Search results for: sampling algorithms
4090 Prevalence and Factors Associated With Concurrent Use of Herbal Medicine and Anti-retroviral Therapy Among HIV/Aids Patients Attending Selected HIV Clinics in Wakiso District
Authors: Nanteza Rachel
Abstract:
Background: Worldwide, there were 36.7 million people living with Human Immunodeficiency Virus (HIV) in 2015, up from 35 million at the end of 2013. Wakiso district is one of the hotspots for the Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) infection in Uganda, with the prevalence of 8.1 %. Herbal medicine has gained popularity among Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) patients as adjuvant therapy to reduce the adverse effects of ART. Regardless of the subsidized and physical availability of the Anti-Retroviral Therapy (ART), majority of Africans living with Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndrome (AIDS) resort to adding to their ART traditional medicine. Result found out from a pilot observation made by the PI that indicate 13 out of 30 People Living with AIDS(PLWA) who are attending Human Immunodeficiency Virus (HIV) clinics in Wakiso district reported to be using herbal preparations despite the fact that they were taking Anti Retro Viral (ARVs) this prompted this study to be done. Purpose of the study: To determine the prevalence and factors associated with concurrent use of herbal medicine and anti-retroviral therapy among HIV/AIDS patients attending selected HIV clinics in Wakiso district. Methodology: This was a cross sectional study with both quantitative data collection (use of a questionnaire) and qualitative data collection (key informants’ interviews). A mixed method of sampling was used, that is, purposive and random sampling. Purposive sampling was based on the location in the district and used to select 7 health facilities basing on the 7 health sub districts from Wakiso. Simple random sampling was used to select one HIV clinic from each of the 7 health sub districts. Furthermore, the study units were enrolled in to the study as they entered into the HIV clinics, and 105 respondents were interviewed. Both manual and computer packages (SPSS) were used to analyze the data Results: The prevalence of concurrent use of herbal medicine and ART was 38 (36.2%). Commonly HIV symptom treated with herbs was fever 27(71.1%), diarrhea 3(7.9%) and cough 2(5.3%). Commonly used herbs for fever (Omululuza (Vernonica amydalina), Ekigagi (Aloe sp), Nalongo (Justicia betonica Linn) while for diarrhea was Ntwatwa. The side effects also included; too much pain, itchy pain of HIV, aneamia,felt sick, loss/gain appetite, joint pain and bad dreams. Herbs used to sooth the side effects were; for aneamia was avocado leaves Parea Americana mill The significant factors associated with concurrent use of herbal medicine were being familiar with herbs and conventional medicine for management HIV symptoms being expensive. The other significant factor was exhibiting hostility to patients by health personnel providing HIV care. Conclusion: Herbal medicine is widely used by clients in HIV/AIDS care. Patients being familiar with herbs and conventional medicine being expensive were associated with concurrent use of herbal medicine and ART. The exhibition of hostility to the HIV/AIDS patients by the health care providers was also associated with concurrent use of herbal medicine and ART among HIV/AIDS patients.Keywords: HIV patients, herbal medicine, antiretroviral therapy, factors associated
Procedia PDF Downloads 994089 Prevalence of Lupus Glomerulonephritis in Renal Biopsies in an Eastern Region of the Arab World
Authors: M. Fayez Al Homsi, Reem Al Homsi
Abstract:
Renal disease is a major cause of morbidity and mortality. Glomerular diseases make a small portion of the renal disease. Lupus glomerulonephritis (GN) is the commonest among the GN of systemic diseases. More than a hundred and eighty-eight consecutive renal biopsies are performed and evaluated for clinically suspected glomerular diseases over a period of two years. As in a standard practice after receiving the ultrasound-guided renal biopsies, the fresh biopsy is divided to three parts, one part is frozen for immunofluorescence evaluation, the second part is placed in 4% glutaraldehyde for electron microscopic evaluation, and the third part is placed in 10% buffered formalin for light microscopic evaluation. Primary glomerular diseases are detected in 83 biopsies; glomerulonephritis (GN) of systemic diseases are identified in 88, glomerular lesions in vascular diseases in 3, glomerular lesions in metabolic diseases in 7, hereditary nephropathies in 2, end-stage kidney in 2, and glomerular lesions in transplantation in 3 biopsies. Among the primary lesions, focal segmental glomerulosclerosis (28) and mesangial proliferative GN (26) were the most common. Lupus GN (67) and Ig A nephropathy (20) were the most common of the GN of systemic diseases. Lupus nephritis biopsies included one biopsy diagnosed as class 1 (normal), 17 biopsies class 2 (mesangial proliferation), 5 biopsies class 3 (focal proliferative GN), 39 biopsies class 4 diffuse proliferative GN), 3 biopsies class 5 (membranous GN), and 2 biopsies class 6 (crescentic GN). Lupus GN is the most common among GN of systemic diseases. While diabetes is very common here, diabetic GN (3 biopsies) is not as common as might one expects. Most likely this is due to sampling and reluctance on part of nephrologists and patients in sampling the kidney in diabetes mellitus.Keywords: diabetes, glomerulonephritis, lupus, mesangial proliferation, nephropathy
Procedia PDF Downloads 1324088 Impact of Extension Services Pastoralists’ Vulnerability to Climate Change in Northern Guinea Savannah of Nigeria
Authors: Sidiqat A. Aderinoye-Abdulwahab, Lateef L. Adefalu, Jubril O. Animashaun
Abstract:
Pastoralists in Nigeria are situated in dry regions - where water and pasture for livestock are particularly scarce, as well as areas with poor availability of social amenities and infrastructure. This study therefore explored how extension service could be used to reduce the exposure of nomads to effects of seasonality, climate change, and the poor environmental conditions. The study was carried out in Northern guinea Savannah region of Nigeria because pastoralists have settled there in large numbers due to desertification and low rainfall in the arid regions. A multi-stage sampling procedure was used to arrive at the selection of two states (Kwara and Nassarawa) in the region. A total of 63 respondents were randomly chosen using simple random sampling. Focus group discussions and questionnaire were used to gather information while the data was analysed using content analysis. The facilities required by the sampled households are milking machine, cheese making machine, and preservatives to increase the shelf life of cheese. Whilst, the extension service required are demonstration on cheese making, training and seminars on animal husbandry. Additionally, livestock of pastoralists often encroach on farmers’ plots which usually result in pastoralist-farmer conflicts. The study thus recommends diversification of economic activity from livestock to non-livestock related activities as well as creation of grazing routes to reduce pastoralist/farmer conflict.Keywords: arid region, coping strategies, livestock, livelihood
Procedia PDF Downloads 3944087 Clubhouse: A Minor Rebellion against the Algorithmic Tyranny of the Majority
Authors: Vahid Asadzadeh, Amin Ataee
Abstract:
Since the advent of social media, there has been a wave of optimism among researchers and civic activists about the influence of virtual networks on the democratization process, which has gradually waned. One of the lesser-known concerns is how to increase the possibility of hearing the voices of different minorities. According to the theory of media logic, the media, using their technological capabilities, act as a structure through which events and ideas are interpreted. Social media, through the use of the learning machine and the use of algorithms, has formed a kind of structure in which the voices of minorities and less popular topics are lost among the commotion of the trends. In fact, the recommended systems and algorithms used in social media are designed to help promote trends and make popular content more popular, and content that belongs to minorities is constantly marginalized. As social networks gradually play a more active role in politics, the possibility of freely participating in the reproduction and reinterpretation of structures in general and political structures in particular (as Laclau and Mouffe had in mind) can be considered as criteria to democracy in action. The point is that the media logic of virtual networks is shaped by the rule and even the tyranny of the majority, and this logic does not make it possible to design a self-foundation and self-revolutionary model of democracy. In other words, today's social networks, though seemingly full of variety But they are governed by the logic of homogeneity, and they do not have the possibility of multiplicity as is the case in immanent radical democracies (influenced by Gilles Deleuze). However, with the emergence and increasing popularity of Clubhouse as a new social media, there seems to be a shift in the social media space, and that is the diminishing role of algorithms and systems reconditioners as content delivery interfaces. This has led to the fact that in the Clubhouse, the voices of minorities are better heard, and the diversity of political tendencies manifests itself better. The purpose of this article is to show, first, how social networks serve the elimination of minorities in general, and second, to argue that the media logic of social networks must adapt to new interpretations of democracy that give more space to minorities and human rights. Finally, this article will show how the Clubhouse serves the new interpretations of democracy at least in a minimal way. To achieve the mentioned goals, in this article by a descriptive-analytical method, first, the relation between media logic and postmodern democracy will be inquired. The political economy popularity in social media and its conflict with democracy will be discussed. Finally, it will be explored how the Clubhouse provides a new horizon for the concepts embodied in radical democracy, a horizon that more effectively serves the rights of minorities and human rights in general.Keywords: algorithmic tyranny, Clubhouse, minority rights, radical democracy, social media
Procedia PDF Downloads 1474086 Microplastics in the Seine River Catchment: Results and Lessons from a Pluriannual Research Programme
Authors: Bruno Tassin, Robin Treilles, Cleo Stratmann, Minh Trang Nguyen, Sam Azimi, Vincent Rocher, Rachid Dris, Johnny Gasperi
Abstract:
Microplastics (<5mm) in the environment and in hydro systems is one of the major present environmental issues. Over the last five years a research programme was conducted in order to assess the behavior of microplastics in the Seine river catchment, in a Man-Land-Sea continuum approach. Results show that microplastic concentration varies at the seasonal scale, but also at much smaller scales, during flood events and with tides in the estuary for instance. Moreover, microplastic sampling and characterization issues emerged throughout this work. The Seine river is a 750km long river flowing in Northwestern France. It crosses the Paris megacity (12 millions inhabitants) and reaches the English Channel after a 170 km long estuary. This site is a very relevant one to assess the effect of anthropogenic pollution as the mean river flow is low (mean flow around 350m³/s) while the human presence and activities are very intense. Monthly monitoring of the microplastic concentration took place over a 19-month period and showed significant temporal variations at all sampling stations but no significant upstream-downstream increase, indicating a possible major sink to the sediment. At the scale of a major flood event (winter and spring 2018), microplastic concentration shows an evolution similar to the well-known suspended solids concentration, with an increase during the increase of the flow and a decrease during the decrease of the flow. Assessing the position of the concentration peak in relation to the flow peak was unfortunately impossible. In the estuary, concentrations vary with time in connection with tides movements and in the water column in relation to the salinity and the turbidity. Although major gains of knowledge on the microplastic dynamics in the Seine river have been obtained over the last years, major gaps remain to deal mostly with the interaction with the dynamics of the suspended solids, the selling processes in the water column and the resuspension by navigation or shear stress increase. Moreover, the development of efficient chemical characterization techniques during the 5 year period of this pluriannual research programme led to the improvement of the sampling techniques in order to access smaller microplastics (>10µm) as well as larger but rare ones (>500µm).Keywords: microplastics, Paris megacity, seine river, suspended solids
Procedia PDF Downloads 1994085 A Standard Operating Procedure (SOP) for Forensic Soil Analysis: Tested Using a Simulated Crime Scene
Authors: Samara A. Testoni, Vander F. Melo, Lorna A. Dawson, Fabio A. S. Salvador
Abstract:
Soil traces are useful as forensic evidence due to their potential to transfer and adhere to different types of surfaces on a range of objects or persons. The great variability expressed by soil physical, chemical, biological and mineralogical properties show soil traces as complex mixtures. Soils are continuous and variable, no two soil samples being indistinguishable, nevertheless, the complexity of soil characteristics can provide powerful evidence for comparative forensic purposes. This work aimed to establish a Standard Operating Procedure (SOP) for forensic soil analysis in Brazil. We carried out a simulated crime scene with double blind sampling to calibrate the sampling procedures. Samples were collected at a range of locations covering a range of soil types found in South of Brazil: Santa Candida and Boa Vista, neighbourhoods from Curitiba (State of Parana) and in Guarani and Guaraituba, neighbourhoods from Colombo (Curitiba Metropolitan Region). A previously validated sequential analyses of chemical, physical and mineralogical analyses was developed in around 2 g of soil. The suggested SOP and the sequential range of analyses were effective in grouping the samples from the same place and from the same parent material together, as well as successfully discriminated samples from different locations and originated from different rocks. In addition, modifications to the sample treatment and analytical protocol can be made depending on the context of the forensic work.Keywords: clay mineralogy, forensic soils analysis, sequential analyses, kaolinite, gibbsite
Procedia PDF Downloads 2554084 Harnessing the Power of Artificial Intelligence: Advancements and Ethical Considerations in Psychological and Behavioral Sciences
Authors: Nayer Mofidtabatabaei
Abstract:
Advancements in artificial intelligence (AI) have transformed various fields, including psychology and behavioral sciences. This paper explores the diverse ways in which AI is applied to enhance research, diagnosis, therapy, and understanding of human behavior and mental health. We discuss the potential benefits and challenges associated with AI in these fields, emphasizing the ethical considerations and the need for collaboration between AI researchers and psychological and behavioral science experts. Artificial Intelligence (AI) has gained prominence in recent years, revolutionizing multiple industries, including healthcare, finance, and entertainment. One area where AI holds significant promise is the field of psychology and behavioral sciences. AI applications in this domain range from improving the accuracy of diagnosis and treatment to understanding complex human behavior patterns. This paper aims to provide an overview of the various AI applications in psychological and behavioral sciences, highlighting their potential impact, challenges, and ethical considerations. Mental Health Diagnosis AI-driven tools, such as natural language processing and sentiment analysis, can analyze large datasets of text and speech to detect signs of mental health issues. For example, chatbots and virtual therapists can provide initial assessments and support to individuals suffering from anxiety or depression. Autism Spectrum Disorder (ASD) Diagnosis AI algorithms can assist in early ASD diagnosis by analyzing video and audio recordings of children's behavior. These tools help identify subtle behavioral markers, enabling earlier intervention and treatment. Personalized Therapy AI-based therapy platforms use personalized algorithms to adapt therapeutic interventions based on an individual's progress and needs. These platforms can provide continuous support and resources for patients, making therapy more accessible and effective. Virtual Reality Therapy Virtual reality (VR) combined with AI can create immersive therapeutic environments for treating phobias, PTSD, and social anxiety. AI algorithms can adapt VR scenarios in real-time to suit the patient's progress and comfort level. Data Analysis AI aids researchers in processing vast amounts of data, including survey responses, brain imaging, and genetic information. Privacy Concerns Collecting and analyzing personal data for AI applications in psychology and behavioral sciences raise significant privacy concerns. Researchers must ensure the ethical use and protection of sensitive information. Bias and Fairness AI algorithms can inherit biases present in training data, potentially leading to biased assessments or recommendations. Efforts to mitigate bias and ensure fairness in AI applications are crucial. Transparency and Accountability AI-driven decisions in psychology and behavioral sciences should be transparent and subject to accountability. Patients and practitioners should understand how AI algorithms operate and make decisions. AI applications in psychological and behavioral sciences have the potential to transform the field by enhancing diagnosis, therapy, and research. However, these advancements come with ethical challenges that require careful consideration. Collaboration between AI researchers and psychological and behavioral science experts is essential to harness AI's full potential while upholding ethical standards and privacy protections. The future of AI in psychology and behavioral sciences holds great promise, but it must be navigated with caution and responsibility.Keywords: artificial intelligence, psychological sciences, behavioral sciences, diagnosis and therapy, ethical considerations
Procedia PDF Downloads 734083 The Fantasy of the Media and the Sexual World of Adolescents: The Relationship between Viewing Sexual Content on Television and Sexual Behaviour of Adolescents
Authors: Ifeanyi Adigwe
Abstract:
The influence of television on adolescents is prevalent and widespread because television is a powerful sex educator for adolescents. This study examined the relationship between viewing sexual content on television and sexual behaviour of adolescents in public senior secondary schools in Lagos, Nigeria. The study employed a survey research design with a structured questionnaire as instrument. The multi-stage sampling technique was adopted. Firstly, purposive sampling was adopted in selecting 3 educational districts namely: Agege, Maryland, and Agboju. These educational districts were chosen for convenience and its wide coverage area of public senior secondary schools in Lagos State. Secondly, the researcher adopted systematic sampling to select the schools. The schools were listed in alphabetical order in each district and every 10th school were selected, yielding 13 schools altogether. A total of 501 copies of questionnaire were administered to the students and a total 491 copies of the questionnaire were retrieved. Only 453 copies of the questionnaire met the inclusion criteria and were used for analysis. Data were analyzed using descriptive statistics, Pearson Correlation, Principal components analysis, and regression analysis. Results of correlation analysis showed a positive and significant relationship between adolescent sexual belief and their preference for sexual content in television (r =0.117, N =453, p=0.13), viewing sexual content on television and adolescent sexual behavior, (r =-0.112, N =453, p<0.05), adolescent television preference and their preference for sexual content in television (r =0.328, N =453, p<0.05), adolescent television preference and adolescent’s sexual behavior (r=0.093, N =453, p<0.05). However, a negative but significant relationship exists between adolescent’s sexual knowledge and their sexual behavior (r=-122, N=453, p=0.0009). Pearson’s correlation between adolescents’ sexual knowledge and sexual behavior shows that there is a positive significant but strong relationship between adolescent’s sexual knowledge and their sexual behavior (r=0.967, N=453, p<0.05). The results also show that adolescent’s preference for sexual content in television informs them about their sexuality, development and sexual health. The descriptive and inferential analysis of data revealed that the interaction among adolescent sexual belief, knowledge and adolescents’ preference of sexual in television and its resultant effect on adolescent sexual behavior is apparent because sexual belief and norms about sex of an adolescent can induce his television preference of sexual content on television. The study concludes that exposure to sexual content in television can impact on adolescent sexual behaviour. There is no doubt that the actual outcome of television viewing and adolescent sexual behavior remains controversial because adolescent sexual behavior is multifaceted and multi-dimensional. Since behavior is learned overtime, the frequency of exposure and nature of sexual content viewed overtime induces and hastens sexual activity.Keywords: adolescent sexual behavior, Nigeria, sexual belief, sexual content, sexual knowledge, television preference
Procedia PDF Downloads 3954082 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 1344081 Spatial Variation of Nitrogen, Phosphorus and Potassium Contents of Tomato (Solanum lycopersicum L.) Plants Grown in Greenhouses (Springs) in Elmali-Antalya Region
Authors: Namik Kemal Sonmez, Sahriye Sonmez, Hasan Rasit Turkkan, Hatice Tuba Selcuk
Abstract:
In this study, the spatial variation of plant and soil nutrition contents of tomato plants grown in greenhouses was investigated in Elmalı region of Antalya. For this purpose, total of 19 sampling points were determined. Coordinates of each sampling points were recorded by using a hand-held GPS device and were transferred to satellite data in GIS. Soil samples were collected from two different depths, 0-20 and 20-40 cm, and leaf were taken from different tomato greenhouses. The soil and plant samples were analyzed for N, P and K. Then, attribute tables were created with the analyses results by using GIS. Data were analyzed and semivariogram models and parameters (nugget, sill and range) of variables were determined by using GIS software. Kriged maps of variables were created by using nugget, sill and range values with geostatistical extension of ArcGIS software. Kriged maps of the N, P and K contents of plant and soil samples showed patchy or a relatively smooth distribution in the study areas. As a result, the N content of plants were sufficient approximately 66% portion of the tomato productions. It was determined that the P and K contents were sufficient of 70% and 80% portion of the areas, respectively. On the other hand, soil total K contents were generally adequate and available N and P contents were found to be highly good enough in two depths (0-20 and 20-40 cm) 90% portion of the areas.Keywords: Elmali, nutrients, springs greenhouses, spatial variation, tomato
Procedia PDF Downloads 2434080 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: clusterization and classification algorithms, integrated planning, mathematical modeling, optimization, penalty minimization
Procedia PDF Downloads 1244079 From Responses of Macroinvertebrate Metrics to the Definition of Reference Thresholds
Authors: Hounyèmè Romuald, Mama Daouda, Argillier Christine
Abstract:
The present study focused on the use of benthic macrofauna to define the reference state of an anthropized lagoon (Nokoué-Benin) from the responses of relevant metrics to proxies. The approach used is a combination of a joint species distribution model and Bayesian networks. The joint species distribution model was used to select the relevant metrics and generate posterior probabilities that were then converted into posterior response probabilities for each of the quality classes (pressure levels), which will constitute the conditional probability tables allowing the establishment of the probabilistic graph representing the different causal relationships between metrics and pressure proxies. For the definition of the reference thresholds, the predicted responses for low-pressure levels were read via probability density diagrams. Observations collected during high and low water periods spanning 03 consecutive years (2004-2006), sampling 33 macroinvertebrate taxa present at all seasons and sampling points, and measurements of 14 environmental parameters were used as application data. The study demonstrated reliable inferences, selection of 07 relevant metrics and definition of quality thresholds for each environmental parameter. The relevance of the metrics as well as the reference thresholds for ecological assessment despite the small sample size, suggests the potential for wider applicability of the approach for aquatic ecosystem monitoring and assessment programs in developing countries generally characterized by a lack of monitoring data.Keywords: pressure proxies, bayesian inference, bioindicators, acadjas, functional traits
Procedia PDF Downloads 844078 Peril´s Environment of Energetic Infrastructure Complex System, Modelling by the Crisis Situation Algorithms
Authors: Jiří F. Urbánek, Alena Oulehlová, Hana Malachová, Jiří J. Urbánek Jr.
Abstract:
Crisis situations investigation and modelling are introduced and made within the complex system of energetic critical infrastructure, operating on peril´s environments. Every crisis situations and perils has an origin in the emergency/ crisis event occurrence and they need critical/ crisis interfaces assessment. Here, the emergency events can be expected - then crisis scenarios can be pre-prepared by pertinent organizational crisis management authorities towards their coping; or it may be unexpected - without pre-prepared scenario of event. But the both need operational coping by means of crisis management as well. The operation, forms, characteristics, behaviour and utilization of crisis management have various qualities, depending on real critical infrastructure organization perils, and prevention training processes. An aim is always - better security and continuity of the organization, which successful obtainment needs to find and investigate critical/ crisis zones and functions in critical infrastructure organization models, operating in pertinent perils environment. Our DYVELOP (Dynamic Vector Logistics of Processes) method is disposables for it. Here, it is necessary to derive and create identification algorithm of critical/ crisis interfaces. The locations of critical/ crisis interfaces are the flags of crisis situation in organization of critical infrastructure models. Then, the model of crisis situation will be displayed at real organization of Czech energetic crisis infrastructure subject in real peril environment. These efficient measures are necessary for the infrastructure protection. They will be derived for peril mitigation, crisis situation coping and for environmentally friendly organization survival, continuity and its sustainable development advanced possibilities.Keywords: algorithms, energetic infrastructure complex system, modelling, peril´s environment
Procedia PDF Downloads 4034077 Retrospective Analysis Demonstrates No Difference in Percutaneous Native Renal Biopsy Adequacy Between Nephrologists and Radiologists in University Hospital Crosshouse
Authors: Nicole Harley, Mahmoud Eid, Abdurahman Tarmal, Vishal Dey
Abstract:
Histological sampling plays an integral role in the diagnostic process of renal diseases. Percutaneous native renal biopsy is typically performed under ultrasound guidance, with this service usually being provided by nephrologists. In some centers, there is a role for radiologists in performing renal biopsies. Previous comparative studies have demonstrated non-inferiority between outcomes of percutaneous native renal biopsies performed by nephrologists compared with radiologists. We sought to compare biopsy adequacy between nephrologists and radiologists in University Hospital Crosshouse. The online system SERPR (Scottish Electronic Renal Patient Record) contains information pertaining to patients who have undergone renal biopsies. An online search was performed to acquire a list of all patients who underwent renal biopsy between 2013 and 2020 in University Hospital Crosshouse. 355 native renal biopsies were performed in total across this 7-year period. A retrospective analysis was performed on these cases, with records and reports being assessed for: the total number of glomeruli obtained per biopsy, whether the number of glomeruli obtained was adequate for diagnosis, as per an internationally agreed standard, and whether a histological diagnosis was achieved. Nephrologists performed 43.9% of native renal biopsies (n=156) and radiologists performed 56.1% (n=199). The mean number of glomeruli obtained by nephrologists was 17.16+/-10.31. The mean number of glomeruli obtained by radiologists was 18.38+/-10.55. T-test demonstrated no statistically significant difference between specialties comparatively (p-value 0.277). Native renal biopsies are required to obtain at least 8 glomeruli to be diagnostic as per internationally agreed criteria. Nephrologists met these criteria in 88.5% of native renal biopsies (n=138) and radiologists met this criteria in 89.5% (n=178). T-test and Chi-squared analysis demonstrate there was no statistically significant difference between the specialties comparatively (p-value 0.663 and 0.922, respectively). Biopsies performed by nephrologists yielded tissue that was diagnostic in 91.0% (n=142) of sampling. Biopsies performed by radiologists yielded tissue that was diagnostic in 92.4% (n=184) of sampling. T-test and Chi-squared analysis demonstrate there was no statistically significant difference between the specialties comparatively (p-value 0.625 and 0.889, respectively). This project demonstrates that at University Hospital Crosshouse, there is no statistical difference between radiologists and nephrologists in terms of glomeruli acquisition or samples achieving a histological diagnosis. Given the non-inferiority between specialties demonstrated by previous studies and this project, this evidence could support the restructuring of services to allow more renal biopsies to be performed by renal services and allow reallocation of radiology department resources.Keywords: biopsy, medical imaging, nephrology, radiology
Procedia PDF Downloads 844076 Finding a Set of Long Common Substrings with Repeats from m Input Strings
Authors: Tiantian Li, Lusheng Wang, Zhaohui Zhan, Daming Zhu
Abstract:
In this paper, we propose two string problems, and study algorithms and complexity of various versions for those problems. Let S = {s₁, s₂, . . . , sₘ} be a set of m strings. A common substring of S is a substring appearing in every string in S. Given a set of m strings S = {s₁, s₂, . . . , sₘ} and a positive integer k, we want to find a set C of k common substrings of S such that the k common substrings in C appear in the same order and have no overlap among the m input strings in S, and the total length of the k common substring in C is maximized. This problem is referred to as the longest total length of k common substrings from m input strings (LCSS(k, m) for short). The other problem we study here is called the longest total length of a set of common substrings with length more than l from m input string (LSCSS(l, m) for short). Given a set of m strings S = {s₁, s₂, . . . , sₘ} and a positive integer l, for LSCSS(l, m), we want to find a set of common substrings of S, each is of length more than l, such that the total length of all the common substrings is maximized. We show that both problems are NP-hard when k and m are variables. We propose dynamic programming algorithms with time complexity O(k n₁n₂) and O(n₁n₂) to solve LCSS(k, 2) and LSCSS(l, 2), respectively, where n1 and n₂ are the lengths of the two input strings. We then design an algorithm for LSCSS(l, m) when every length > l common substring appears once in each of the m − 1 input strings. The running time is O(n₁²m), where n1 is the length of the input string with no restriction on length > l common substrings. Finally, we propose a fixed parameter algorithm for LSCSS(l, m), where each length > l common substring appears m − 1 + c times among the m − 1 input strings (other than s1). In other words, each length > l common substring may repeatedly appear at most c times among the m − 1 input strings {s₂, s₃, . . . , sₘ}. The running time of the proposed algorithm is O((n12ᶜ)²m), where n₁ is the input string with no restriction on repeats. The LSCSS(l, m) is proposed to handle whole chromosome sequence alignment for different strains of the same species, where more than 98% of letters in core regions are identical.Keywords: dynamic programming, algorithm, common substrings, string
Procedia PDF Downloads 224075 Numerical Iteration Method to Find New Formulas for Nonlinear Equations
Authors: Kholod Mohammad Abualnaja
Abstract:
A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient.Keywords: variational iteration method, nonlinear equations, Lagrange multiplier, algorithms
Procedia PDF Downloads 5454074 Development of Academic Software for Medial Axis Determination of Porous Media from High-Resolution X-Ray Microtomography Data
Authors: S. Jurado, E. Pazmino
Abstract:
Determination of the medial axis of a porous media sample is a non-trivial problem of interest for several disciplines, e.g., hydrology, fluid dynamics, contaminant transport, filtration, oil extraction, etc. However, the computational tools available for researchers are limited and restricted. The primary aim of this work was to develop a series of algorithms to extract porosity, medial axis structure, and pore-throat size distributions from porous media domains. A complementary objective was to provide the algorithms as free computational software available to the academic community comprising researchers and students interested in 3D data processing. The burn algorithm was tested on porous media data obtained from High-Resolution X-Ray Microtomography (HRXMT) and idealized computer-generated domains. The real data and idealized domains were discretized in voxels domains of 550³ elements and binarized to denote solid and void regions to determine porosity. Subsequently, the algorithm identifies the layer of void voxels next to the solid boundaries. An iterative process removes or 'burns' void voxels in sequence of layer by layer until all the void space is characterized. Multiples strategies were tested to optimize the execution time and use of computer memory, i.e., segmentation of the overall domain in subdomains, vectorization of operations, and extraction of single burn layer data during the iterative process. The medial axis determination was conducted identifying regions where burnt layers collide. The final medial axis structure was refined to avoid concave-grain effects and utilized to determine the pore throat size distribution. A graphic user interface software was developed to encompass all these algorithms, including the generation of idealized porous media domains. The software allows input of HRXMT data to calculate porosity, medial axis, and pore-throat size distribution and provide output in tabular and graphical formats. Preliminary tests of the software developed during this study achieved medial axis, pore-throat size distribution and porosity determination of 100³, 320³ and 550³ voxel porous media domains in 2, 22, and 45 minutes, respectively in a personal computer (Intel i7 processor, 16Gb RAM). These results indicate that the software is a practical and accessible tool in postprocessing HRXMT data for the academic community.Keywords: medial axis, pore-throat distribution, porosity, porous media
Procedia PDF Downloads 1164073 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.Keywords: cross-validation, importance sampling, information criteria, predictive accuracy
Procedia PDF Downloads 3934072 Study of a Few Additional Posterior Projection Data to 180° Acquisition for Myocardial SPECT
Authors: Yasuyuki Takahashi, Hirotaka Shimada, Takao Kanzaki
Abstract:
A Dual-detector SPECT system is widely by use of myocardial SPECT studies. With 180-degree (180°) acquisition, reconstructed images are distorted in the posterior wall of myocardium due to the lack of sufficient data of posterior projection. We hypothesized that quality of myocardial SPECT images can be improved by the addition of data acquisition of only a few posterior projections to ordinary 180° acquisition. The proposed acquisition method (180° plus acquisition methods) uses the dual-detector SPECT system with a pair of detector arranged in 90° perpendicular. Sampling angle was 5°, and the acquisition range was 180° from 45° right anterior oblique to 45° left posterior oblique. After the acquisition of 180°, the detector moved to additional acquisition position of reverse side once for 2 projections, twice for 4 projections, or 3 times for 6 projections. Since these acquisition methods cannot be done in the present system, actual data acquisition was done by 360° with a sampling angle of 5°, and projection data corresponding to above acquisition position were extracted for reconstruction. We underwent the phantom studies and a clinical study. SPECT images were compared by profile curve analysis and also quantitatively by contrast ratio. The distortion was improved by 180° plus method. Profile curve analysis showed increased of cardiac cavity. Analysis with contrast ratio revealed that SPECT images of the phantoms and the clinical study were improved from 180° acquisition by the present methods. The difference in the contrast was not clearly recognized between 180° plus 2 projections, 180° plus 4 projections, and 180° plus 6 projections. 180° plus 2 projections method may be feasible for myocardial SPECT because distortion of the image and the contrast were improved.Keywords: 180° plus acquisition method, a few posterior projections, dual-detector SPECT system, myocardial SPECT
Procedia PDF Downloads 2964071 A Graph Library Development Based on the Service-Oriented Architecture: Used for Representation of the Biological Systems in the Computer Algorithms
Authors: Mehrshad Khosraviani, Sepehr Najjarpour
Abstract:
Considering the usage of graph-based approaches in systems and synthetic biology, and the various types of the graphs employed by them, a comprehensive graph library based on the three-tier architecture (3TA) was previously introduced for full representation of the biological systems. Although proposing a 3TA-based graph library, three following reasons motivated us to redesign the graph library based on the service-oriented architecture (SOA): (1) Maintaining the accuracy of the data related to an input graph (including its edges, its vertices, its topology, etc.) without involving the end user: Since, in the case of using 3TA, the library files are available to the end users, they may be utilized incorrectly, and consequently, the invalid graph data will be provided to the computer algorithms. However, considering the usage of the SOA, the operation of the graph registration is specified as a service by encapsulation of the library files. In other words, overall control operations needed for registration of the valid data will be the responsibility of the services. (2) Partitioning of the library product into some different parts: Considering 3TA, a whole library product was provided in general. While here, the product can be divided into smaller ones, such as an AND/OR graph drawing service, and each one can be provided individually. As a result, the end user will be able to select any parts of the library product, instead of all features, to add it to a project. (3) Reduction of the complexities: While using 3TA, several other libraries must be needed to add for connecting to the database, responsibility of the provision of the needed library resources in the SOA-based graph library is entrusted with the services by themselves. Therefore, the end user who wants to use the graph library is not involved with its complexity. In the end, in order to make the library easier to control in the system, and to restrict the end user from accessing the files, it was preferred to use the service-oriented architecture (SOA) over the three-tier architecture (3TA) and to redevelop the previously proposed graph library based on it.Keywords: Bio-Design Automation, Biological System, Graph Library, Service-Oriented Architecture, Systems and Synthetic Biology
Procedia PDF Downloads 3114070 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes
Authors: Stefan Papastefanou
Abstract:
Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability
Procedia PDF Downloads 1094069 Investigating the Effect of Brand Equity on Competitive Advantage in the Banking Industry
Authors: Rohollah Asadian Kohestani, Nazanin Sedghi
Abstract:
As the number of banks and financial institutions working in Iran has been significantly increased, the attracting and retaining customers and encouraging them to continually use the modern banking services have been important and vital issues. Therefore, there would be a serious competition without a deep perception of consumers and fitness of banking services with their needs in the current economic conditions of Iran. It should be noted that concepts such as 'brand equity' is defined based on the view of consumers; however, it is also focused by shareholders, competitors and other beneficiaries of a firm in addition to bank and its consumers. This study examines the impact of brand equity on the competitive advantage in the banking industry as intensive competition between brands of different banks leads to pay more attention to the brands. This research is based on the Aaker’s model examining the impact of four dimensions of brand equity on the competitive advantage of private banks in Behshahr city. Moreover, conducting an applied research and data analysis has been carried out by a descriptive method. Data collection was done using literature review and questionnaire. A 'simple random' methodology was selected for sampling staff of banks while sampling methodology to select consumers of banks was the distribution of questionnaire between staff and consumers of five private banks including Tejarat, Mellat, Refah K., Ghavamin and, Tose’e Ta’avon banks. Results show that there is a significant relationship between brand equity and their competitive advantage. In this research, software of SPSS 16 and LISREL 8.5, as well as different methods of descriptive inferential statistics for analyzing data and test hypotheses, were employed.Keywords: brand awareness, brand loyalty, brand equity, competitive advantage
Procedia PDF Downloads 1414068 Structure of the Working Time of Nurses in Emergency Departments in Polish Hospitals
Authors: Jadwiga Klukow, Anna Ksykiewicz-Dorota
Abstract:
An analysis of the distribution of nurses’ working time constitutes vital information for the management in planning employment. The objective of the study was to analyze the distribution of nurses’ working time in an emergency department. The study was conducted in an emergency department of a teaching hospital in Lublin, in Southeast Poland. The catalogue of activities performed by nurses was compiled by means of continuous observation. Identified activities were classified into four groups: Direct care, indirect care, coordination of work in the department and personal activities. Distribution of nurses’ working time was determined by work sampling observation (Tippett) at random intervals. The research project was approved by the Research Ethics Committee by the Medical University of Lublin (Protocol 0254/113/2010). On average, nurses spent 31% of their working time on direct care, 47% on indirect care, 12% on coordinating work in the department and 10% on personal activities. The most frequently performed direct care tasks were diagnostic activities – 29.23% and treatment-related activities – 27.69%. The study has provided information on the complexity of performed activities and utilization of nurses’ working time. Enhancing the effectiveness of nursing actions requires working out a strategy for improved management of the time nurses spent at work. Increasing the involvement of auxiliary staff and optimizing communication processes within the team may lead to reduction of the time devoted to indirect care for the benefit of direct care.Keywords: emergency nurses, nursing care, workload, work sampling
Procedia PDF Downloads 3354067 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 394066 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 2754065 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome
Authors: Agada N. Ihuoma, Nagata Yasunori
Abstract:
Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.Keywords: artificial Intelligence, backward elimination, linear regression, solar energy
Procedia PDF Downloads 1584064 Multiscale Hub: An Open-Source Framework for Practical Atomistic-To-Continuum Coupling
Authors: Masoud Safdari, Jacob Fish
Abstract:
Despite vast amount of existing theoretical knowledge, the implementation of a universal multiscale modeling, analysis, and simulation software framework remains challenging. Existing multiscale software and solutions are often domain-specific, closed-source and mandate a high-level of experience and skills in both multiscale analysis and programming. Furthermore, tools currently existing for Atomistic-to-Continuum (AtC) multiscaling are developed with the assumptions such as accessibility of high-performance computing facilities to the users. These issues mentioned plus many other challenges have reduced the adoption of multiscale in academia and especially industry. In the current work, we introduce Multiscale Hub (MsHub), an effort towards making AtC more accessible through cloud services. As a joint effort between academia and industry, MsHub provides a universal web-enabled framework for practical multiscaling. Developed on top of universally acclaimed scientific programming language Python, the package currently provides an open-source, comprehensive, easy-to-use framework for AtC coupling. MsHub offers an easy to use interface to prominent molecular dynamics and multiphysics continuum mechanics packages such as LAMMPS and MFEM (a free, lightweight, scalable C++ library for finite element methods). In this work, we first report on the design philosophy of MsHub, challenges identified and issues faced regarding its implementation. MsHub takes the advantage of a comprehensive set of tools and algorithms developed for AtC that can be used for a variety of governing physics. We then briefly report key AtC algorithms implemented in MsHub. Finally, we conclude with a few examples illustrating the capabilities of the package and its future directions.Keywords: atomistic, continuum, coupling, multiscale
Procedia PDF Downloads 1774063 Personality Across Different Castes: A Quantitative Study of Three Castes
Authors: Huma Aly, Caramel Rodger, Saman Zafar
Abstract:
The present study explored the role of caste system in determining and understanding various personality characteristics related to different castes. It analyzed various personality characteristics of Arains, Jutts and Sheikhs caste of Pakistan. Reasons for the emphasis on within caste marriage in relation to personality characteristics were identified. In the present study a sample of 200 unmarried students were taken from different institutes of Lahore, Pakistan. 117 students were taken from Fast University and 83 from LUMS (Lahore University of Management and Sciences) on the basis of purposive and convenience sampling. 76 Arains, 59 Sheikhs and 65 Jutts were taken. Non-probability purposive sampling, quantitative research method, big five personality scale were used. Kruskal Wallis test was used as three independent groups were taken in the study. Results revealed various personality characteristics associated with different castes namely Arain, Jutts and Sheikhs. Individuals belonging to Jutts caste were reported to be high on being talkative, findings faults, doing thorough job, being depressed, reservedness, quarrelling, reliable, tensed, deep thinker, worrying a lot, imaginative, lazy, inventive, assertive, cold aloof, preserved and rude. Arains were reported to be original, helpful, careless,relaxed, curious, enthusiastic, forgiving, quiet, trusting, moody, shy, retaining anger, routinely working, planners, nervous, playing with ideas, artistic, cooperative, easily distracted and sophisticated. Lastly, Sheikhs were reported to be energetic, disorganized, stable. This study will play a significant part in changing the traditional viewpoint of majority of elders of our society who still have immense association with the caste they belong to.Keywords: castes, personality, Arains, Jutts, Sheikhs, Pakistan
Procedia PDF Downloads 2644062 Artificial Law: Legal AI Systems and the Need to Satisfy Principles of Justice, Equality and the Protection of Human Rights
Authors: Begum Koru, Isik Aybay, Demet Celik Ulusoy
Abstract:
The discipline of law is quite complex and has its own terminology. Apart from written legal rules, there is also living law, which refers to legal practice. Basic legal rules aim at the happiness of individuals in social life and have different characteristics in different branches such as public or private law. On the other hand, law is a national phenomenon. The law of one nation and the legal system applied on the territory of another nation may be completely different. People who are experts in a particular field of law in one country may have insufficient expertise in the law of another country. Today, in addition to the local nature of law, international and even supranational law rules are applied in order to protect basic human values and ensure the protection of human rights around the world. Systems that offer algorithmic solutions to legal problems using artificial intelligence (AI) tools will perhaps serve to produce very meaningful results in terms of human rights. However, algorithms to be used should not be developed by only computer experts, but also need the contribution of people who are familiar with law, values, judicial decisions, and even the social and political culture of the society to which it will provide solutions. Otherwise, even if the algorithm works perfectly, it may not be compatible with the values of the society in which it is applied. The latest developments involving the use of AI techniques in legal systems indicate that artificial law will emerge as a new field in the discipline of law. More AI systems are already being applied in the field of law, with examples such as predicting judicial decisions, text summarization, decision support systems, and classification of documents. Algorithms for legal systems employing AI tools, especially in the field of prediction of judicial decisions and decision support systems, have the capacity to create automatic decisions instead of judges. When the judge is removed from this equation, artificial intelligence-made law created by an intelligent algorithm on its own emerges, whether the domain is national or international law. In this work, the aim is to make a general analysis of this new topic. Such an analysis needs both a literature survey and a perspective from computer experts' and lawyers' point of view. In some societies, the use of prediction or decision support systems may be useful to integrate international human rights safeguards. In this case, artificial law can serve to produce more comprehensive and human rights-protective results than written or living law. In non-democratic countries, it may even be thought that direct decisions and artificial intelligence-made law would be more protective instead of a decision "support" system. Since the values of law are directed towards "human happiness or well-being", it requires that the AI algorithms should always be capable of serving this purpose and based on the rule of law, the principle of justice and equality, and the protection of human rights.Keywords: AI and law, artificial law, protection of human rights, AI tools for legal systems
Procedia PDF Downloads 764061 Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century
Authors: Stephen L. Roberts
Abstract:
This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance.Keywords: algorithms, global health, pandemic, surveillance
Procedia PDF Downloads 187