywords: geometallurgy, hyperspectral drill core imaging, process simulation, texture analysis

Procedia PDF Downloads 361
5392 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 82
5391 Post-Soviet LULC Analysis of Tbilisi, Batumi and Kutaisi Using of Remote Sensing and Geo Information System

Authors: Lela Gadrani, Mariam Tsitsagi

Abstract:

Human is a part of the urban landscape and responsible for it. Urbanization of cities includes the longest phase; thus none of the environment ever undergoes such anthropogenic impact as the area of large cities. The post-Soviet period is very interesting in terms of scientific research. The changes that have occurred in the cities since the collapse of the Soviet Union have not yet been analyzed best to our knowledge. In this context, the aim of this paper is to analyze the changes in the land use of the three large cities of Georgia (Tbilisi, Kutaisi, Batumi). Tbilisi as a capital city, Batumi as a port city, and Kutaisi as a former industrial center. Data used during the research process are conventionally divided into satellite and supporting materials. For this purpose, the largest topographic maps (1:10 000) of all three cities were analyzed, Tbilisi General Plans (1896, 1924), Tbilisi and Kutaisi historical maps. The main emphasis was placed on the classification of Landsat images. In this case, we have classified the images LULC (LandUse / LandCover) of all three cities taken in 1987 and 2016 using the supervised and unsupervised methods. All the procedures were performed in the programs: Arc GIS 10.3.1 and ENVI 5.0. In each classification we have singled out the following classes: built-up area, water bodies, agricultural lands, green cover and bare soil, and calculated the areas occupied by them. In order to check the validity of the obtained results, additionally we used the higher resolution images of CORONA and Sentinel. Ultimately we identified the changes that took place in the land use in the post-Soviet period in the above cities. According to the results, a large wave of changes touched Tbilisi and Batumi, though in different periods. It turned out that in the case of Tbilisi, the area of developed territory has increased by 13.9% compared to the 1987 data, which is certainly happening at the expense of agricultural land and green cover, in particular, the area of agricultural lands has decreased by 4.97%; and the green cover by 5.67%. It should be noted that Batumi has obviously overtaken the country's capital in terms of development. With the unaided eye it is clear that in comparison with other regions of Georgia, everything is different in Batumi. In fact, Batumi is an unofficial summer capital of Georgia. Undoubtedly, Batumi’s development is very important both in economic and social terms. However, there is a danger that in the uneven conditions of urban development, we will eventually get a developed center - Batumi, and multiple underdeveloped peripheries around it. Analysis of the changes in the land use is of utmost importance not only for quantitative evaluation of the changes already implemented, but for future modeling and prognosis of urban development. Raster data containing the classes of land use is an integral part of the city's prognostic models.

Keywords: analysis, geo information system, remote sensing, LULC

Procedia PDF Downloads 451
5390 Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant

Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen

Abstract:

Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance.

Keywords: palm biomass, steam supply, exergy and energy models, energy performance benchmark

Procedia PDF Downloads 350
5389 Lithium Oxide Effect on the Thermal and Physical Properties of the Ternary System Glasses (Li2O3-B2O3-Al2O3)

Authors: D. Aboutaleb, B. Safi

Abstract:

The borate glasses are known by their structural characterized by existence of unit’s structural composed by triangles and tetrahedrons boron in different configurations depending on the percentage of B2O3 in the glass chemical composition. In this paper, effect of lithium oxide addition on the thermal and physical properties of an alumina borate glass, was investigated. It was found that the boron abnormality has a significant effect in the change of glass properties according to the addition rate of lithium oxide.

Keywords: borate glasses, triangles and tetrahedrons boron, lithium oxide, boron anomaly, thermal properties, physical properties

Procedia PDF Downloads 360
5388 Improved Thermal Comfort and Sensation with Occupant Control of Ceiling Personalized Ventilation System: A Lab Study

Authors: Walid Chakroun, Sorour Alotaibi, Nesreen Ghaddar, Kamel Ghali

Abstract:

This study aims at determining the extent to which occupant control of microenvironment influences, improves thermal sensation and comfort, and saves energy in spaces equipped with ceiling personalized ventilation (CPV) system assisted by chair fans (CF) and desk fans (DF) in 2 experiments in a climatic chamber equipped with two-station CPV systems, one that allows control of fan flow rate and the other is set to the fan speed of the selected participant in control. Each experiment included two participants each entering the cooled space from transitional environment at a conventional mixed ventilation (MV) at 24 °C. For CPV diffuser, fresh air was delivered at a rate of 20 Cubic feet per minute (CFM) and a temperature of 16 °C while the recirculated air was delivered at the same temperature but at a flow rate 150 CFM. The macroclimate air of the space was at 26 °C. The full speed flow rates for both the CFs and DFs were at 5 CFM and 20 CFM, respectively. Occupant 1 was allowed to operate the CFs or the DFs at (1/3 of the full speed, 2/3 of the full speed, and the full speed) while occupant 2 had no control on the fan speed and their fan speed was selected by occupant 1. Furthermore, a parametric study was conducted to study the effect of increasing the fresh air flow rate on the occupants’ thermal comfort and whole body sensations. The results showed that most occupants in the CPV+CFs, who did not control the CF flow rate, felt comfortable 6 minutes. The participants, who controlled the CF speeds, felt comfortable in around 24 minutes because they were preoccupied with the CFs. For the DF speed control experiments, most participants who did not control the DFs felt comfortable within the first 8 minutes. Similarly to the CPV+CFs, the participants who controlled the DF flow rates felt comfortable at around 26 minutes. When the CPV system was either supported by CFs or DFs, 93% of participants in both cases reached thermal comfort. Participants in the parametric study felt more comfortable when the fresh air flow rate was low, and felt cold when as the flow rate increased.

Keywords: PMV, thermal comfort, thermal environment, thermal sensation

Procedia PDF Downloads 259
5387 Effect of Fibres-Chemical Treatment on the Thermal Properties of Natural Composites

Authors: J. S. S. Neto, R. A. A. Lima, D. K. K. Cavalcanti, J. P. B. Souza, R. A. A. Aguiar, M. D. Banea

Abstract:

In the last decade, investments in sustainable processes and products have gained space in several segments, such as in the civil, automobile, textile and other industries. In addition to increasing concern about the development of environmentally friendly materials that reduce, energy costs and reduces environmental impact in the production of these products, as well as reducing CO2 emissions. Natural fibers offer a great alternative to replace synthetic fibers, totally or partially, because of their low cost and their renewable source. The purpose of this research is to study the effect of surface chemical treatment on the thermal properties of hybrid fiber reinforced natural fibers (NFRC), jute + ramie, jute + sisal, jute + curauá, and jute fiber in polymer matrices. Two types of chemical treatment: alkalinization and silanization were employed, besides the condition without treatment. Differential scanning calorimetry (DSC), thermogravimetry (TG) and dynamic-mechanical analysis (DMA) were performed to explore the thermal stability and weight loss in the natural fiber reinforced composite as a function of chemical treatment.

Keywords: chemical treatment, hybrid composite, jute, thermal

Procedia PDF Downloads 308
5386 Quantitative Assessment of Road Infrastructure Health Using High-Resolution Remote Sensing Data

Authors: Wang Zhaoming, Shao Shegang, Chen Xiaorong, Qi Yanan, Tian Lei, Wang Jian

Abstract:

This study conducts a comparative analysis of the spectral curves of asphalt pavements at various aging stages to improve road information extraction from high-resolution remote sensing imagery. By examining the distinguishing capabilities and spectral characteristics, the research aims to establish a pavement information extraction methodology based on China's high-resolution satellite images. The process begins by analyzing the spectral features of asphalt pavements to construct a spectral assessment model suitable for evaluating pavement health. This model is then tested at a national highway traffic testing site in China, validating its effectiveness in distinguishing different pavement aging levels. The study's findings demonstrate that the proposed model can accurately assess road health, offering a valuable tool for road maintenance planning and infrastructure management.

Keywords: spectral analysis, asphalt pavement aging, high-resolution remote sensing, pavement health assessment

Procedia PDF Downloads 21
5385 The Design and Implementation of a Calorimeter for Evaluation of the Thermal Performance of Materials: The Case of Phase Change Materials

Authors: Ebrahim Solgi, Zahra Hamedani, Behrouz Mohammad Kari, Ruwan Fernando, Henry Skates

Abstract:

The use of thermal energy storage (TES) as part of a passive design strategy can reduce a building’s energy demand. TES materials do this by increasing the lag between energy consumption and energy supply by absorbing, storing and releasing energy in a controlled manner. The increase of lightweight construction in the building industry has made it harder to utilize thermal mass. Consequently, Phase Change Materials (PCMs) are a promising alternative as they can be manufactured in thin layers and used with lightweight construction to store latent heat. This research investigates utilizing PCMs, with the first step being measuring their performance under experimental conditions. To do this requires three components. The first is a calorimeter for measuring indoor thermal conditions, the second is a pyranometer for recording the solar conditions: global, diffuse and direct radiation and the third is a data-logger for recording temperature and humidity for the studied period. This paper reports on the design and implementation of an experimental setup used to measure the thermal characteristics of PCMs as part of a wall construction. The experimental model has been simulated with the software EnergyPlus to create a reliable simulation model that warrants further investigation.

Keywords: phase change materials, EnergyPlus, experimental evaluation, night ventilation

Procedia PDF Downloads 256
5384 Design an Expert System to Assess the Hydraulic System in Thermal and Hydrodynamic Aspect

Authors: Ahmad Abdul-Razzak Aboudi Al-Issa

Abstract:

Thermal and Hydrodynamic are basic aspects in any hydraulic system and therefore, they must be assessed with regard to this aspect before constructing the system. This assessment needs a good expertise in this aspect to obtain an efficient hydraulic system. Therefore, this study aims to build an expert system called Hydraulic System Calculations (HSC) to ensure a smooth operation for the hydraulic system. The expert system (HSC) had been designed and coded in an user-friendly interactive program called Microsoft Visual Basic 2010. The suggested code provides the designer with a number of choices to resolve the problem of hydraulic oil overheating which may arise during the continuous operation of the hydraulic unit. As a result, the HSC can minimize the human errors, effort, time and cost of hydraulic machine design.

Keywords: fluid power, hydraulic system, thermal and hydrodynamic, expert system

Procedia PDF Downloads 446
5383 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: low light image enhancement, deep learning, convolutional neural network, image processing

Procedia PDF Downloads 81
5382 Modeling Comfort by Thermal Inertia in Eco-Construction for Low-Income People in an Aqueous Environment in the Face of Sustainable Development in Sub-Saharan Africa; Case of the City of Kinshasa, DR Congo

Authors: Mbambu K. Shaloom, Biba Kalengo, Pierre Echard, Olivier Gilson, Tshiswaka Ngalula, Léonard Kabeya Mukeba Yakasham

Abstract:

In this 21st century, while design and eco-construction continue to be governed by considerations of functionality, safety, comfort and initial investment cost. Today, the principles of sustainable development lead us to think over longer time frames, to take into account new issues and the operating costs of green energy. DR Congo (sub-Saharan Africa) still suffers from the unusability of certain bio-sourced materials (such as bamboo, branches, etc.) and the lack of energy, i.e. 9% of the population has access to electricity and 21% of access to water. Ecoconstruction involves the energy performance of buildings which carry out a dynamic thermal simulation, which targets the different assumptions and conventional parameters (weather, occupancy, materials, thermal comfort, green energies, etc.). The objective of this article is to remedy the thermal, economic and technical artisanal problems in an aqueous environment in the city of Kinshasa. In order to establish a behavioral model to mitigate environmental impacts on architectural modifications and low-cost eco-construction through the approach of innovation and design thinking.

Keywords: thermal comfort, bio-sourced material, eco-architecture, eco-construction, squatting, design thinking

Procedia PDF Downloads 87
5381 Tumor Detection of Cerebral MRI by Multifractal Analysis

Authors: S. Oudjemia, F. Alim, S. Seddiki

Abstract:

This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.

Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor

Procedia PDF Downloads 443
5380 Temperature Control and Thermal Management of Cylindrical Lithium Batteries Using Phase Change Materials (PCMs)

Authors: S. M. Sadrameli, Y. Azizi

Abstract:

Lithium-ion batteries (LIBs) have shown to be one of the most reliable energy storage systems for electric cars in the recent years. Ambient temperature has a significant impact on the performance, lifetime, safety and cost of such batteries. Increasing the temperature degrade the lithium batteries more quickly while working at low-temperature environment results reducing the power and energy capability of the system. A thermal management system has been designed and setup in laboratory scale for controlling the temperature at optimum conditions using PEG-1000 with the melting point in the range of 33-40 oC as a phase change material. Aluminum plates have been installed in the PCM to increase the thermal conductivity and increasing the heat transfer rate. Experimental tests have been run at different discharge rates and ambient temperatures to investigate the effects of temperature on the efficiency of the batteries. The comparison has been made between the system of 6 batteries with and without PCM and the results show that PCM with aluminum plates decrease the surface temperature of the batteries that would result better performance and longer lifetime of the batteries.

Keywords: lithium-ion batteries, phase change materials, thermal management, temperature control

Procedia PDF Downloads 341
5379 The Structural, Elastic, Thermal, Electronic, and Magnetic Properties of Intermetallic rmn₂ge₂ (R=CA, Y, ND)

Authors: I. Benkaddour, Y. Benkaddour, A. Benk Addour

Abstract:

The structural, elastic, Thermal, electronic, and magnetic properties of intermetallic RMn₂Ge₂ (R= Ca, Y, Nd) are investigated by density functional theory (DFT), using the full potential –linearised augmented plane wave method (FP-LAPW). In this approach, the local-density approximation (LDA) is used for the exchange-correlation (XC) potential. The equilibrium lattice constant and magnetic moment agree well with the experiment. The density of states shows that these phases are conductors, with contribution predominantly from the R and Mn d states. We have determined the elastic constants C₁₁, C₁₂, C₁₃, C₄₄, C₃₃, andC₆₆ at ambient conditions in, which have not been established neither experimentally nor theoretically. Thermal properties, including the relative expansion coefficients and the heat capacity, have been estimated using a quasi-harmonic Debye model.

Keywords: RMn₂Ge₂, intermetallic, first-principles, density of states, mechanical properties

Procedia PDF Downloads 89
5378 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 89
5377 Use of GIS and Remote Sensing for Calculating the Installable Photovoltaic and Thermal Power on All the Roofs of the City of Aix-en-Provence, France

Authors: Sofiane Bourchak, Sébastien Bridier

Abstract:

The objective of this study is to show how to calculate and map solar energy’s quantity (instantaneous and accumulated global solar radiation during the year) available on roofs in the city Aix-en-Provence which has a population of 140,000 inhabitants. The result is a geographic information system (GIS) layer, which represents hourly and monthly the production of solar energy on roofs throughout the year. Solar energy professionals can use it to optimize implementations and to size energy production systems. The results are presented as a set of maps, tables and histograms in order to determine the most effective costs in Aix-en-Provence in terms of photovoltaic power (electricity) and thermal power (hot water).

Keywords: geographic information system, photovoltaic, thermal, solar potential, solar radiation

Procedia PDF Downloads 436
5376 ‘Saying’ the Nuclear Power in France: Evolution of the Images and Perceptions of a Sensitive Theme

Authors: Jandot Aurélia

Abstract:

As the nuclear power is a sensitive field leading to controversy, the quality of the communication about it is important. Between 1965 and 1981, in France, this one had gradually changed. This change is studied here in the main French news magazine L’Express, in connection with several parameters. As this represents a huge number of copies and occurrences, thus a considerable amount of information; this paper is focused on the main articles as well as the main “mental images”. These ones are important, as their aim is to direct the thought of the readers, and as they have led the public awareness to evolve. Over this 17 years, two trends are in confrontation: The first one is promoting the perception of the nuclear power, while the second one is discrediting it. These trends are organized in two axes: the evolution of engineering, and the risks. In both cases, the changes in the language allow discerning the deepest intentions of the magazine editing, over a period when the nuclear technology, to there a laboratory object accompanied with mystery and secret, has become a social issue seemingly open to all.

Keywords: French news magazine, mental images, nuclear power, public awareness

Procedia PDF Downloads 304
5375 Spatially Downscaling Land Surface Temperature with a Non-Linear Model

Authors: Kai Liu

Abstract:

Remote sensing-derived land surface temperature (LST) can provide an indication of the temporal and spatial patterns of surface evapotranspiration (ET). However, the spatial resolution achieved by existing commonly satellite products is ~1 km, which remains too coarse for ET estimations. This paper proposed a model that can disaggregate coarse resolution MODIS LST at 1 km scale to fine spatial resolutions at the scale of 250 m. Our approach attempted to weaken the impacts of soil moisture and growing statues on LST variations. The proposed model spatially disaggregates the coarse thermal data by using a non-linear model involving Bowen ratio, normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI). This LST disaggregation model was tested on two heterogeneous landscapes in central Iowa, USA and Heihe River, China, during the growing seasons. Statistical results demonstrated that our model achieved better than the two classical methods (DisTrad and TsHARP). Furthermore, using the surface energy balance model, it was observed that the estimated ETs using the disaggregated LST from our model were more accurate than those using the disaggregated LST from DisTrad and TsHARP.

Keywords: Bowen ration, downscaling, evapotranspiration, land surface temperature

Procedia PDF Downloads 329
5374 Objects Tracking in Catadioptric Images Using Spherical Snake

Authors: Khald Anisse, Amina Radgui, Mohammed Rziza

Abstract:

Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.

Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection

Procedia PDF Downloads 402
5373 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization

Procedia PDF Downloads 133
5372 Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test

Authors: Han Xiao, Ruan Qi, Zhang Lei, Qi Yan

Abstract:

Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft.

Keywords: vacuum vessel, large opening, space environment simulator, structure design

Procedia PDF Downloads 535
5371 Predicting the Effect of Silicon Electrode Design Parameters on Thermal Performance of a Lithium-Ion Battery

Authors: Harika Dasari, Eric Eisenbraun

Abstract:

The present study models the role of electrode structural characteristics on the thermal behavior of lithium-ion batteries. Preliminary modeling runs have employed a 1D lithium-ion battery coupled to a two-dimensional axisymmetric model using silicon as the battery anode material. The two models are coupled by the heat generated and the average temperature. Our study is focused on the silicon anode particle sizes and it is observed that silicon anodes with nano-sized particles reduced the temperature of the battery in comparison to anodes with larger particles. These results are discussed in the context of the relationship between particle size and thermal transport properties in the electrode.

Keywords: particle size, NMC, silicon, heat generation, separator

Procedia PDF Downloads 290
5370 Jordan Curves in the Digital Plane with Respect to the Connectednesses given by Certain Adjacency Graphs

Authors: Josef Slapal

Abstract:

Digital images are approximations of real ones and, therefore, to be able to study them, we need the digital plane Z2 to be equipped with a convenient structure that behaves analogously to the Euclidean topology on the real plane. In particular, it is required that such a structure allows for a digital analogue of the Jordan curve theorem. We introduce certain adjacency graphs on the digital plane and prove digital Jordan curves for them thus showing that the graphs provide convenient structures on Z2 for the study and processing of digital images. Further convenient structures including the wellknown Khalimsky and Marcus-Wyse adjacency graphs may be obtained as quotients of the graphs introduced. Since digital Jordan curves represent borders of objects in digital images, the adjacency graphs discussed may be used as background structures on the digital plane for solving the problems of digital image processing that are closely related to borders like border detection, contour filling, pattern recognition, thinning, etc.

Keywords: digital plane, adjacency graph, Jordan curve, quotient adjacency

Procedia PDF Downloads 379