Search results for: predict precipitation and (FUTA) standard device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9670

Search results for: predict precipitation and (FUTA) standard device

8770 Quantum Modelling of AgHMoO4, CsHMoO4 and AgCsMoO4 Chemistry in the Field of Nuclear Power Plant Safety

Authors: Mohamad Saab, Sidi Souvi

Abstract:

In a major nuclear accident, the released fission products (FPs) and the structural materials are likely to influence the transport of iodine in the reactor coolant system (RCS) of a pressurized water reactor (PWR). So far, the thermodynamic data on cesium and silver species used to estimate the magnitude of FP release show some discrepancies, data are scarce and not reliable. For this reason, it is crucial to review the thermodynamic values related to cesium and silver materials. To this end, we have used state-of-the-art quantum chemical methods to compute the formation enthalpies and entropies of AgHMoO₄, CsHMoO₄, and AgCsMoO₄ in the gas phase. Different quantum chemical methods have been investigated (DFT and CCSD(T)) in order to predict the geometrical parameters and the energetics including the correlation energy. The geometries were optimized with TPSSh-5%HF method, followed by a single point calculation of the total electronic energies using the CCSD(T) wave function method. We thus propose with a final uncertainty of about 2 kJmol⁻¹ standard enthalpies of formation of AgHMoO₄, CsHMoO₄, and AgCsMoO₄.

Keywords: nuclear accident, ASTEC code, thermochemical database, quantum chemical methods

Procedia PDF Downloads 189
8769 Nickel Removal from Industrial Wastewater by Eucalyptus Leaves and Poplar Ashes

Authors: Negin Bayat, Nahid HasanZadeh

Abstract:

Effluents of different industries such as metalworking, battery industry, mining, including heavy metal are considered problematic issues for both humans and the environment. These heavy metals include cadmium, copper, zinc, nickel, chromium, cyanide, lead, etc. Different physicochemical and biological methods are used to remove heavy metals, such as sedimentation, coagulation, flotation, chemical precipitation, filtration, membrane processes (reverse osmosis and nanofiltration), ion exchange, biological methods, adsorption with activated carbon, etc. These methods are generally either expensive or ineffective. In recent years, considerable attention has been given to the removal of heavy metal ions from solution by absorption using discarded and low-cost materials. In this study, nickel removal using an adsorption process by eucalyptus powdered leaves and poplar ash was investigated. This is an applied study. The effect of various parameters on metal removal, such as pH, amount of adsorbent, contact time, and stirring speed, was studied using a discontinuous method. This research was conducted in aqueous solutions on the laboratory scale. Then, optimum absorption conditions were obtained. Then, the study was conducted on real wastewater samples. In addition, the nickel concentration in the wastewater before and after the absorption process was measured. In all experiments, the remaining nickel was measured using an atomic absorption spectrometry device at 382 nm wavelength after an appropriate time and filtration. The results showed that increasing both adsorbent and pH parameters increase the metal removal rate. Nickel removal increased at the first 60 minutes. Then, the absorption rate remained constant and reached equilibrium. A desired removal rate with 40 mg in 100 ml adsorbent solution at pH = 9.5 was observed. According to the obtained results, the best absorption rate was observed at 40 mg dose using a combination of eucalyptus leaves and poplar ash in this study, which was equal to 99.76%. Thus, this combined method can be used as an inexpensive and effective absorbent for the removal of nickel from aqueous solutions.

Keywords: absorption, wastewater, nickel, poplar ash, eucalyptus leaf, treatment

Procedia PDF Downloads 19
8768 Factors of Influence in Software Process Improvement: An ISO/IEC 29110 for Very-Small Entities

Authors: N. Wongsai, R. Wetprasit, V. Siddoo

Abstract:

The recently introduced ISO/IEC 29110 standard Lifecycle profile for Very Small Entities (VSE) has been adopted and practiced in many small and medium software companies, including in Thailand’s software industry. Many Thai companies complete their software process improvement (SPI) initiative program and have been certified. There are, however, a number of participants fail to success. This study was concerned with the factors that influence the accomplishment of the standard implementation in various VSE characteristics. In order to achieve this goal, exploring and extracting critical factors from prior studies were carried out and then the obtained factors were validated by the standard experts. Data analysis of comments and recommendations was performed using a qualitative content analysis method. This paper presents the initial set of influence factors in both positive and negative impact the ISO/IEC 29110 implementation with an aim at helping such SPI practitioners with some considerations to manage appropriate adoption approach in order to achieve its implementation.

Keywords: barriers, critical success factors, ISO/IEC 29110, Software Process Improvement, SPI, Very-Small Entity, VSE

Procedia PDF Downloads 316
8767 Prediction of Formation Pressure Using Artificial Intelligence Techniques

Authors: Abdulmalek Ahmed

Abstract:

Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).

Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)

Procedia PDF Downloads 149
8766 Protective Effects of Vitamin C and Vitamin E on Experimentally Induced Testicular Torsion and Detorsion in Rat Model

Authors: Anu Vinod Ranade

Abstract:

Aim: To evaluate and compare the effects of Vitamin C and Vitamin E on experimentally induced testicular torsion and detorsion in rats. Methods: Forty Male Wistar Albino rats were divided into five groups. Animals in the Group I underwent Sham operation, Group II consisted of animals that were subjected to torsion for three hours followed by detorsion for 24 hours without any treatment. While Group III, IV and V were orally pretreated with Vitamin C (40mg/kg.bw), vitamin E (100mg/kg.bw) and a combination of Vitamin C and vitamin E respectively for a period of 30 days. The testes of the experimental groups were manually rotated to 720° clockwise for three hours and counter rotated for 24 hours to induce ischemia and reperfusion. Sequential biopsies were performed and the testes were collected at the end of 24 hours of detrosion for morphological evaluation. Result: There was a significant decrease in the standard tubular diameter and the epithelial height of the seminiferous tubules in the untreated group when compared to Sham controls. The standard tubular diameter and seminiferous epithelial height showed near normal values when animals were pretreated with Vitamin C and Vitamin E individually or in combination. Conclusion: The results showed that pretreatment of with antioxidants vitamin E and vitamin C when administered prior to testicular torsion in rats significantly reduced the torsion and detorsion induced histopathlogical injury.

Keywords: vitamin C, vitamin E, standard tubular diameter, standard epithelial height, testicular torsion

Procedia PDF Downloads 316
8765 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades

Authors: Farhana Arzu, Roslan Hashim

Abstract:

Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.

Keywords: variable length blade, performance, tidal turbine, power generation

Procedia PDF Downloads 276
8764 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 99
8763 Artificial Intelligence Based Online Monitoring System for Cardiac Patient

Authors: Syed Qasim Gilani, Muhammad Umair, Muhammad Noman, Syed Bilawal Shah, Aqib Abbasi, Muhammad Waheed

Abstract:

Cardiovascular Diseases(CVD's) are the major cause of death in the world. The main reason for these deaths is the unavailability of first aid for heart failure. In many cases, patients die before reaching the hospital. We in this paper are presenting innovative online health service for Cardiac Patients. The proposed online health system has two ends. Users through device developed by us can communicate with their doctor through a mobile application. This interface provides them with first aid.Also by using this service, they have an easy interface with their doctors for attaining medical advice. According to the proposed system, we developed a device called Cardiac Care. Cardiac Care is a portable device which a patient can use at their home for monitoring heart condition. When a patient checks his/her heart condition, Electrocardiogram (ECG), Blood Pressure(BP), Temperature are sent to the central database. The severity of patients condition is checked using Artificial Intelligence Algorithm at the database. If the patient is suffering from the minor problem, our algorithm will suggest a prescription for patients. But if patient's condition is severe, patients record is sent to doctor through the mobile Android application. Doctor after reviewing patients condition suggests next step. If a doctor identifies the patient condition as critical, then the message is sent to the central database for sending an ambulance for the patient. Ambulance starts moving towards patient for bringing him/her to hospital. We have implemented this model at prototype level. This model will be life-saving for millions of people around the globe. According to this proposed model patients will be in contact with their doctors all the time.

Keywords: cardiovascular disease, classification, electrocardiogram, blood pressure

Procedia PDF Downloads 185
8762 Metagenomics Features of The Gut Microbiota in Metabolic Syndrome

Authors: Anna D. Kotrova, Alexandr N. Shishkin, Elena I. Ermolenko

Abstract:

The aim. To study the quantitative and qualitative colon bacteria ratio from patients with metabolic syndrome. Materials and methods. Fecal samples from patients of 2 groups were identified and analyzed: the first group was formed by patients with metabolic syndrome, the second one - by healthy individuals. The metagenomics method was used with the analysis of 16S rRNA gene sequences. The libraries of the variable sites (V3 and V4) gene 16S RNA were analyzed using the MiSeq device (Illumina). To prepare the libraries was used the standard recommended by Illumina, a method based on two rounds of PCR. Results. At the phylum level in the microbiota of patients with metabolic syndrome compared to healthy individuals, the proportion of Tenericutes was reduced, the proportion of Actinobacteria was increased. At the genus level, in the group with metabolic syndrome, relative to the second group was increased the proportion of Lachnospira. Conclusion. Changes in the colon bacteria ratio in the gut microbiota of patients with metabolic syndrome were found both at the type and the genus level. In the metabolic syndrome group, there is a decrease in the proportion of bacteria that do not have a cell wall. To confirm the revealed microbiota features in patients with metabolic syndrome, further study with a larger number of samples is required.

Keywords: gut microbiota, metabolic syndrome, metagenomics, tenericutes

Procedia PDF Downloads 222
8761 Factors of Adoption of the International Financial Reporting Standard for Small and Medium Sized Entities

Authors: Uyanga Jadamba

Abstract:

Globalisation of the world economy has necessitated the development and implementation of a comparable and understandable reporting language suitable for use by all reporting entities. The International Accounting Standard Board (IASB) provides an international reporting language that lets all users understand the financial information of their business and potentially allows them to have access to finance at an international level. The study is based on logistic regression analysis to investigate the factors for the adoption of theInternational Financial Reporting Standard for Small and Medium sized Entities (IFRS for SMEs). The study started with a list of 217 countries from World Bank data. Due to the lack of availability of data, the final sample consisted of 136 countries, including 60 countries that have adopted the IFRS for SMEs and 76 countries that have not adopted it yet. As a result, the study included a period from 2010 to 2020 and obtained 1360 observations. The findings confirm that the adoption of the IFRS for SMEs is significantly related to the existence of national reporting standards, law enforcement quality, common law (legal system), and extent of disclosure. It means that the likelihood of adoption of the IFRS for SMEs decreases if the country already has a national reporting standard for SMEs, which suggests that implementation and transitional costs are relatively high in order to change the reporting standards. The result further suggests that the new standard adoption is easier in countries with constructive law enforcement and effective application of laws. The finding also shows that the adoption increases if countries have a common law system which suggests that efficient reportingregulations are more widespread in these countries. Countries with a high extent of disclosing their financial information are more likely to adopt the standard than others. The findings lastly show that the audit qualityand primary education levelhave no significant impact on the adoption.One possible explanation for this could be that accounting professionalsfrom in developing countries lacked complete knowledge of the international reporting standards even though there was a requirement to comply with them. The study contributes to the literature by providing factors that impact the adoption of the IFRS for SMEs. It helps policymakers to better understand and apply the standard to improve the transparency of financial statements. The benefit of adopting the IFRS for SMEs is significant due to the relaxed and tailored reporting requirements for SMEs, reduced burden on professionals to comply with the standard, and provided transparent financial information to gain access to finance.The results of the study are useful toemerging economies where SMEs are dominant in the economy in informing its evaluation of the adoption of the IFRS for SMEs.

Keywords: IFRS for SMEs, international financial reporting standard, adoption, institutional factors

Procedia PDF Downloads 81
8760 Effect of Particle Size on Sintering Characteristics of Injection Molded 316L Powder

Authors: H. Özkan Gülsoy, Antonyraj Arockiasamy

Abstract:

The application of powder injection molding technology for the fabrication of metallic and non-metallic components is of growing interest as the process considerably saves time and cost. Utilizing this fabrication method, full dense components are being prepared in various sizes. In this work, our effort is focused to study the densification behavior of the parts made using different size 316L stainless steel powders. The metal powders were admixed with an adequate amount of polymeric compounds and molded as standard tensile bars. Solvent and thermal debinding was carried out followed by sintering in ultra pure hydrogen atmosphere based on the differential scanning calorimetry (DSC) cycle. Mechanical property evaluation and microstructural characterization of the sintered specimens was performed using universal Instron tensile testing machine, Vicker’s microhardness tester, optical (OM) and scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction were used. The results are compared and analyzed to predict the strength and weakness of the test conditions.

Keywords: powder injection molding, sintering, particle size, stainless steels

Procedia PDF Downloads 365
8759 Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran

Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh

Abstract:

Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R2) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran.

Keywords: time series modelling, ARIMA model, river runoff, Karkheh River, CLS method

Procedia PDF Downloads 341
8758 Handy EKG: Low-Cost ECG For Primary Care Screening In Developing Countries

Authors: Jhiamluka Zservando Solano Velasquez, Raul Palma, Alejandro Calderon, Servio Paguada, Erick Marin, Kellyn Funes, Hana Sandoval, Oscar Hernandez

Abstract:

Background: Screening cardiac conditions in primary care in developing countries can be challenging, and Honduras is not the exception. One of the main limitations is the underfunding of the Healthcare System in general, causing conventional ECG acquisition to become a secondary priority. Objective: Development of a low-cost ECG to improve screening of arrhythmias in primary care and communication with a specialist in secondary and tertiary care. Methods: Design a portable, pocket-size low-cost 3 lead ECG (Handy EKG). The device is autonomous and has Wi-Fi/Bluetooth connectivity options. A mobile app was designed which can access online servers with machine learning, a subset of artificial intelligence to learn from the data and aid clinicians in their interpretation of readings. Additionally, the device would use the online servers to transfer patient’s data and readings to a specialist in secondary and tertiary care. 50 randomized patients volunteer to participate to test the device. The patients had no previous cardiac-related conditions, and readings were taken. One reading was performed with the conventional ECG and 3 readings with the Handy EKG using different lead positions. This project was possible thanks to the funding provided by the National Autonomous University of Honduras. Results: Preliminary results show that the Handy EKG performs readings of the cardiac activity similar to those of a conventional electrocardiograph in lead I, II, and III depending on the position of the leads at a lower cost. The wave and segment duration, amplitude, and morphology of the readings were similar to the conventional ECG, and interpretation was possible to conclude whether there was an arrhythmia or not. Two cases of prolonged PR segment were found in both ECG device readings. Conclusion: Using a Frugal innovation approach can allow lower income countries to develop innovative medical devices such as the Handy EKG to fulfill unmet needs at lower prices without compromising effectiveness, safety, and quality. The Handy EKG provides a solution for primary care screening at a much lower cost and allows for convenient storage of the readings in online servers where clinical data of patients can then be accessed remotely by Cardiology specialists.

Keywords: low-cost hardware, portable electrocardiograph, prototype, remote healthcare

Procedia PDF Downloads 180
8757 Investigation of Permeate Flux through DCMD Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters

Authors: Chii-Dong Ho, Jian-Har Chen

Abstract:

The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate Direct Contact Membrane Distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment on economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement, such as the new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.

Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters

Procedia PDF Downloads 8
8756 Study of the Use of Artificial Neural Networks in Islamic Finance

Authors: Kaoutar Abbahaddou, Mohammed Salah Chiadmi

Abstract:

The need to find a relevant way to predict the next-day price of a stock index is a real concern for many financial stakeholders and researchers. We have known across years the proliferation of several methods. Nevertheless, among all these methods, the most controversial one is a machine learning algorithm that claims to be reliable, namely neural networks. Thus, the purpose of this article is to study the prediction power of neural networks in the particular case of Islamic finance as it is an under-looked area. In this article, we will first briefly present a review of the literature regarding neural networks and Islamic finance. Next, we present the architecture and principles of artificial neural networks most commonly used in finance. Then, we will show its empirical application on two Islamic stock indexes. The accuracy rate would be used to measure the performance of the algorithm in predicting the right price the next day. As a result, we can conclude that artificial neural networks are a reliable method to predict the next-day price for Islamic indices as it is claimed for conventional ones.

Keywords: Islamic finance, stock price prediction, artificial neural networks, machine learning

Procedia PDF Downloads 237
8755 Towards a Biologically Relevant Tumor-on-a-Chip: Multiplex Microfluidic Platform to Study Breast Cancer Drug Response

Authors: Soroosh Torabi, Brad Berron, Ren Xu, Christine Trinkle

Abstract:

Microfluidics integrated with 3D cell culture is a powerful technology to mimic cellular environment, and can be used to study cell activities such as proliferation, migration and response to drugs. This technology has gained more attention in cancer studies over the past years, and many organ-on-a-chip systems have been developed to study cancer cell behaviors in an ex-vivo tumor microenvironment. However, there are still some barriers to adoption which include low throughput, complexity in 3D cell culture integration and limitations on non-optical analysis of cells. In this study, a user-friendly microfluidic multi-well plate was developed to mimic the in vivo tumor microenvironment. The microfluidic platform feeds multiple 3D cell culture sites at the same time which enhances the throughput of the system. The platform uses hydrophobic Cassie-Baxter surfaces created by microchannels to enable convenient loading of hydrogel/cell suspensions into the device, while providing barrier free placement of the hydrogel and cells adjacent to the fluidic path. The microchannels support convective flow and diffusion of nutrients to the cells and a removable lid is used to enable further chemical and physiological analysis on the cells. Different breast cancer cell lines were cultured in the device and then monitored to characterize nutrient delivery to the cells as well as cell invasion and proliferation. In addition, the drug response of breast cancer cell lines cultured in the device was compared to the response in xenograft models to the same drugs to analyze relevance of this platform for use in future drug-response studies.

Keywords: microfluidics, multi-well 3d cell culture, tumor microenvironment, tumor-on-a-chip

Procedia PDF Downloads 264
8754 A 7 Dimensional-Quantitative Structure-Activity Relationship Approach Combining Quantum Mechanics Based Grid and Solvation Models to Predict Hotspots and Kinetic Properties of Mutated Enzymes: An Enzyme Engineering Perspective

Authors: R. Pravin Kumar, L. Roopa

Abstract:

Enzymes are molecular machines used in various industries such as pharmaceuticals, cosmetics, food and animal feed, paper and leather processing, biofuel, and etc. Nevertheless, this has been possible only by the breath-taking efforts of the chemists and biologists to evolve/engineer these mysterious biomolecules to work the needful. Main agenda of this enzyme engineering project is to derive screening and selection tools to obtain focused libraries of enzyme variants with desired qualities. The methodologies for this research include the well-established directed evolution, rational redesign and relatively less established yet much faster and accurate insilico methods. This concept was initiated as a Receptor Rependent-4Dimensional Quantitative Structure Activity Relationship (RD-4D-QSAR) to predict kinetic properties of enzymes and extended here to study transaminase by a 7D QSAR approach. Induced-fit scenarios were explored using Quantum Mechanics/Molecular Mechanics (QM/MM) simulations which were then placed in a grid that stores interactions energies derived from QM parameters (QMgrid). In this study, the mutated enzymes were immersed completely inside the QMgrid and this was combined with solvation models to predict descriptors. After statistical screening of descriptors, QSAR models showed > 90% specificity and > 85% sensitivity towards the experimental activity. Mapping descriptors on the enzyme structure revealed hotspots important to enhance the enantioselectivity of the enzyme.

Keywords: QMgrid, QM/MM simulations, RD-4D-QSAR, transaminase

Procedia PDF Downloads 137
8753 Trashing Customary International Law Comprehensive Evaluation

Authors: Hamid Vahidkia

Abstract:

Central to the World Court’s mission is the assurance of universal custom “as prove of a common hone acknowledged as law.” Understudies of the Court’s law have long been mindful that the Court has been superior at applying standard law than characterizing it. However until Nicaragua v. Joined together States, small hurt was done. For within the strongly challenged cases earlier to Nicaragua, the Court overseen to inspire commonalities in factious structure that floated its decisions toward the standard standards certain in state hone. The Court’s need of hypothetical unequivocality basically implied that a career opportunity emerged for a few eyewitnesses like me to endeavor to supply the lost hypothesis of custom.

Keywords: law, international law, jurisdication, customary

Procedia PDF Downloads 61
8752 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton

Authors: komal verma, V. S. Moholkar

Abstract:

In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity

Procedia PDF Downloads 72
8751 ZnO Nanoparticles as Photocatalysts: Synthesis, Characterization and Application

Authors: Pachari Chuenta, Suwat Nanan

Abstract:

ZnO nanostructures have been synthesized successfully in high yield via catalyst-free chemical precipitation technique by varying zinc source (either zinc nitrate or zinc acetate) and oxygen source (either oxalic acid or urea) without using any surfactant, organic solvent or capping agent. The ZnO nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), UV-vis diffuse reflection spectroscopy (UV-vis DRS), and photoluminescence spectroscopy (PL). The FTIR peak in the range of 450-470 cm-1 corresponded to Zn-O stretching in ZnO structure. The synthesized ZnO samples showed well crystalized hexagonal wurtzite structure. SEM micrographs displayed spherical droplet of about 50-100 nm. The band gap of prepared ZnO was found to be 3.4-3.5 eV. The presence of PL peak at 468 nm was attributed to surface defect state. The photocatalytic activity of ZnO was studied by monitoring the photodegradation of reactive red (RR141) azo dye under ultraviolet (UV) light irradiation. Blank experiment was also separately carried out by irradiating the aqueous solution of the dye in absence of the photocatalyst. The initial concentration of the dye was fixed at 10 mgL-1. About 50 mg of ZnO photocatalyst was dispersed in 200 mL dye solution. The sample was collected at a regular time interval during the irradiation and then was analyzed after centrifugation. The concentration of the dye was determined by monitoring the absorbance at its maximum wavelength (λₘₐₓ) of 544 nm using UV-vis spectroscopic analysis technique. The sources of Zn and O played an important role on photocatalytic performance of the ZnO photocatalyst. ZnO nanoparticles which prepared by zinc acetate and oxalic acid at molar ratio of 1:1 showed high photocatalytic performance of about 97% toward photodegradation of reactive red azo dye (RR141) under UV light irradiation for only 60 min. This work demonstrates the promising potential of ZnO nanomaterials as photocatalysts for environmental remediation.

Keywords: azo dye, chemical precipitation, photocatalytic, ZnO

Procedia PDF Downloads 144
8750 A Polyimide Based Split-Ring Neural Interface Electrode for Neural Signal Recording

Authors: Ning Xue, Srinivas Merugu, Ignacio Delgado Martinez, Tao Sun, John Tsang, Shih-Cheng Yen

Abstract:

We have developed a polyimide based neural interface electrode to record nerve signals from the sciatic nerve of a rat. The neural interface electrode has a split-ring shape, with four protruding gold electrodes for recording, and two reference gold electrodes around the split-ring. The split-ring electrode can be opened up to encircle the sciatic nerve. The four electrodes can be bent to sit on top of the nerve and hold the device in position, while the split-ring frame remains flat. In comparison, while traditional cuff electrodes can only fit certain sizes of the nerve, the developed device can fit a variety of rat sciatic nerve dimensions from 0.6 mm to 1.0 mm, and adapt to the chronic changes in the nerve as the electrode tips are bendable. The electrochemical impedance spectroscopy measurement was conducted. The gold electrode impedance is on the order of 10 kΩ, showing excellent charge injection capacity to record neural signals.

Keywords: impedance, neural interface, split-ring electrode, neural signal recording

Procedia PDF Downloads 377
8749 Human’s Sensitive Reactions during Different Geomagnetic Activity: An Experimental Study in Natural and Simulated Conditions

Authors: Ketevan Janashia, Tamar Tsibadze, Levan Tvildiani, Nikoloz Invia, Elguja Kubaneishvili, Vasili Kukhianidze, George Ramishvili

Abstract:

This study considers the possible effects of geomagnetic activity (GMA) on humans situated on Earth by performing experiments concerning specific sensitive reactions in humans in both: natural conditions during different GMA and by the simulation of different GMA in the lab. The measurements of autonomic nervous system (ANS) responses to different GMA via measuring the heart rate variability (HRV) indices and stress index (SI) and their comparison with the K-index of GMA have been presented and discussed. The results of experiments indicate an intensification of the sympathetic part of the ANS as a stress reaction of the human organism when it is exposed to high level of GMA as natural as well as in simulated conditions. Aim: We tested the hypothesis whether the GMF when disturbed can have effects on human ANS causing specific sensitive stress-reactions depending on the initial type of ANS. Methods: The study focuses on the effects of different GMA on ANS by comparing of HRV indices and stress index (SI) of n= 78, 18-24 years old healthy male volunteers. Experiments were performed as natural conditions on days of low (K= 1-3) and high (K= 5-7) GMA as well as in the lab by the simulation of different GMA using the device of geomagnetic storm (GMS) compensation and simulation. Results: In comparison with days of low GMA (K=1-3) the initial values of HRV shifted towards the intensification of the sympathetic part (SP) of the ANS during days of GMSs (K=5-7) with statistical significance p-values: HR (heart rate, p= 0.001), SDNN (Standard deviation of all Normal to Normal intervals, p= 0.0001), RMSSD (The square root of the arithmetical mean of the sum of the squares of differences between adjacent NN intervals, p= 0.0001). In comparison with conditions during GMSs compensation mode (K= 0, B= 0-5nT), the ANS balance was observed to shift during exposure to simulated GMSs with intensities in the range of natural GMSs (K= 7, B= 200nT). However, the initial values of the ANS resulted in different dynamics in its variation depending of GMA level. In the case of initial balanced regulation type (HR > 80) significant intensification of SP was observed with p-values: HR (p= 0.0001), SDNN (p= 0.047), RMSSD (p= 0.28), LF/HF (p=0.03), SI (p= 0.02); while in the case of initial parasympathetic regulation type (HR < 80), an insignificant shift to the intensification of the parasympathetic part (PP) was observed. Conclusions: The results indicate an intensification of SP as a stress reaction of the human organism when it is exposed to high level of GMA in both natural and simulated conditions.

Keywords: autonomic nervous system, device of magneto compensation/simulation, geomagnetic storms, heart rate variability

Procedia PDF Downloads 142
8748 Sensitivity Assessment of Spectral Salinity Indices over Desert Sabkha of Western UAE

Authors: Rubab Ammad, Abdelgadir Abuelgasim

Abstract:

UAE typically lies in one of the aridest regions of the world and is thus home to geologic features common to such climatic conditions including vast open deserts, sand dunes, saline soils, inland Sabkha and coastal Sabkha. Sabkha are characteristic salt flats formed in arid environment due to deposition and precipitation of salt and silt over sand surface because of low laying water table and rates of evaporation exceeding rates of precipitation. The study area, which comprises of western UAE, is heavily concentrated with inland Sabkha. Remote sensing is conventionally used to study the soil salinity of agriculturally degraded lands but not so broadly for Sabkha. The focus of this study was to identify these highly saline Sabkha areas on remotely sensed data, using salinity indices. The existing salinity indices in the literature have been designed for agricultural soils and they have not frequently used the spectral response of short-wave infra-red (SWIR1 and SWIR2) parts of electromagnetic spectrum. Using Landsat 8 OLI data and field ground truthing, this study formulated indices utilizing NIR-SWIR parts of spectrum and compared the results with existing salinity indices. Most indices depict reasonably good relationship between salinity and spectral index up until a certain value of salinity after which the reflectance reaches a saturation point. This saturation point varies with index. However, the study findings suggest a role of incorporating near infra-red and short-wave infra-red in salinity index with a potential of showing a positive relationship between salinity and reflectance up to a higher salinity value, compared to rest.

Keywords: Sabkha, salinity index, saline soils, Landsat 8, SWIR1, SWIR2, UAE desert

Procedia PDF Downloads 214
8747 Challenges and Opportunities in Computing Logistics Cost in E-Commerce Supply Chain

Authors: Pramod Ghadge, Swadesh Srivastava

Abstract:

Revenue generation of a logistics company depends on how the logistics cost of a shipment is calculated. Logistics cost of a shipment is a function of distance & speed of the shipment travel in a particular network, its volumetric size and dead weight. Logistics billing is based mainly on the consumption of the scarce resource (space or weight carrying capacity of a carrier). Shipment’s size or deadweight is a function of product and packaging weight, dimensions and flexibility. Hence, to arrive at a standard methodology to compute accurate cost to bill the customer, the interplay among above mentioned physical attributes along with their measurement plays a key role. This becomes even more complex for an ecommerce company, like Flipkart, which caters to shipments from both warehouse and marketplace in an unorganized non-standard market like India. In this paper, we will explore various methodologies to define a standard way of billing the non-standard shipments across a wide range of size, shape and deadweight. Those will be, usage of historical volumetric/dead weight data to arrive at a factor which can be used to compute the logistics cost of a shipment, also calculating the real/contour volume of a shipment to address the problem of irregular shipment shapes which cannot be solved by conventional bounding box volume measurements. We will also discuss certain key business practices and operational quality considerations needed to bring standardization and drive appropriate ownership in the ecosystem.

Keywords: contour volume, logistics, real volume, volumetric weight

Procedia PDF Downloads 269
8746 Investigating the Subjective Factors Related to the Need for Psychological Help of the College Students

Authors: Ismail Ay

Abstract:

In this study, it is aimed to analyze the relations of the factors such as the learned resourcefulness, self-efficacy, self-regulation and subjective well-being which are thought to affect the needs of the university students for psychological help and to determine if the subjective well-being mediates other factors in the prediction of the needs of the university students for psychological help. The population of the study is formed of undergraduates who get education in 16 faculties in the central campus of the University of Atatürk in the spring term of 2012-2013 academic years. The sample of the study is formed of 1205 undergraduates (female=666, 55,3 %; male=539, 44,7 %; average of age =21,49; Sd=2,18) selected from the mentioned universe by convenience sampling method. “Need for Psychological Help Scale” has been developed as a part of the study to determine the needs for psychological help. “Short Self-Regulation Questionnaire” has been adapted into Turkish to determine the self-regulation skills. Apart from these, Rosenbaum’s Learned Resourcefulness Scale, General Self-Efficacy Scale and to determine subjective well-being; Satisfaction with Life Scale and Positive and Negative Affect Scale have been used within the study. SPSS 22.0 and LISREL 9.1 have been used in the analysis of the data. Pearson product-moment correlation, descriptive analysis, factor analysis and path analysis to test the research hypothesis has been used in the study. According to obtained data, the learned resourcefulness factor does not predict the subjective well-being; however, it highly predicts the self-regulation and self-efficacy factors. It has been determined that the self-regulation and self-efficacy factors predict the subjective well-being in a positive way and medium level, and subjective well-being mediates self-regulation and self-efficacy factors to predict the needs for psychological help. It was also determined that subjective well-being predicts the needs for psychological help in a negative way and fair level. All these results have been discussed in terms of the related theories and literature, and several suggestions have been made.

Keywords: need for psychological help, self-regulation, self-efficacy, learned resourcefulness, subjective well-being, Maslow, psychological needs

Procedia PDF Downloads 357
8745 Comparison of Volume of Fluid Model: Experimental and Empirical Results for Flows over Stacked Drop Manholes

Authors: Ramin Mansouri

Abstract:

The manhole is one of the types of structures that are installed at the site of change direction or change in the pipe diameter or sewage pipes as well as in step slope areas to reduce the flow velocity. In this study, the flow characteristics of hydraulic structures in a manhole structure have been investigated with a numerical model. In this research, the types of computational grid coarse, medium, and fines have been used for simulation. In order to simulate flow, k-ε model (standard, RNG, Realizable) and k-w model (standard SST) are used. Also, in order to find the best wall conditions, two types of standard and non-equilibrium wall functions were investigated. The turbulent model k-ε has the highest correlation with experimental results or all models. In terms of boundary conditions, constant speed is set for the flow input boundary, the output pressure is set in the boundaries which are in contact with the air, and the standard wall function is used for the effect of the wall function. In the numerical model, the depth at the output of the second manhole is estimated to be less than that of the laboratory and the output jet from the span. In the second regime, the jet flow collides with the manhole wall and divides into two parts, so hydraulic characteristics are the same as large vertical shaft hydraulic characteristics. In this situation, the turbulence is in a high range since it can be seen more energy loss in it. According to the results, energy loss in numerical is estimated at 9.359%, which is more than experimental data.

Keywords: manhole, energy, depreciation, turbulence model, wall function, flow

Procedia PDF Downloads 82
8744 Multiscale Cohesive Zone Modeling of Composite Microstructure

Authors: Vincent Iacobellis, Kamran Behdinan

Abstract:

A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.

Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling

Procedia PDF Downloads 487
8743 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality

Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan

Abstract:

Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.

Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application

Procedia PDF Downloads 74
8742 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: BART, Bayesian, predict, stock

Procedia PDF Downloads 130
8741 Lessons Learned from Interlaboratory Noise Modelling in Scope of Environmental Impact Assessments in Slovenia

Authors: S. Cencek, A. Markun

Abstract:

Noise assessment methods are regularly used in scope of Environmental Impact Assessments for planned projects to assess (predict) the expected noise emissions of these projects. Different noise assessment methods could be used. In recent years, we had an opportunity to collaborate in some noise assessment procedures where noise assessments of different laboratories have been performed simultaneously. We identified some significant differences in noise assessment results between laboratories in Slovenia. We estimate that despite good input Georeferenced Data to set up acoustic model exists in Slovenia; there is no clear consensus on methods for predictive noise methods for planned projects. We analyzed input data, methods and results of predictive noise methods for two planned industrial projects, both were done independently by two laboratories. We also analyzed the data, methods and results of two interlaboratory collaborative noise models for two existing noise sources (railway and motorway). In cases of predictive noise modelling, the validations of acoustic models were performed by noise measurements of surrounding existing noise sources, but in varying durations. The acoustic characteristics of existing buildings were also not described identically. The planned noise sources were described and digitized differently. Differences in noise assessment results between different laboratories have ranged up to 10 dBA, which considerably exceeds the acceptable uncertainty ranged between 3 to 6 dBA. Contrary to predictive noise modelling, in cases of collaborative noise modelling for two existing noise sources the possibility to perform the validation noise measurements of existing noise sources greatly increased the comparability of noise modelling results. In both cases of collaborative noise modelling for existing motorway and railway, the modelling results of different laboratories were comparable. Differences in noise modeling results between different laboratories were below 5 dBA, which was acceptable uncertainty set up by interlaboratory noise modelling organizer. The lessons learned from the study were: 1) Predictive noise calculation using formulae from International standard SIST ISO 9613-2: 1997 is not an appropriate method to predict noise emissions of planned projects since due to complexity of procedure they are not used strictly, 2) The noise measurements are important tools to minimize noise assessment errors of planned projects and should be in cases of predictive noise modelling performed at least for validation of acoustic model, 3) National guidelines should be made on the appropriate data, methods, noise source digitalization, validation of acoustic model etc. in order to unify the predictive noise models and their results in scope of Environmental Impact Assessments for planned projects.

Keywords: environmental noise assessment, predictive noise modelling, spatial planning, noise measurements, national guidelines

Procedia PDF Downloads 234