Search results for: results validation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37864

Search results for: results validation

36964 Early Melt Season Variability of Fast Ice Degradation Due to Small Arctic Riverine Heat Fluxes

Authors: Grace E. Santella, Shawn G. Gallaher, Joseph P. Smith

Abstract:

In order to determine the importance of small-system riverine heat flux on regional landfast sea ice breakup, our study explores the annual spring freshet of the Sagavanirktok River from 2014-2019. Seasonal heat cycling ultimately serves as the driving mechanism behind the freshet; however, as an emerging area of study, the extent to which inland thermodynamics influence coastal tundra geomorphology and connected landfast sea ice has not been extensively investigated in relation to small-scale Arctic river systems. The Sagavanirktok River is a small-to-midsized river system that flows south-to-north on the Alaskan North Slope from the Brooks mountain range to the Beaufort Sea at Prudhoe Bay. Seasonal warming in the spring rapidly melts snow and ice in a northwards progression from the Brooks Range and transitional tundra highlands towards the coast and when coupled with seasonal precipitation, results in a pulsed freshet that propagates through the Sagavanirktok River. The concentrated presence of newly exposed vegetation in the transitional tundra region due to spring melting results in higher absorption of solar radiation due to a lower albedo relative to snow-covered tundra and/or landfast sea ice. This results in spring flood runoff that advances over impermeable early-season permafrost soils with elevated temperatures relative to landfast sea ice and sub-ice flow. We examine the extent to which interannual temporal variability influences the onset and magnitude of river discharge by analyzing field measurements from the United States Geological Survey (USGS) river and meteorological observation sites. Rapid influx of heat to the Arctic Ocean via riverine systems results in a noticeable decay of landfast sea ice independent of ice breakup seaward of the shear zone. Utilizing MODIS imagery from NASA’s Terra satellite, interannual variability of river discharge is visualized, allowing for optical validation that the discharge flow is interacting with landfast sea ice. Thermal erosion experienced by sediment fast ice at the arrival of warm overflow preconditions the ice regime for rapid thawing. We investigate the extent to which interannual heat flux from the Sagavanirktok River’s freshet significantly influences the onset of local landfast sea ice breakup. The early-season warming of atmospheric temperatures is evidenced by the presence of storms which introduce liquid, rather than frozen, precipitation into the system. The resultant decreased albedo of the transitional tundra supports the positive relationship between early-season precipitation events, inland thermodynamic cycling, and degradation of landfast sea ice. Early removal of landfast sea ice increases coastal erosion in these regions and has implications for coastline geomorphology which stress industrial, ecological, and humanitarian infrastructure.

Keywords: Albedo, freshet, landfast sea ice, riverine heat flux, seasonal heat cycling

Procedia PDF Downloads 132
36963 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN

Authors: Mohamed Gaafar, Evan Davies

Abstract:

Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.

Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN

Procedia PDF Downloads 300
36962 Levels of Toxic Metals in Different Tissues of Lethrinus miniatus Fish from Arabian Gulf

Authors: Muhammad Waqar Ashraf, Atiq A. Mian

Abstract:

In the present study, accumulation of eight heavy metals, lead (Pb), cadmium (Cd), manganese (Mn), copper (Cu), zinc (Zn), iron (Fe), nickel (Ni) and chromium (Cr)was determined in kidney, heart, liver and muscle tissues of Lethrinus miniatus fish caught from Arabian Gulf. Metal concentrations in all the samples were measured using Atomic Absorption Spectroscopy. Analytical validation of data was carried out by applying the same digestion procedure to standard reference material (NIST-SRM 1577b bovine liver). Levels of lead (Pb) in the liver tissue (0.60µg/g) exceeded the limit set by European Commission (2005) at 0.30 µg/g. Zinc concentration in all tissue samples were below the maximum permissible limit (50 µg/g) as set by FAO. Maximum mean cadmium concentration was found 0.15 µg/g in the kidney tissues. Highest content of Mn in the studied tissues was seen in the kidney tissue (2.13 µg/g), whereas minimum was found in muscle tissue (0.87 µg/g). The present study led to the conclusion that muscle tissue is the least contaminated tissue in Lethrinus miniatus and consumption of organs should be avoided as much as possible.

Keywords: lethrinus miniatus, arabian gulf, heavy metals, atomic absorption spectroscopy

Procedia PDF Downloads 357
36961 Computer Simulation Approach in the 3D Printing Operations of Surimi Paste

Authors: Timilehin Martins Oyinloye, Won Byong Yoon

Abstract:

Simulation technology is being adopted in many industries, with research focusing on the development of new ways in which technology becomes embedded within production, services, and society in general. 3D printing (3DP) technology is fast developing in the food industry. However, the limited processability of high-performance material restricts the robustness of the process in some cases. Significantly, the printability of materials becomes the foundation for extrusion-based 3DP, with residual stress being a major challenge in the printing of complex geometry. In many situations, the trial-a-error method is being used to determine the optimum printing condition, which results in time and resource wastage. In this report, the analysis of 3 moisture levels for surimi paste was investigated for an optimum 3DP material and printing conditions by probing its rheology, flow characteristics in the nozzle, and post-deposition process using the finite element method (FEM) model. Rheological tests revealed that surimi pastes with 82% moisture are suitable for 3DP. According to the FEM model, decreasing the nozzle diameter from 1.2 mm to 0.6 mm, increased the die swell from 9.8% to 14.1%. The die swell ratio increased due to an increase in the pressure gradient (1.15107 Pa to 7.80107 Pa) at the nozzle exit. The nozzle diameter influenced the fluid properties, i.e., the shear rate, velocity, and pressure in the flow field, as well as the residual stress and the deformation of the printed sample, according to FEM simulation. The post-printing stability of the model was investigated using the additive layer manufacturing (ALM) model. The ALM simulation revealed that the residual stress and total deformation of the sample were dependent on the nozzle diameter. A small nozzle diameter (0.6 mm) resulted in a greater total deformation (0.023), particularly at the top part of the model, which eventually resulted in the sample collapsing. As the nozzle diameter increased, the accuracy of the model improved until the optimum nozzle size (1.0 mm). Validation with 3D-printed surimi products confirmed that the nozzle diameter was a key parameter affecting the geometry accuracy of 3DP of surimi paste.

Keywords: 3D printing, deformation analysis, die swell, numerical simulation, surimi paste

Procedia PDF Downloads 69
36960 Developing the Principal Change Leadership Non-Technical Competencies Scale: An Exploratory Factor Analysis

Authors: Tai Mei Kin, Omar Abdull Kareem

Abstract:

In light of globalization, educational reform has become a top priority for many countries. However, the task of leading change effectively requires a multidimensional set of competencies. Over the past two decades, technical competencies of principal change leadership have been extensively analysed and discussed. Comparatively, little research has been conducted in Malaysian education context on non-technical competencies or popularly known as emotional intelligence, which is equally crucial for the success of change. This article provides a validation of the Principal Change Leadership Non-Technical Competencies (PCLnTC) Scale, a tool that practitioners can easily use to assess school principals’ level of change leadership non-technical competencies that facilitate change and maximize change effectiveness. The overall coherence of the PCLnTC model was constructed by incorporating three theories: a)the change leadership theory whereby leading change is the fundamental role of a leader; b)competency theory in which leadership can be taught and learned; and c)the concept of emotional intelligence whereby it can be developed, fostered and taught. An exploratory factor analysis (EFA) was used to determine the underlying factor structure of PCLnTC model. Before conducting EFA, five important pilot test approaches were conducted to ensure the validity and reliability of the instrument: a)reviewed by academic colleagues; b)verification and comments from panel; c)evaluation on questionnaire format, syntax, design, and completion time; d)evaluation of item clarity; and e)assessment of internal consistency reliability. A total of 335 teachers from 12 High Performing Secondary School in Malaysia completed the survey. The PCLnTCS with six points Liker-type scale were subjected to Principal Components Analysis. The analysis yielded a three-factor solution namely, a)Interpersonal Sensitivity; b)Flexibility; and c)Motivation, explaining a total 74.326 per cent of the variance. Based on the results, implications for instrument revisions are discussed and specifications for future confirmatory factor analysis are delineated.

Keywords: exploratory factor analysis, principal change leadership non-technical competencies (PCLnTC), interpersonal sensitivity, flexibility, motivation

Procedia PDF Downloads 427
36959 Effect of Blood Sugar Levels on Short Term and Working Memory Status in Type 2 Diabetics

Authors: Mythri G., Manjunath ML, Girish Babu M., Shireen Swaliha Quadri

Abstract:

Background: The increase in diabetes among the elderly is of concern because in addition to the wide range of traditional diabetes complications, evidence has been growing that diabetes is associated with increased risk of cognitive decline. Aims and Objectives: To find out if there is any association between blood sugar levels and short-term and working memory status in patients of type 2 diabetes. Materials and Methods: The study was carried out in 200 individuals aged between 40-65 years consisting of 100 diagnosed cases of Type 2 Diabetes Mellitus and 100 non-diabetics from OPD of Mc Gann Hospital, Shivamogga. Rye’s Auditory Verbal Learning Test, Verbal Fluency Test and Visual Reproduction Test, Working Digit Span Test and Validation Span Test were used to assess short-term and working memory. Fasting and Post Prandial blood sugar levels were estimated. Statistical analysis was done using SPSS 21. Results: Memory test scores of type 2 diabetics were significantly reduced (p < 0.001) when compared to the memory scores of age and gender matched non-diabetics. Fasting blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.837), VFT (r=-0.888), VRT(r=-0.787), WDST (r=-0.795) and VST (r=-0.943). Post- Prandial blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.922), VFT (r=-0.848), VRT(r=-0.707),WDST (r=-0.729) and VST (r=-0.880) Memory scores in all 5 tests were found to be negatively correlated with the FBS and PPBS levels in diabetic patients (p < 0.001). Conclusion: The decreased memory status in diabetic patients may be due to many factors like hyperglycemia, vascular disease, insulin resistance, amyloid deposition and also some of the factor combine to produce additive effects like, type of diabetes, co-morbidities, age of onset, duration of the disease and type of therapy. These observed effects of blood sugar levels of diabetics on memory status are of potential clinical importance because even mild cognitive impairment could interfere with todays’ activities.

Keywords: diabetes, cognition, diabetes, HRV, respiratory medicine

Procedia PDF Downloads 283
36958 Fecundity and Egg Laying in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Model Development and Field Validation

Authors: Muhammad Noor Ul Ane, Dong-Soon Kim, Myron P. Zalucki

Abstract:

Models can be useful to help understand population dynamics of insects under diverse environmental conditions and in developing strategies to manage pest species better. Adult longevity and fecundity of Helicoverpa armigera (Hübner) were evaluated against a wide range of constant temperatures (15, 20, 25, 30, 35 and 37.5ᵒC). The modified Sharpe and DeMichele model described adult aging rate and was used to estimate adult physiological age. Maximum fecundity of H. armigera was 973 egg/female at 25ᵒC decreasing to 72 eggs/female at 37.5ᵒC. The relationship between adult fecundity and temperature was well described by an extreme value function. Age-specific cumulative oviposition rate and age-specific survival rate were well described by a two-parameter Weibull function and sigmoid function, respectively. An oviposition model was developed using three temperature-dependent components: total fecundity, age-specific oviposition rate, and age-specific survival rate. The oviposition model was validated against independent field data and described the field occurrence pattern of egg population of H. armigera very well. Our model should be a useful component for population modeling of H. armigera and can be independently used for the timing of sprays in management programs of this key pest species.

Keywords: cotton bollworm, life table, temperature-dependent adult development, temperature-dependent fecundity

Procedia PDF Downloads 153
36957 Levels of Heavy Metals in Different Tissues of Lethrinus Miniatus Fish from Arabian Gulf

Authors: Muhammad Waqar Ashraf

Abstract:

In the present study, accumulation of eight heavy metals, lead (Pb), cadmium (Cd), manganese (Mn), copper (Cu), zinc (Zn), iron (Fe), nickel (Ni) and chromium (Cr)was determined in kidney, heart, liver and muscle tissues of Lethrinus Miniatus fish caught from Arabian Gulf. Metal concentrations in all the samples were measured using Graphite Furnace Atomic Absorption Spectroscopy (GF-AAS). Analytical validation of data was carried out by applying the same digestion procedure to standard reference material (NIST-SRM 1577b bovine liver). Levels of lead (Pb) in the liver tissue (0.60µg/g) exceeded the limit set by European Commission (2005) at 0.30 µg/g. Zinc concentration in all tissue samples were below the maximum permissible limit (50 µg/g) as set by FAO. Maximum mean cadmium concentration was found to be 0.15 µg/g in the kidney tissues. Highest content of Mn in the studied tissues was seen in the kidney tissue (2.13 µg/g), whereas minimum was found in muscle tissue (0.87 µg/g). The present study led to the conclusion that muscle tissue is the least contaminated tissue in Lethrinus Miniatus and consumption of organs should be avoided as much as possible.

Keywords: Arabian gulf, Lethrinus miniatus, heavy metals, atomic absorption spectroscopy

Procedia PDF Downloads 273
36956 Stability Indicating Method Development and Validation for Estimation of Antiasthmatic Drug in Combined Dosages Formed by RP-HPLC

Authors: Laxman H. Surwase, Lalit V. Sonawane, Bhagwat N. Poul

Abstract:

A simple stability indicating high performance liquid chromatographic method has been developed for the simultaneous determination of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical dosage form using reverse phase Zorbax Eclipse Plus C8 column (250mm×4.6mm), with mobile phase phosphate buffer (0.05M KH2PO4): acetonitrile (55:45v/v) pH 3.5 adjusted with ortho-phosphoric acid, the flow rate was 1.0 mL/min and the detection was carried at 212 nm. The retention times of Levosalbutamol Sulphate and Ipratropium Bromide were 2.2007 and 2.6611 min respectively. The correlation coefficient of Levosalbutamol Sulphate and Ipratropium Bromide was found to be 0.997 and 0.998.Calibration plots were linear over the concentration ranges 10-100µg/mL for both Levosalbutamol Sulphate and Ipratropium Bromide. The LOD and LOQ of Levosalbutamol Sulphate were 2.520µg/mL and 7.638µg/mL while for Ipratropium Bromide was 1.201µg/mL and 3.640 µg/mL. The accuracy of the proposed method was determined by recovery studies and found to be 100.15% for Levosalbutamol Sulphate and 100.19% for Ipratropium Bromide respectively. The method was validated for accuracy, linearity, sensitivity, precision, robustness, system suitability. The proposed method could be utilized for routine analysis of Levosalbutamol Sulphate and Ipratropium Bromide in bulk and pharmaceutical capsule dosage form.

Keywords: levosalbutamol sulphate, ipratropium bromide, RP-HPLC, phosphate buffer, acetonitrile

Procedia PDF Downloads 351
36955 Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation

Authors: Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Diana Chioibascu, Carmen Ristoscu, Ion N. Mihailescu

Abstract:

Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program.

Keywords: laser additive manufacturing, powder particles size distribution in Gaussian form, powder stream distribution, temperature analyses

Procedia PDF Downloads 136
36954 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source

Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won

Abstract:

This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.

Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)

Procedia PDF Downloads 249
36953 The Study on Blast Effect of Polymer Gel by Trazul Lead Block Test and Concrete Block Test

Authors: Young-Hun Ko, Seung-Jun Kim, Khaqan Baluch, Hyung- Sik Yang

Abstract:

In this study, the polymer gel was used as coupling material in a blasting hole and its comparison was made with other coupling materials like sand, water, and air. Trazul lead block test and AUTODYN numerical analysis were conducted to analyze the effects of the coupling materials on the intensity of the explosion, as well as the verification tests were conducted by using concrete block test. The emulsion explosives were used in decoupling conditions, sand, water, and polymer gel were used as the coupling materials. The lead block test and the numerical analysis showed that the expansion of the blast hole in the lead block was similar to that of the water and gelatin and followed by sand and air conditions. The validation of concrete block test result showed the similar result as Trazul lead block test and the explosion strength was measured at 0.8 for polymer gel, 0.7 for sand, and 0.6 for no coupling material, in comparison to the full charge (1.0) case.

Keywords: Trazul lead block test, AUTODYN numerical analysis, coupling material, polymer gel, soil covering concrete block explosion test

Procedia PDF Downloads 301
36952 Effect of Extrusion Parameters on the Rheological Properties of Ready-To-Eat Extrudates Developed from De-Oiled Rice Bran

Authors: Renu Sharma, D. C. Saxena, Tanuja Srivastava

Abstract:

Mechanical properties of ready-to-eat extrudates are perceived by the consumers as one of the quality criteria. Texture quality of any product has a strong influence on the sensory evaluation as well as on the acceptability of the product. The main texture characteristics influencing the product acceptability are crispness, elasticity, hardness and softness. In the present work, the authors investigated one of the most important textural characteristics of extrudates i.e. hardness. A five-level, four-factor central composite rotatable design was employed to investigate the effect of temperature, screw speed, feed moisture content and feed composition mainly rice bran content and their interactions, on the mechanical hardness of extrudates. Among these, feed moisture was found to be a prominent factor affecting the product hardness. It was found that with the increase of feed moisture content, the rice bran proportion leads to increase in hardness of extrudates whereas the increase of temperature leads to decrease of hardness of product. A good agreement between the predicted (26.49 N) and actual value (28.73N) of the response confirms the validation of response surface methodology (RSM)-model.

Keywords: deoiled rice bran, extrusion, rheological properties, RSM

Procedia PDF Downloads 377
36951 Mitigating Supply Chain Risk for Sustainability Using Big Data Knowledge: Evidence from the Manufacturing Supply Chain

Authors: Mani Venkatesh, Catarina Delgado, Purvishkumar Patel

Abstract:

The sustainable supply chain is gaining popularity among practitioners because of increased environmental degradation and stakeholder awareness. On the other hand supply chain, risk management is very crucial for the practitioners as it potentially disrupts supply chain operations. Prediction and addressing the risk caused by social issues in the supply chain is paramount importance to the sustainable enterprise. More recently, the usage of Big data analytics for forecasting business trends has been gaining momentum among professionals. The aim of the research is to explore the application of big data, predictive analytics in successfully mitigating supply chain social risk and demonstrate how such mitigation can help in achieving sustainability (environmental, economic & social). The method involves the identification and validation of social issues in the supply chain by an expert panel and survey. Later, we used a case study to illustrate the application of big data in the successful identification and mitigation of social issues in the supply chain. Our result shows that the company can predict various social issues through big data, predictive analytics and mitigate the social risk. We also discuss the implication of this research to the body of knowledge and practice.

Keywords: big data, sustainability, supply chain social sustainability, social risk, case study

Procedia PDF Downloads 410
36950 Positive Psychology and the Social Emotional Ability Instrument (SEAI)

Authors: Victor William Harris

Abstract:

This research is a validation study of the Social Emotional Ability Inventory (SEAI), a multi-dimensional self-report instrument informed by positive psychology, emotional intelligence, social intelligence, and sociocultural learning theory. Designed for use in tandem with the Social Emotional Development (SEAD) theoretical model, the SEAI provides diagnostic-level guidance for professionals and individuals interested in investigating, identifying, and understanding social, emotional strengths, as well as remediating specific social competency deficiencies. The SEAI was shown to be psychometrically sound, exhibited strong internal reliability, and supported the a priori hypotheses of the SEAD. Additionally, confirmatory factor analysis provided evidence of goodness of fit, convergent and divergent validity, and supported a theoretical model that reflected SEAD expectations. The SEAI and SEAD hold potentially far-reaching and important practical implications for theoretical guidance and diagnostic-level measurement of social, emotional competency across a wide range of domains. Strategies researchers, practitioners, educators, and individuals might use to deploy SEAI in order to improve quality of life outcomes are discussed.

Keywords: emotion, emotional ability, positive psychology-social emotional ability, social emotional ability, social emotional ability instrument

Procedia PDF Downloads 260
36949 Quantitative Comparisons of Different Approaches for Rotor Identification

Authors: Elizabeth M. Annoni, Elena G. Tolkacheva

Abstract:

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.

Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors

Procedia PDF Downloads 324
36948 Validating the Cerebral Palsy Quality of Life for Children (CPQOL-Child) Questionnaire for Use in Sri Lanka

Authors: Shyamani Hettiarachchi, Gopi Kitnasamy

Abstract:

Background: The potentially high level of physical need and dependency experienced by children with cerebral palsy could affect the quality of life (QOL) of the child, the caregiver and his/her family. Poor QOL in children with cerebral palsy is associated with the parent-child relationship, limited opportunities for social participation, limited access to healthcare services, psychological well-being and the child's physical functioning. Given that children experiencing disabilities have little access to remedial support with an inequitable service across districts in Sri Lanka, and given the impact of culture and societal stigma, there may be differing viewpoints across respondents. Objectives: The aim of this study was to evaluate the psychometric properties of the Tamil version of the Cerebral Palsy Quality of Life for Children (CPQOL-Child) Questionnaire. Design: An instrument development and validation study. Methods: Forward and backward translations of the CPQOL-Child were undertaken by a team comprised of a physiotherapist, speech and language therapist and two linguists for the primary caregiver form and the child self-report form. As part of a pilot phase, the Tamil version of the CPQOL was completed by 45 primary caregivers with children with cerebral palsy and 15 children with cerebral palsy (GMFCS level 3-4). In addition, the primary caregivers commented on the process of filling in the questionnaire. The psychometric properties of test-retest reliability, internal consistency and construct validity were undertaken. Results: The test-retest reliability and internal consistency were high. A significant association (p < 0.001) was found between limited motor skills and poor QOL. The Cronbach's alpha for the whole questionnaire was at 0.95.Similarities and divergences were found between the two groups of respondents. The child respondents identified limited motor skills as associated with physical well-being and autonomy. Akin to this, the primary caregivers associated the severity of motor function with limitations of physical well-being and autonomy. The trend observed was that QOL was not related to the level of impairment but connected to environmental factors by the child respondents. In addition to this, the main concern among primary caregivers about the child's future and on the child's lack of independence was not fully captured by the QOL questionnaire employed. Conclusions: Although the initial results of the CPQOL questionnaire show high test-retest reliability and internal consistency of the instrument, it does not fully reflect the socio-cultural realities and primary concerns of the caregivers. The current findings highlight the need to take child and caregiver perceptions of QOL into account in clinical practice and research. It strongly indicates the need for culture-specific measures of QOL.

Keywords: cerebral palsy, CPQOL, culture, quality of life

Procedia PDF Downloads 344
36947 System for Electromyography Signal Emulation Through the Use of Embedded Systems

Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.

Abstract:

This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.

Keywords: classification, electromyography, embedded system, emulation, physiological signals

Procedia PDF Downloads 112
36946 Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 83
36945 Menopause Hormone Therapy: An Insight into Knowledge and Attitudes of Obstetricians and Gynecologists in Singapore

Authors: Tan Hui Ying Renee, Stella Rizalina Sasha, Farah Safdar Husain

Abstract:

Introduction: Menopause Hormone Therapy (MHT) is an effective drug indicated for the treatment of menopausal symptoms and as replacement therapy in women who undergo premature menopause. In 2020, less than 8.8% of perimenopausal Singaporean women are on hormonal therapy, as compared to the Western population, where up to 50% may be on MHT. Factors associated with MHT utilization have been studied from patient characteristics, but the impact of locally prescribing physicians resulting in low MHT utilization has yet to be evaluated. The aim of the study is to determine the level of knowledge physicians in the Obstetrics and Gynaecology specialty have and their attitudes toward MHT. We believe that knowledge of MHT is lacking and that negative attitudes towards MHT may influence its use and undermine the benefits MHT may have for women. This paper is a part of a larger study on Singaporean physicians’ knowledge and attitudes towards MHT. Methods: This is a cross-sectional study intended to assess the knowledge and attitudes of physicians toward Menopausal Hormone Therapy. An anonymous questionnaire was disseminated via institutional internal circulations to optimize reach to physicians who may prescribe MHT, particularly in the fields of Gynaecology, Family Medicine and Endocrinology. Responses were completed voluntarily. Physicians had the option for each question to declare that they were ‘unsure’ or that the question was ‘beyond their expertise’. 21 knowledge questions tested factual recall on indications, contraindications, and risks of MHT. The remaining 6 questions were clinical scenarios crafted with the intention of testing specific principles related to the use of MHT. These questions received face validation from experts in the field. 198 responses were collected, 79 of which were from physicians in the Obstetrics and Gynaecology specialty. The data will be statistically analyzed to investigate areas that can be improved to increase the overall benefits of MHT for the Singaporean population. Results: Preliminary results show that the prevailing factors that limit Singaporean gynecologists and obstetricians from prescribing MHT are a lack of knowledge of MHT and a lack of confidence in prescribing MHT. Risks and indications of MHT were not well known by many physicians, with the majority of the questions having more than 25% incorrect and ‘unsure’ as their reply. The clinical scenario questions revealed significant shortcomings in knowledge on how to navigate real-life challenges in MHT use, with 2 of 6 questions with more than 50% incorrect or ‘beyond their expertise’ as their reply. The portion of the questionnaire that investigated the attitudes of physicians showed that though a large majority believed MHT to be an effective drug, only 40.5% were confident in prescribing it. Conclusion: Physicians in the Obstetrics and Gynaecology specialty lack knowledge and confidence in MHT. Therefore, it is imperative to formulate solutions on both the individual and institutional levels to fill these gaps and ensure that MHT is used appropriately and prescribed to the patients who need it.

Keywords: menopause, menopause hormone therapy, physician factors, obstetrics and gynecology, menopausal symptoms, Singapore

Procedia PDF Downloads 43
36944 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite

Authors: Georgios Koronis, Arlindo Silva

Abstract:

This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.

Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites

Procedia PDF Downloads 204
36943 Integrating Computational Modeling and Analysis with in Vivo Observations for Enhanced Hemodynamics Diagnostics and Prognosis

Authors: Shreyas S. Hegde, Anindya Deb, Suresh Nagesh

Abstract:

Computational bio-mechanics is developing rapidly as a non-invasive tool to assist the medical fraternity to help in both diagnosis and prognosis of human body related issues such as injuries, cardio-vascular dysfunction, atherosclerotic plaque etc. Any system that would help either properly diagnose such problems or assist prognosis would be a boon to the doctors and medical society in general. Recently a lot of work is being focused in this direction which includes but not limited to various finite element analysis related to dental implants, skull injuries, orthopedic problems involving bones and joints etc. Such numerical solutions are helping medical practitioners to come up with alternate solutions for such problems and in most cases have also reduced the trauma on the patients. Some work also has been done in the area related to the use of computational fluid mechanics to understand the flow of blood through the human body, an area of hemodynamics. Since cardio-vascular diseases are one of the main causes of loss of human life, understanding of the blood flow with and without constraints (such as blockages), providing alternate methods of prognosis and further solutions to take care of issues related to blood flow would help save valuable life of such patients. This project is an attempt to use computational fluid dynamics (CFD) to solve specific problems related to hemodynamics. The hemodynamics simulation is used to gain a better understanding of functional, diagnostic and theoretical aspects of the blood flow. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. In this project the mathematical modeling of the blood flow in the arteries in the presence of successive blockages has been analyzed using CFD technique. Different cases of blockages in terms of percentages have been modeled using commercial software CATIA V5R20 and simulated using commercial software ANSYS 15.0 to study the effect of varying wall shear stress (WSS) values and also other parameters like the effect of increase in Reynolds number. The concept of fluid structure interaction (FSI) has been used to solve such problems. The model simulation results were validated using in vivo measurement data from existing literature

Keywords: computational fluid dynamics, hemodynamics, blood flow, results validation, arteries

Procedia PDF Downloads 408
36942 Analytical Solution of Blassius Equation Using the Kourosh Method

Authors: Mohammad Reza Shahnazari, Reza Kazemi, Ali Saberi

Abstract:

Most of the engineering problems are in nonlinear forms. Nonlinear boundary layer problems defined in infinite intervals contain specific complexities, especially in boundary layer condition conformance. As an example of these nonlinear complex problems, the well-known Blasius equation can be mentioned, which itself is one of the classic boundary layer problems. No analytical solution has been proposed yet for the Blasius equation due to its complexity. In this paper, an analytical method, namely the Kourosh method, based on the singularity perturbation method and the Liao homotopy analysis is utilized to solve the Blasius problem. In this method, an inner solution is developed in the [0,1] interval to expedite the solution convergence. The magnitude of the f ˝(0), as an essential quantity for determining the physical parameters, is directly calculated from the solution of the boundary condition problem. The advantages of this solution are that it does not need any numerical solution, it has a closed form and that its validation is shown in the entire [0,∞] interval. Furthermore, all of the desirable parameters could be extracted through a series of simple analytical operations from the final solution. This solution also satisfies the continuity conditions, which is one of the main contributions of this paper in comparison with most of the other proposed analytical solutions available in the literature. Comparison with numerical solutions reveals that the proposed method is highly accurate and convenient for application.

Keywords: Blasius equation, boundary layer, Kourosh method, analytical solution

Procedia PDF Downloads 394
36941 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases

Procedia PDF Downloads 143
36940 Leakage Current Analysis of FinFET Based 7T SRAM at 32nm Technology

Authors: Chhavi Saxena

Abstract:

FinFETs can be a replacement for bulk-CMOS transistors in many different designs. Its low leakage/standby power property makes FinFETs a desirable option for memory sub-systems. Memory modules are widely used in most digital and computer systems. Leakage power is very important in memory cells since most memory applications access only one or very few memory rows at a given time. As technology scales down, the importance of leakage current and power analysis for memory design is increasing. In this paper, we discover an option for low power interconnect synthesis at the 32nm node and beyond, using Fin-type Field-Effect Transistors (FinFETs) which are a promising substitute for bulk CMOS at the considered gate lengths. We consider a mechanism for improving FinFETs efficiency, called variable supply voltage schemes. In this paper, we’ve illustrated the design and implementation of FinFET based 4x4 SRAM cell array by means of one bit 7T SRAM. FinFET based 7T SRAM has been designed and analysis have been carried out for leakage current, dynamic power and delay. For the validation of our design approach, the output of FinFET SRAM array have been compared with standard CMOS SRAM and significant improvements are obtained in proposed model.

Keywords: FinFET, 7T SRAM cell, leakage current, delay

Procedia PDF Downloads 455
36939 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment

Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg

Abstract:

Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.

Keywords: building information, modelling, BIM, genetic algorithm, GA, architecture-engineering-construction, AEC, optimisation, structure, design, population, generation, selection, mutation, crossover, offspring

Procedia PDF Downloads 242
36938 Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Icaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters.

Keywords: hybrid circuits, LE-FDTD, lumped element, parametric analysis

Procedia PDF Downloads 155
36937 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 95
36936 Inheritance, Stability, and Validation of Provitamin a Markers in Striga Hermonthica-Resistant Maize

Authors: Fiston Masudi Tambwe, Lwanga Charles, Arfang Badji, Unzimai Innocent

Abstract:

The development of maize varieties combining Provitamin A (PVA), high yield, and Striga resistance is an effective and affordable strategy to contribute to food security in sub-Saharan Africa, where maize is a staple food crop. There has been limited research on introgressing PVA genes into Striga-resistant maize genotypes. The objectives of this study were to: i) determine the mode of gene action controlling PVA carotenoid accumulation in Striga-resistant maize, ii) identify Striga-resistant maize hybrids with high PVA content and stable yield, and iii) validate the presence of PVA functional markers in offspring. Six elite, Striga-resistant inbred females were crossed with six high-PVA inbred males in a North Carolina Design II and their offspring were evaluated in four environments, following a 5x8 alpha lattice design with four hybrid checks. Results revealed that both additive and non-additive gene action control carotenoid accumulation in the present study, with a predominance of non-additive gene effects for PVA. Hybrids STR1004xCLHP0352 and STR1004xCLHP0046 - identified as Striga-resistant because they supported fewer Striga plants – were the highest-yielding genotypes with a moderate PVA concentration of 5.48 and 5.77 µg/g, respectively. However, those two hybrids were not stable in terms of yield across all environments. Hybrid STR1007xCLHP0046, however, supported fewer Striga plants, had a yield of 4.52 T/ha, a PVA concentration of 4.52 µg/g, and was also stable. Gel-based marker systems of CrtRB1 and LCYE were used to screen the hybrids and favorable alleles of CrtRB1 primers were detected in 20 hybrids, confirming good levels of PVA carotenoids. Hybrids with favorable alleles of LCYE had the highest concentration of non-PVA carotenoids. These findings will contribute to the development of high-yielding PVA-rich maize varieties in Uganda.

Keywords: gene action, stability, striga resistance, provitamin A markers, beta-carotene hydroxylase 1, CrtRB1, beta-carotene, beta-cryptoxanthin, lycopene epsilon cyclase, LCYE

Procedia PDF Downloads 72
36935 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis

Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera

Abstract:

Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.

Keywords: log-linear model, multi spectral, residuals, spatial error model

Procedia PDF Downloads 298