Search results for: in vitro toxicity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2256

Search results for: in vitro toxicity

1356 Vitex agnus-castus Anti-Inflammatory, Antioxidants Characters and Anti-Tumor Effect in Ehrlich Ascites Carcinoma Model

Authors: Abeer Y. Ibrahim, Faten M. Ibrahim, Samah A. El-Newary, Saber F. Hendawy

Abstract:

Objective: Appreciation of in-vitro anti-inflammatory and antioxidant characters of Vitex agnus-castus berries alcoholic extract and fractions, as well as in-vivo antitumor ability of alcoholic extract and chloroform fraction against Ehrlich ascites carcinoma is the aim of this study. Material and methods: Antioxidant properties of crude alcoholic extract of vitex berries as well as petroleum ether, chloroform, ethyl acetate and butanol fractions were evaluated, in-vitro assessments, as compared with standard materials, l-ascorbic acid (vitamin C) and butylated hydroxyl toluene(BHT). The anti-inflammatory activity was investigated in cyclooxygenase (COX)-1 and COX-2 inhibition assays. Moreover, in-vivo antitumor effect of vitex berries alcoholic and chloroform extracts were evaluated using Ehrlich ascites carcinoma model. Data were presented as mean±SE, and data were analyzed by one-way analysis of variance test. Results and conclusion: Berries crude extract showed potent antioxidant activity followed with its fractions ethyl acetate and chloroform as compared with standard (V.C and BHT). Ethyl acetate fraction showed good reduction capability, metal ion chelation, hydrogen peroxide scavenging, nitric oxide scavenging and superoxide anion scavenging. Meanwhile, chloroform fraction produced the highest free radical scavenging activity and total antioxidant capacity. In respectable of lipid peroxidation inhibition, crude alcoholic extract and its fractions cleared weak inhibition in comparing with standard materials. Anti-inflammatory activity of V. agnus-castus berries chloroform fraction of vitex was best COX-2 inhibitor (IC₅₀, 135.41 µg/ ml) as compared to vitex alcoholic extract or ethyl acetate fraction with weak inhibitory effect on COX-1 (IC50, 778.432 µg/ ml), where the lowest effect on COX-1 was recorded with alcoholic extract. Alcoholic extract and its fractions showed weak COX-1 inhibition activity, whereas COX-2 was inhibited (100%), compared with celecoxib drug (72% at 1000ppm). The crude alcoholic and chloroform extracts of V. agnus-castus barries significantly reduced the viable Ehrlich cell count and increased nonviable count with amelioration of all hematological parameters. This amelioration was reflected on increasing median survival time and significant increase (P < 0.05) in lifespan.

Keywords: anti-inflammatory, antioxidants, ehrlich ascites carcinoma, Vitex agnus-castus

Procedia PDF Downloads 146
1355 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic

Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña

Abstract:

Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.

Keywords: remote sensing, intertidal sediment, airborne sensors, heavy metals, eTOCoxicity, robust statistic, estimation

Procedia PDF Downloads 423
1354 Functionalized Nanoparticles for Biomedical Applications

Authors: Temesgen Geremew

Abstract:

Functionalized nanoparticles have emerged as a revolutionary class of materials with immense potential in various biomedical applications. These engineered nanoparticles possess unique properties tailored to interact with biological systems, offering unprecedented opportunities in drug delivery, imaging, diagnostics, and therapy. This research delves into the design, synthesis, and characterization of functionalized nanoparticles for targeted biomedical applications. The primary focus lies on developing nanoparticles with precisely controlled size, surface chemistry, and biocompatibility for specific medical purposes. The research will also explore the crucial interaction of these nanoparticles with biological systems, encompassing cellular uptake, biodistribution, and potential toxicity evaluation. The successful development of functionalized nanoparticles holds the promise to revolutionize various aspects of healthcare. This research aspires to contribute significantly to this advancement by providing valuable insights into the design and application of these versatile materials within the ever-evolving field of biomedicine.

Keywords: nanoparticles, biomedicals, cancer, biocompatibility

Procedia PDF Downloads 68
1353 Innate Immune Dysfunction in Niemann Pick Disease Type C

Authors: Stephanie Newman

Abstract:

Niemann-Pick Type C disease is a rare, usually fatal lysosomal storage disorder. Although clinically characterized by progressive neurodegeneration, there is also evidence of altered innate immune responses such as neuroinflammation that promote disease progression. We have initiated an investigation into whether phagocytosis, an important innate immune activity and the process by which particles are ingested is defective in NPC. Using an in vitro assay, we have shown that NPC macrophages have a deficiency in the phagocytosis of different particles. We plan to investigate the mechanistic basis for impaired phagocytosis, the contribution that this deficiency makes to disease pathology, and whether therapies that have shown in vivo benefit are able to restore phagocytic activity.

Keywords: Niemann Pick Disease C, phagocytosis, innate immunity, lysosomal storage disorder

Procedia PDF Downloads 393
1352 Leptospira Lipl32-Specific Antibodies: Therapeutic Property, Epitopes Characterization and Molecular Mechanisms of Neutralization

Authors: Santi Maneewatchararangsri, Wanpen Chaicumpa, Patcharin Saengjaruk, Urai Chaisri

Abstract:

Leptospirosis is a globally neglected disease that continues to be a significant public health and veterinary burden, with millions of cases reported each year. Early and accurate differential diagnosis of leptospirosis from other febrile illnesses and the development of a broad spectrum of leptospirosis vaccines are needed. The LipL32 outer membrane lipoprotein is a member of Leptospira adhesive matrices and has been found to exert hemolytic activity to erythrocytes in vitro. Therefore, LipL32 is regarded as a potential target for diagnosis, broad-spectrum leptospirosis vaccines, and for passive immunotherapy. In this study, we established LipL32-specific mouse monoclonal antibodies, mAbLPF1 and mAbLPF2, and their respective mouse- and humanized-engineered single chain variable fragment (ScFv). Their antibodies’ neutralizing activities against Leptospira-mediated hemolysis in vitro, and the therapeutic efficacy of mAbs against heterologous Leptospira infected hamsters were demonstrated. The epitope peptide of mAb LPF1 was mapped to a non-contiguous carboxy-terminal β-turn and amphipathic α-helix of LipL32 structure contributing to phospholipid/host cell adhesion and membrane insertion. We found that the mAbLPF2 epitope was located on the interacting loop of peptide binding groove of the LipL32 molecule responsible for interactions with host constituents. Epitope sequences are highly conserved among Leptospira spp. and are absent from the LipL32 superfamily of other microorganisms. Both epitopes are surface-exposed, readily accessible by mAbs, and immunogenic. However, they are less dominant when revealed by LipL32-specific immunoglobulins from leptospirosis-patient sera and rabbit hyperimmune serum raised by whole Leptospira. Our study also demonstrated an adhesion inhibitory activity of LipL32 protein to host membrane components and cells mediated by mAbs as well as an anti-hemolytic activity of the respective antibodies. The therapeutic antibodies, particularly the humanized-ScFv, have a potential for further development as non-drug therapeutic agent for human leptospirosis, especially in subjects allergic to antibiotics. The epitope peptides recognized by two therapeutic mAbs have potential use as tools for structure-function studies. Finally, protective peptides may be used as a target for epitope-based vaccines for control of leptospirosis.

Keywords: leptospira lipl32-specific antibodies, therapeutic epitopes, epitopes characterization, immunotherapy

Procedia PDF Downloads 298
1351 Ion Beam Sputtering Deposition of Inorganic-Fluoropolymer Nano-Coatings for Real-Life Applications

Authors: M. Valentini, D. Melisi, M. A. Nitti, R A. Picca, M. C. Sportelli, E. Bonerba, G. Casamassima, N. Cioffi, L. Sabbatini, G. Tantillo, A. Valentini

Abstract:

In recent years antimicrobial coatings are receiving increasing attention due to their high demand in medical applications as well as in healthcare and hygiene. Research and technology are constantly involved to develop advanced finishing which can provide bacteriostatic growth without compromising the other typical properties of a textile as durability and non-toxicity, just to cite a few. Here we report on the antimicrobial coatings obtained, at room temperature and without the use of solvents, by means of the ion beam co-sputtering technique of an Ag target and a polytetrafluoroethylene one. In particular, such method allows to conjugate the well-known antimicrobial action of silver with the anti-stain and water-repellent properties of the fluoropolymer. Moreover, different Ag nanoparticle loadings (φ) were prepared by tuning the material deposition conditions achieving a fine control on film thickness and their antimicrobial/anti-stain properties.

Keywords: antimicrobial, ion beam sputtering, nanocoatings, anti-stain

Procedia PDF Downloads 394
1350 Effects of Adding Condensed Tannin from Shrub and Tree Leaves in Concentrate on Sheep Production Fed on Elephant Grass as a Basal Diet

Authors: Kusmartono, Siti Chuzaemi, Hartutik dan Mashudi

Abstract:

Two studies were conducted involving an in vitro (Expt 1) and in vivo (Expt 2) measurements. Expt 1. aimed to evaluate effects of adding CT extracts on gas production and efficiency of microbial protein synthesis (EMPS), Expt 2 aimed to evaluate effects of supplementing shrub/tree leaves as CT source on feed consumption, digestibility, N retention, body weight gain and dressing percentage of growing sheep fed on elephant grass (EG) as a basal diet.Ten shrub and tree leaves used as CT sources were wild sunflower (Tithonia diversifolia), mulberry (Morus macroura), cassava (Manihot utilissima), avicienna (Avicennia marina), calliandra (Calliandra calothyrsus), sesbania (Sesbania grandiflora), acacia (acacia vilosa), glyricidia (Glyricidia sepium), jackfruit (Artocarpus heterophyllus), moringa (Moringa oleifera). The treatments applied in Expt 1 were: T1=Elephant grass (60%)+concentrate (40%); T2 = T1 + CT (3% DM); T3= T2 + PEG; T4 = T1 + CT (3.5% DM); T5 = T4 + PEG; T6 = T1 + CT (4% DM) and T7 = T6 + PEG. Data obtained were analysed using Randomized Block Design. Statistical analyses showed that treatments significanty affected (P<0.05) total gas production and EMPS. The lowest values of total gas production (45.9 ml/500 mg DM) and highest value of EMPS (64.6 g/kg BOTR) were observed in the treatment T4 (3.5% CT from cassava leave extract). Based on this result it was concluded that this treatment was the best and was chosen for further investigation using in vivo method. The treatmets applied for in vivo trial were: T1 = EG (60%) + concentrate (40%); T2 = T1 + dried cassava leave (equivalent to 3.5% CT); T3 = T2 + PEG. 18 growing sheep aging of 8-9 months and weighing of 23.67kg ± 1.23 were used in Expt 2. Results of in vivo study showed that treatments significanty affected (P<0.05) nutrients intake and digestibility (DM, OM and CP). N retention for sheep receiving treatment T2 were significantly higher (P<0.05; 15.6 g/d) than T1 (9.1 g/d) and T3 (8.53 g/d). Similar results were obtained for daily weight gain where T2 were the highest (62.79 g/d), followed by T1 (51.9 g/d) and T3 (52.85 g/d). Dressing percentage of T2 was the highest (51.54%) followed by T1 (49.61%) and T3 (49.32%). It can be concluded that adding adding dried cassava leaves did not reduce palatability due to CT, but rather increased OM digestibility and hence feed consumption was improved. N retention was increased due to the action of CT in the cassava leaves and this may have explained a higher input of N into duodenum which was further led to higer daily weight gain and dressing percentage.

Keywords: in vitro gas production, sheep, shrub and tree leaves, condensed tannin

Procedia PDF Downloads 266
1349 Antagonistic Potential of Epiphytic Bacteria Isolated in Kazakhstan against Erwinia amylovora, the Causal Agent of Fire Blight

Authors: Assel E. Molzhigitova, Amankeldi K. Sadanov, Elvira T. Ismailova, Kulyash A. Iskandarova, Olga N. Shemshura, Ainur I. Seitbattalova

Abstract:

Fire blight is a very harmful for commercial apple and pear production quarantine bacterial disease. To date, several different methods have been proposed for disease control, including the use of copperbased preparations and antibiotics, which are not always reliable or effective. The use of bacteria as biocontrol agents is one of the most promising and eco-friendly alternative methods. Bacteria with protective activity against the causal agent of fire blight are often present among the epiphytic microorganisms of the phyllosphere of host plants. Therefore, the main objective of our study was screening of local epiphytic bacteria as possible antagonists against Erwinia amylovora, the causal agent of fire blight. Samples of infected organs of apple and pear trees (shoots, leaves, fruits) were collected from the industrial horticulture areas in various agro-ecological zones of Kazakhstan. Epiphytic microorganisms were isolated by standard and modified methods on specific nutrient media. The primary screening of selected microorganisms under laboratory conditions to determine the ability to suppress the growth of Erwinia amylovora was performed by agar-diffusion-test. Among 142 bacteria isolated from the fire blight host plants, 5 isolates, belonging to the genera Bacillus, Lactobacillus, Pseudomonas, Paenibacillus and Pantoea showed higher antagonistic activity against the pathogen. The diameters of inhibition zone have been depended on the species and ranged from 10 mm to 48 mm. The maximum diameter of inhibition zone (48 mm) was exhibited by B. amyloliquefaciens. Less inhibitory effect was showed by Pantoea agglomerans PA1 (19 mm). The study of inhibitory effect of Lactobacillus species against E. amylovora showed that among 7 isolates tested only one (Lactobacillus plantarum 17M) demonstrated inhibitory zone (30 mm). In summary, this study was devoted to detect the beneficial epiphytic bacteria from plants organs of pear and apple trees due to fire blight control in Kazakhstan. Results obtained from the in vitro experiments showed that the most efficient bacterial isolates are Lactobacillus plantarum 17M, Bacillus amyloliquefaciens MB40, and Pantoea agglomerans PA1. These antagonists are suitable for development as biocontrol agents for fire blight control. Their efficacies will be evaluated additionally, in biological tests under in vitro and field conditions during our further study.

Keywords: antagonists, epiphytic bacteria, Erwinia amylovora, fire blight

Procedia PDF Downloads 168
1348 Potential of ᵞ-Polyglutamic Acid for Cadmium Toxicity Alleviation in Rice

Authors: N. Kotabin, Y. Tahara, K. Issakul, O. Chunhachart

Abstract:

Cadmium (II) (Cd) is one of the major toxic elemental pollutants which is hazardous for humans, animals and plants. γ-Polyglutamic acid (γ-PGA) is an extracellular biopolymer produced by several species of Bacillus which has been reported to be an effective biosorbent for metal ions. The effect of γ-PGA on growth of rice grown under laboratory conditions was investigated. Rice seeds were germinated and then grown at 30±1°C on filter paper soaked with Cd solution and γ-PGA for 7 days. The result showed that Cd significantly inhibited the growth of roots and shoots by reducing root and shoot lengths. Fresh and dry weights also decreased compared with control; however, the addition of 500 mg•L-1 γ-PGA alleviated rice seedlings from the adverse effects of Cd. The analysis of physiological traits revealed that Cd caused a decrease in the total chlorophyll and soluble protein contents and amylase activities in all treatments. The Cd content in seedling tissues increased for the Cd 250 μM treatment (P < 0.05) but the addition of 500 mg•L-1 γ-PGA resulted in a noticeable decrease in Cd (P < 0.05).

Keywords: polyglutamic acid, cadmium, rice, bacillus subtilis

Procedia PDF Downloads 300
1347 The Efficacy of Thymbra spicata Ethanolic Extract and its Main Component Carvacrol on In vitro Model of Metabolically-Associated Dysfunctions

Authors: Farah Diab, Mohamad Khalil, Francesca Storace, Francesca Baldini, Piero Portincasaa, Giulio Lupidi, Laura Vergani

Abstract:

Thymbra spicata is a thyme-like plant belonging to the Lamiaceae family that shows a global distribution, especially in the eastern Mediterranean region. Leaves of T. spicata contain large amounts of phenols such as phenolic acids (rosmarinic acid), phenolic monoterpenes (carvacrol), and flavonoids. In Lebanon, T. spicata is currently used as a culinary herb in salad and infusion, as well as for traditional medicinal purposes. Carvacrol (5-isopropyl-2-methyl phenol), the most abundant polyphenol in the organic extract and essential oils, has a great array of pharmacological properties. In fact, carvacrol is largely employed as a food additive and neutraceutical agent. Our aim is to investigate the beneficial effects of T. spicata ethanolic extract (TE) and its main component, carvacrol, using in vitro models of hepatic steatosis and endothelial dysfunction. As a further point, we focused on investigating if and how the binding of carvacrol to albumin, the physiological transporter for drugs in the blood, might be altered by the presence of high levels of fatty acids (FAs), thus impairing the carvacrol bio-distribution in vivo. For that reason, hepatic FaO cells treated with exogenous FAs such as oleate and palmitate mimic hepatosteatosis; endothelial HECV cells exposed to hydrogen peroxide are a model of endothelial dysfunction. In these models, we measured lipid accumulation, free radical production, lipoperoxidation, and nitric oxide release before and after treatment with carvacrol. The carvacrol binding to albumin with/without high levels of long-chain FAs was assessed by absorption and emission spectroscopies. Our findings show that both TE and carvacrol (i) counteracted lipid accumulation in hepatocytes by decreasing the intracellular and extracellular lipid contents in steatotic FaO cells; (ii) decreased oxidative stress in endothelial cells by significantly reducing lipoperoxidation and free radical production, as well as, attenuating the nitric oxide release; (ii) high levels of circulating FAs reduced the binding of carvacrol to albumin. The beneficial effects of TE and carvacrol on both hepatic and endothelial cells point to a nutraceutical potential. However, high levels of circulating FAs, such as those occurring in metabolic disorders, might hinder the carvacrol transport, bio-distribution, and pharmacodynamics.

Keywords: carvacrol, endothelial dysfunction, fatty acids, non-alcoholic fatty liver diseases, serum albumin

Procedia PDF Downloads 194
1346 Impact of Fluoride Contamination on Soil and Water at North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

Fluoride contamination is a growing concern in various regions across the globe, including North 24 Parganas in West Bengal, India. The presence of excessive fluoride in the environment can have detrimental effects on crops, soil quality, and water resources. This note aims to shed light on the implications of fluoride contamination and its impact on the agricultural sector in North 24 Parganas. The agricultural lands in North 24 Parganas have been significantly affected by fluoride contamination, leading to adverse consequences for crop production. Excessive fluoride uptake by plants can hinder their growth, reduce crop yields, and impact the quality of agricultural produce. Certain crops, such as paddy, vegetables, and fruits, are more susceptible to fluoride toxicity, resulting in stunted growth, leaf discoloration, and reduced nutritional value. Fluoride-contaminated water, often used for irrigation, contributes to the accumulation of fluoride in the soil. Over time, this can lead to soil degradation and reduced fertility. High fluoride levels can alter soil pH, disrupt the availability of essential nutrients, and impair microbial activity critical for nutrient cycling. Consequently, the overall health and productivity of the soil are compromised, making it increasingly challenging for farmers to sustain agricultural practices. Fluoride contamination in North 24 Parganas extends beyond the soil and affects water resources as well. The excess fluoride seeps into groundwater, making it unsafe for consumption. Long-term consumption of fluoride-contaminated water can lead to various health issues, including dental and skeletal fluorosis. These health concerns pose significant risks to the local population, especially those reliant on contaminated water sources for their daily needs. Addressing fluoride contamination requires concerted efforts from various stakeholders, including government authorities, researchers, and farmers. Implementing appropriate water treatment technologies, such as defluoridation units, can help reduce fluoride levels in drinking water sources. Additionally, promoting alternative irrigation methods and crop diversification strategies can aid in mitigating the impact of fluoride on agricultural productivity. Furthermore, creating awareness among farmers about the adverse effects of fluoride contamination and providing access to alternative water sources are crucial steps toward safeguarding the health of the community and sustaining agricultural activities in the region. Fluoride contamination poses significant challenges to crop production, soil health, and water resources in North 24 Parganas, West Bengal. It is imperative to prioritize efforts to address this issue effectively and implement appropriate measures to mitigate fluoride contamination. By adopting sustainable practices and promoting awareness, the community can work towards restoring the agricultural productivity, soil quality and ensuring access to safe drinking water in the region.

Keywords: fluoride contamination, drinking water, toxicity, soil health

Procedia PDF Downloads 114
1345 In Vitro Evaluation of a Chitosan-Based Adhesive to Treat Bone Fractures

Authors: Francisco J. Cedano, Laura M. Pinzón, Camila I. Castro, Felipe Salcedo, Juan P. Casas, Juan C. Briceño

Abstract:

Complex fractures located in articular surfaces are challenging to treat and their reduction with conventional treatments could compromise the functionality of the affected limb. An adhesive material to treat those fractures is desirable for orthopedic surgeons. This adhesive must be biocompatible and have a high adhesion to bone surface in an aqueous environment. The proposed adhesive is based on chitosan, given its adhesive and biocompatibility properties. Chitosan is mixed with calcium carbonate and hydroxyapatite, which contribute to structural support and a gel like behavior, and glutaraldehyde is used as a cross-linking agent to keep the adhesive mechanical performance in aqueous environment. This work aims to evaluate the rheological, adhesion strength and biocompatibility properties of the proposed adhesive using in vitro tests. The gelification process of the adhesive was monitored by oscillatory rheometry in an ARG-2 TA Instruments rheometer, using a parallel plate geometry of 22 mm and a gap of 1 mm. Time sweep experiments were conducted at 1 Hz frequency, 1% strain and 37°C from 0 to 2400 s. Adhesion strength is measured using a butt joint test with bovine cancellous bone fragments as substrates. The test is conducted at 5 min, 20min and 24 hours after curing the adhesive under water at 37°C. Biocompatibility is evaluated by a cytotoxicity test in a fibroblast cell culture using MTT assay and SEM. Rheological results concluded that the average gelification time of the adhesive is 820±107 s, also it reaches storage modulus magnitudes up to 106 Pa; The adhesive show solid-like behavior. Butt joint test showed 28.6 ± 9.2 kPa of tensile bond strength for the adhesive cured for 24 hours. Also there was no significant difference in adhesion strength between 20 minutes and 24 hours. MTT showed 70 ± 23 % of active cells at sixth day of culture, this percentage is estimated respect to a positive control (only cells with culture medium and bovine serum). High vacuum SEM observation permitted to localize and study the morphology of fibroblasts presented in the adhesive. All captured fibroblasts presented in SEM typical flatted structure with filopodia growth attached to adhesive surface. This project reports an adhesive based on chitosan that is biocompatible due to high active cells presented in MTT test and these results were correlated using SEM. Also, it has adhesion properties in conditions that model the clinical application, and the adhesion strength do not decrease between 5 minutes and 24 hours.

Keywords: bioadhesive, bone adhesive, calcium carbonate, chitosan, hydroxyapatite, glutaraldehyde

Procedia PDF Downloads 322
1344 Spray-Dried, Biodegradable, Drug-Loaded Microspheres for Use in the Treatment of Lung Diseases

Authors: Mazen AlGharsan

Abstract:

Objective: The Carbopol Microsphere of Linezolid, a drug used to treat lung disease (pulmonary disease), was prepared using Buchi B-90 nano spray-drier. Methods: Production yield, drug content, external morphology, particle size, and in vitro release pattern were performed. Results: The work was 79.35%, and the drug content was 66.84%. The surface of the particles was shriveled in shape, with particle size distribution with a mean diameter of 9.6 µm; the drug was released in a biphasic manner with an initial release of 25.2 ± 5.7% at 60 minutes. It later prolonged the release by 95.5 ± 2.5% up to 12 hours. Differential scanning calorimetry (DSC) revealed no change in the melting point of the formulation. Fourier-transform infrared (FT-IR) studies showed no polymer-drug interaction in the prepared nanoparticles.

Keywords: nanotechnology, drug delivery, Linezolid, lung disease

Procedia PDF Downloads 15
1343 Enhancement of Radiosensitization by Aptamer 5TR1-Functionalized AgNCs for Triple-Negative Breast Cancer

Authors: Xuechun Kan, Dongdong Li, Fan Li, Peidang Liu

Abstract:

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with a poor prognosis, and radiotherapy is one of the main treatment methods. However, due to the obvious resistance of tumor cells to radiotherapy, high dose of ionizing radiation is required during radiotherapy, which causes serious damage to normal tissues near the tumor. Therefore, how to improve radiotherapy resistance and enhance the specific killing of tumor cells by radiation is a hot issue that needs to be solved in clinic. Recent studies have shown that silver-based nanoparticles have strong radiosensitization, and silver nanoclusters (AgNCs) also provide a broad prospect for tumor targeted radiosensitization therapy due to their ultra-small size, low toxicity or non-toxicity, self-fluorescence and strong photostability. Aptamer 5TR1 is a 25-base oligonucleotide aptamer that can specifically bind to mucin-1 highly expressed on the membrane surface of TNBC 4T1 cells, and can be used as a highly efficient tumor targeting molecule. In this study, AgNCs were synthesized by DNA template based on 5TR1 aptamer (NC-T5-5TR1), and its role as a targeted radiosensitizer in TNBC radiotherapy was investigated. The optimal DNA template was first screened by fluorescence emission spectroscopy, and NC-T5-5TR1 was prepared. NC-T5-5TR1 was characterized by transmission electron microscopy, ultraviolet-visible spectroscopy and dynamic light scattering. The inhibitory effect of NC-T5-5TR1 on cell activity was evaluated using the MTT method. Laser confocal microscopy was employed to observe NC-T5-5TR1 targeting 4T1 cells and verify its self-fluorescence characteristics. The uptake of NC-T5-5TR1 by 4T1 cells was observed by dark-field imaging, and the uptake peak was evaluated by inductively coupled plasma mass spectrometry. The radiation sensitization effect of NC-T5-5TR1 was evaluated through cell cloning and in vivo anti-tumor experiments. Annexin V-FITC/PI double staining flow cytometry was utilized to detect the impact of nanomaterials combined with radiotherapy on apoptosis. The results demonstrated that the particle size of NC-T5-5TR1 is about 2 nm, and the UV-visible absorption spectrum detection verifies the successful construction of NC-T5-5TR1, and it shows good dispersion. NC-T5-5TR1 significantly inhibited the activity of 4T1 cells and effectively targeted and fluoresced within 4T1 cells. The uptake of NC-T5-5TR1 reached its peak at 3 h in the tumor area. Compared with AgNCs without aptamer modification, NC-T5-5TR1 exhibited superior radiation sensitization, and combined radiotherapy significantly inhibited the activity of 4T1 cells and tumor growth in 4T1-bearing mice. The apoptosis level of NC-T5-5TR1 combined with radiation was significantly increased. These findings provide important theoretical and experimental support for NC-T5-5TR1 as a radiation sensitizer for TNBC.

Keywords: 5TR1 aptamer, silver nanoclusters, radio sensitization, triple-negative breast cancer

Procedia PDF Downloads 64
1342 MCD-017: Potential Candidate from the Class of Nitroimidazoles to Treat Tuberculosis

Authors: Gurleen Kour, Mowkshi Khullar, B. K. Chandan, Parvinder Pal Singh, Kushalava Reddy Yumpalla, Gurunadham Munagala, Ram A. Vishwakarma, Zabeer Ahmed

Abstract:

New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). Apart from in-vitro potency against the target, physiochemical properties and pharmacokinetic properties play an imperative role in the process of drug discovery. We have identified novel nitroimidazole derivatives with potential activity against mycobacterium tuberculosis. One lead candidates, MCD-017, which showed potent activity against H37Rv strain (MIC=0.5µg/ml) and was further evaluated in the process of drug development. Methods: Basic physicochemical parameters like solubility and lipophilicity (LogP) were evaluated. Thermodynamic solubility was determined in PBS buffer (pH 7.4) using LC/MS-MS. The partition coefficient (Log P) of the compound was determined between octanol and phosphate buffered saline (PBS at pH 7.4) at 25°C by the microscale shake flask method. The compound followed Lipinski’s rule of five, which is predictive of good oral bioavailability and was further evaluated for metabolic stability. In-vitro metabolic stability was determined in rat liver microsomes. The hepatotoxicity of the compound was also determined in HepG2 cell line. In vivo pharmacokinetic profile of the compound after oral dosing was also obtained using balb/c mice. Results: The compound exhibited favorable solubility and lipophilicity. The physical and chemical properties of the compound were made use of as the first determination of drug-like properties. The compound obeyed Lipinski’s rule of five, with molecular weight < 500, number of hydrogen bond donors (HBD) < 5 and number of hydrogen bond acceptors(HBA) not more then 10. The log P of the compound was less than 5 and therefore the compound is predictive of exhibiting good absorption and permeation. Pooled rat liver microsomes were prepared from rat liver homogenate for measuring the metabolic stability. 99% of the compound was not metabolized and remained intact. The compound did not exhibit cytoxicity in hepG2 cells upto 40 µg/ml. The compound revealed good pharmacokinetic profile at a dose of 5mg/kg administered orally with a half life (t1/2) of 1.15 hours, Cmax of 642ng/ml, clearance of 4.84 ml/min/kg and a volume of distribution of 8.05 l/kg. Conclusion : The emergence of multi drug resistance (MDR) and extensively drug resistant (XDR) Tuberculosis emphasize the requirement of novel drugs active against tuberculosis. Thus, the need to evaluate physicochemical and pharmacokinetic properties in the early stages of drug discovery is required to reduce the attrition associated with poor drug exposure. In summary, it can be concluded that MCD-017 may be considered a good candidate for further preclinical and clinical evaluations.

Keywords: mycobacterium tuberculosis, pharmacokinetics, physicochemical properties, hepatotoxicity

Procedia PDF Downloads 457
1341 Telomerase, a Biomarker in Oral Cancer Cell Proliferation and Tool for Its Prevention at Initial Stage

Authors: Shaista Suhail

Abstract:

As cancer populations is increasing sharply, the incidence of oral squamous cell carcinoma (OSCC) has also been expected to increase. Oral carcinogenesis is a highly complex, multistep process which involves accumulation of genetic alterations that lead to the induction of proteins promoting cell growth (encoded by oncogenes), increased enzymatic (telomerase) activity promoting cancer cell proliferation. The global increase in frequency and mortality, as well as the poor prognosis of oral squamous cell carcinoma, has intensified current research efforts in the field of prevention and early detection of this disease. The advances in the understanding of the molecular basis of oral cancer should help in the identification of new markers. The study of the carcinogenic process of the oral cancer, including continued analysis of new genetic alterations, along with their temporal sequencing during initiation, promotion and progression, will allow us to identify new diagnostic and prognostic factors, which will provide a promising basis for the application of more rational and efficient treatments. Telomerase activity has been readily found in most cancer biopsies, in premalignant lesions or germ cells. Activity of telomerase is generally absent in normal tissues. It is known to be induced upon immortalization or malignant transformation of human cells such as in oral cancer cells. Maintenance of telomeres plays an essential role during transformation of precancer to malignant stage. Mammalian telomeres, a specialized nucleoprotein structures are composed of large conctamers of the guanine-rich sequence 5_-TTAGGG-3_. The roles of telomeres in regulating both stability of genome and replicative immortality seem to contribute in essential ways in cancer initiation and progression. It is concluded that activity of telomerase can be used as a biomarker for diagnosis of malignant oral cancer and a target for inactivation in chemotherapy or gene therapy. Its expression will also prove to be an important diagnostic tool as well as a novel target for cancer therapy. The activation of telomerase may be an important step in tumorgenesis which can be controlled by inactivating its activity during chemotherapy. The expression and activity of telomerase are indispensable for cancer development. There are no drugs which can effect extremely to treat oral cancers. There is a general call for new emerging drugs or methods that are highly effective towards cancer treatment, possess low toxicity, and have a minor environment impact. Some novel natural products also offer opportunities for innovation in drug discovery. Natural compounds isolated from medicinal plants, as rich sources of novel anticancer drugs, have been of increasing interest with some enzyme (telomerase) blockage property. The alarming reports of cancer cases increase the awareness amongst the clinicians and researchers pertaining to investigate newer drug with low toxicity.

Keywords: oral carcinoma, telomere, telomerase, blockage

Procedia PDF Downloads 175
1340 Characterization of Herberine Hydrochloride Nanoparticles

Authors: Bao-Fang Wen, Meng-Na Dai, Gao-Pei Zhu, Chen-Xi Zhang, Jing Sun, Xun-Bao Yin, Yu-Han Zhao, Hong-Wei Sun, Wei-Fen Zhang

Abstract:

A drug-loaded nanoparticles containing berberine hydrochloride (BH/FA-CTS-NPs) was prepared. The physicochemical characterizations of BH/FA-CTS-NPs and the inhibitory effect on the HeLa cells were investigated. Folic acid-conjugated chitosan (FA-CTS) was prepared by amino reaction of folic acid active ester and chitosan molecules; BH/FA-CTS-NPs were prepared using ionic cross-linking technique with BH as a model drug. The morphology and particle size were determined by Transmission Electron Microscope (TEM). The average diameters and polydispersity index (PDI) were evaluated by Dynamic Light Scattering (DLS). The interaction between various components and the nanocomplex were characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The entrapment efficiency (EE), drug-loading (DL) and in vitro release were studied by UV spectrophotometer. The effect of cell anti-migratory and anti-invasive actions of BH/FA-CTS-NPs were investigated using MTT assays, wound healing assays, Annexin-V-FITC single staining assays, and flow cytometry, respectively. HeLa nude mice subcutaneously transplanted tumor model was established and treated with different drugs to observe the effect of BH/FA-CTS-NPs in vivo on HeLa bearing tumor. The BH/FA-CTS-NPs prepared in this experiment have a regular shape, uniform particle size, and no aggregation phenomenon. The results of DLS showed that mean particle size, PDI and Zeta potential of BH/FA-CTS NPs were (249.2 ± 3.6) nm, 0.129 ± 0.09, 33.6 ± 2.09, respectively, and the average diameter and PDI were stable in 90 days. The results of FT-IR demonstrated that the characteristic peaks of FA-CTS and BH/FA-CTS-NPs confirmed that FA-CTS cross-linked successfully and BH was encapsulated in NPs. The EE and DL amount were (79.3 ± 3.12) % and (7.24 ± 1.41) %, respectively. The results of in vitro release study indicated that the cumulative release of BH/FA-CTS NPs was (89.48±2.81) % in phosphate-buffered saline (PBS, pH 7.4) within 48h; these results by MTT assays and wund healing assays indicated that BH/FA-CTS NPs not only inhibited the proliferation of HeLa cells in a concentration and time-dependent manner but can induce apoptosis as well. The subcutaneous xenograft tumor formation rate of human cervical cancer cell line HeLa in nude mice was 98% after inoculation for 2 weeks. Compared with BH group and BH/CTS-NPs group, the xenograft tumor growth of BH/FA-CTS-NPs group was obviously slower; the result indicated that BH/FA-CTS-NPs could significantly inhibit the growth of HeLa xenograft tumor. BH/FA-CTS NPs with the sustained release effect could be prepared successfully by the ionic crosslinking method. Considering these properties, block proliferation and impairing the migration of the HeLa cell line, BH/FA-CTS NPs could be an important compound for consideration in the treatment of cervical cancer.

Keywords: folic-acid, chitosan, berberine hydrochloride, nanoparticles, cervical cancer

Procedia PDF Downloads 122
1339 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model

Authors: Yew Mun Yip, Dawei Zhang

Abstract:

Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.

Keywords: hydrogen bond, polarization effect, protein folding, PSBC

Procedia PDF Downloads 270
1338 Combined Effect of Vesicular System and Iontophoresis on Skin Permeation Enhancement of an Analgesic Drug

Authors: Jigar N. Shah, Hiral J. Shah, Praful D. Bharadia

Abstract:

The major challenge faced by formulation scientists in transdermal drug delivery system is to overcome the inherent barriers related to skin permeation. The stratum corneum layer of the skin is working as the rate limiting step in transdermal transport and reduce drug permeation through skin. Many approaches have been used to enhance the penetration of drugs through this layer of the skin. The purpose of this study is to investigate the development and evaluation of a combined approach of drug carriers and iontophoresis as a vehicle to improve skin permeation of an analgesic drug. Iontophoresis is a non-invasive technique for transporting charged molecules into and through tissues by a mild electric field. It has been shown to effectively deliver a variety of drugs across the skin to the underlying tissue. In addition to the enhanced continuous transport, iontophoresis allows dose titration by adjusting the electric field, which makes personalized dosing feasible. Drug carrier could modify the physicochemical properties of the encapsulated molecule and offer a means to facilitate the percutaneous delivery of difficult-to-uptake substances. Recently, there are some reports about using liposomes, microemulsions and polymeric nanoparticles as vehicles for iontophoretic drug delivery. Niosomes, the nonionic surfactant-based vesicles that are essentially similar in properties to liposomes have been proposed as an alternative to liposomes. Niosomes are more stable and free from other shortcoming of liposomes. Recently, the transdermal delivery of certain drugs using niosomes has been envisaged and niosomes have proved to be superior transdermal nanocarriers. Proniosomes overcome some of the physical stability related problems of niosomes. The proniosomal structure was liquid crystalline-compact niosomes hybrid which could be converted into niosomes upon hydration. The combined use of drug carriers and iontophoresis could offer many additional benefits. The system was evaluated for Encapsulation Efficiency, vesicle size, zeta potential, Transmission Electron Microscopy (TEM), DSC, in-vitro release, ex-vivo permeation across skin and rate of hydration. The use of proniosomal gel as a vehicle for the transdermal iontophoretic delivery was evaluated in-vitro. The characteristics of the applied electric current, such as density, type, frequency, and on/off interval ratio were observed. The study confirms the synergistic effect of proniosomes and iontophoresis in improving the transdermal permeation profile of selected analgesic drug. It is concluded that proniosomal gel can be used as a vehicle for transdermal iontophoretic drug delivery under suitable electric conditions.

Keywords: iontophoresis, niosomes, permeation enhancement, transdermal delivery

Procedia PDF Downloads 381
1337 Quantitative Elemental Analysis of Cyperus rotundus Medicinal Plant by Particle Induced X-Ray Emission and ICP-MS Techniques

Authors: J. Chandrasekhar Rao, B. G. Naidu, G. J. Naga Raju, P. Sarita

Abstract:

Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques have been employed in this work to determine the elements present in the root of Cyperus rotundus medicinal plant used in the treatment of rheumatoid arthritis. The elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, and Sr were commonly identified and quantified by both PIXE and ICP-MS whereas the elements Li, Be, Al, As, Se, Ag, Cd, Ba, Tl, Pb and U were determined by ICP-MS and Cl, K, Ca, Ti and Br were determined by PIXE. The regional variation of elemental content has also been studied by analyzing the same plant collected from different geographical locations. Information on the elemental content of the medicinal plant would be helpful in correlating its ability in the treatment of rheumatoid arthritis and also in deciding the dosage of this herbal medicine from the metal toxicity point of view. Principal component analysis and cluster analysis were also applied to the data matrix to understand the correlation among the elements.

Keywords: PIXE, CP-MS, elements, Cyperus rotundus, rheumatoid arthritis

Procedia PDF Downloads 334
1336 The Enzyme Inhibitory Potentials of Different Extracts from Linaria genistifolia subsp. genistifolia

Authors: Gokhan Zengin, Abdurrahman Aktumsek

Abstract:

The key enzyme inhibitory theory is one of the most accepted strategies in the treatment of global health problems including Alzheimer’s Disease and Diabetes mellitus. For this reason, the enzyme inhibitory potentials of different solvent extracts from Linaria genistifolia subsp. genistifolia were investigated against cholinesterase, and tyrosinase. The in vitro enzyme inhibitory potentials were measured with a microplate reader. The acetone and methanol extracts exhibited the strongest enzyme inhibitory effects on cholinesterase. However, the water extract was only active on tyrosinase. The results suggested that Linaria genistifolia subsp. genistifolia could be considered as a source of natural enzyme inhibitors for the treatment of major health problems.

Keywords: enzyme inhibitors, cholinesterase, tyrosinase, linaria, Turkey

Procedia PDF Downloads 310
1335 A Turn-on Fluorescent Sensor for Pb(II)

Authors: Ece Kök Yetimoğlu, Soner Çubuk, Neşe Taşci, M. Vezir Kahraman

Abstract:

Lead(II) is one of the most toxic environmental pollutants in the world, due to its high toxicity and non-biodegradability. Lead exposure causes severe risks to human health such as central brain damages, convulsions, kidney damages, and even death. To determine lead(II) in environmental or biological samples, scientists use atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICPMS), fluorescence spectrometry and electrochemical techniques. Among these systems the fluorescence spectrometry and fluorescent chemical sensors have attracted considerable attention because of their good selectivity and high sensitivity. The fluorescent polymers usually contain covalently bonded fluorophores. In this study imidazole based UV cured polymeric film was prepared and designed to act as a fluorescence chemo sensor for lead (II) analysis. The optimum conditions such as influence of pH value and time on the fluorescence intensity of the sensor have also been investigated. The sensor was highly sensitive with a detection limit as low as 1.87 × 10−8 mol L-1 and it was successful in the determination of Pb(II) in water samples.

Keywords: fluorescence, lead(II), photopolymerization, polymeric sensor

Procedia PDF Downloads 672
1334 Selection of Endophytcs Fungi Isolated from Date Palm, Halotolerants and Productors of Secondary Metabolite

Authors: Fadila Mohamed Mahmoud., Derkaoui I., Krimi Z.

Abstract:

Date palm is a plant which presents a very good adaptation to the difficult conditions of the environment in particular to the drought and saline stress even at high temperatures. This adaptation is related on the biology of the plant and to the presence of a microflora endophyte which live inside its tissues. Fifteen endophytics fungi isolated from date palm were tested in vitro in the presence of various NaCl concentrations to select halotolerantes isolates. These same endophytes were tested for their colonizing capacity by the description of the production of secondary metabolites more particularly the enzymes (pectinases, proteases, and phosphorylases), and the production of antibiotics and growth hormones. Significant difference was observed between the isolates with respect to the tests carried out.

Keywords: Date palm, Halotolerantes, endophyte, Secondary metabolites.

Procedia PDF Downloads 520
1333 Biodegradation of Cellulosic Materials by Marine Fungi Isolated from South Corniche of Jeddah, Saudi Arabia

Authors: Fuad Ameen, Mohamed Moslem, Sarfaraz Hadi

Abstract:

Twenty-eight fungal isolates belonging to 12 genera were derived from debris, sediment and water samples collected from Avicennia marina stands 25km south of Jeddah city on the Red Sea coast of Saudi Arabia. Eight of these isolates were found to be able to grow in association cellulosic waste materials under in vitro conditions in the absence of any carbon source. Isolates were further tested for their potential to degrade paper and clothes wastes by co-cultivation under aeration on a rotary shaker. These fungi accumulated significantly higher biomass, produced ligninolytic and cellulase enzymes, and liberated larger volumes of CO2. These observations indicated that the selected isolates were able to break down and consume the waste materials.

Keywords: biodegradation, enzyme activity, waste materials, mangrove

Procedia PDF Downloads 569
1332 Municipal Leachate Treatment by Using Polyaluminium Chloride as a Coagulant

Authors: Syeda Azeem Unnisa

Abstract:

The present study was undertaken at Jawaharnagar Solid Waste Municipal Dumpsite, Greater Hyderabad Municipal Corporation, Telangana State, India in 2017 which generates 90,000 litres of leachate per day. The main objective of the leachate treatment was to remove organic compounds like color, suspended solids, ammonia and COD by coagulation-flocculation using polyaluminum chloride (PAC) as coagulant which has higher coagulant efficiency and relative low cost compared to the conventional coagulants. Jar test apparatus was used to conduct experiments for pH 7, rapid mixing speed 150 rpm for 3 minute, slow mixing speed 30 rpm for 20 minute and the settling time of 30 minute for different dosage of PAC (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and 5.0 g/L). The highest percentage of removal of suspended solids, color, COD and ammonical nitrogen are 97%, 96%, 60% and 37% with PAC optimum dose of 2.0 g/l. The results indicate that the PAC was effective in leachate treatment which is very much suitable for high toxicity of waste and economically feasible for Indian conditions. The treated water can be utilized for other purpose apart from drinking.

Keywords: coagulant, leachate, polyaluminium chloride, treatment

Procedia PDF Downloads 210
1331 Pickering Dry Emulsion System for Dissolution Enhancement of Poorly Water Soluble Drug (Fenofibrate)

Authors: Nitin Jadhav, Pradeep R. Vavia

Abstract:

Poor water soluble drugs are difficult to promote for oral drug delivery as they demonstrate poor and variable bioavailability because of its poor solubility and dissolution in GIT fluid. Nowadays lipid based formulations especially self microemulsifying drug delivery system (SMEDDS) is found as the most effective technique. With all the impressive advantages, the need of high amount of surfactant (50% - 80%) is the major drawback of SMEDDS. High concentration of synthetic surfactant is known for irritation in GIT and also interference with the function of intestinal transporters causes changes in drug absorption. Surfactant may also reduce drug activity and subsequently bioavailability due to the enhanced entrapment of drug in micelles. In chronic treatment these issues are very conspicuous due to the long exposure. In addition the liquid self microemulsifying system also suffers from stability issues. Recently one novel approach of solid stabilized micro and nano emulsion (Pickering emulsion) has very admirable properties such as high stability, absence or very less concentration of surfactant and easily converts into the dry form. So here we are exploring pickering dry emulsion system for dissolution enhancement of anti-lipemic, extremely poorly water soluble drug (Fenofibrate). Oil moiety for emulsion preparation was selected mainly on the basis of higher solubility of drug. Captex 300 was showed higher solubility for fenofibrate, hence selected as oil for emulsion. With Silica (solid stabilizer); Span 20 was selected to improve the wetting property of it. Emulsion formed by Silica and Span20 as stabilizer at the ratio 2.5:1 (silica: span 20) was found very stable at the particle size 410 nm. The prepared emulsion was further preceded for spray drying and formed microcapsule evaluated for in-vitro dissolution study, in-vivo pharmacodynamic study and characterized for DSC, XRD, FTIR, SEM, optical microscopy etc. The in vitro study exhibits significant dissolution enhancement of formulation (85 % in 45 minutes) as compared to plain drug (14 % in 45 minutes). In-vivo study (Triton based hyperlipidaemia model) exhibits significant reduction in triglyceride and cholesterol with formulation as compared to plain drug indicating increasing in fenofibrate bioavailability. DSC and XRD study exhibit loss of crystallinity of drug in microcapsule form. FTIR study exhibit chemical stability of fenofibrate. SEM and optical microscopy study exhibit spherical structure of globule coated with solid particles.

Keywords: captex 300, fenofibrate, pickering dry emulsion, silica, span20, stability, surfactant

Procedia PDF Downloads 499
1330 Micropropagation of Pelargonium odoratissimum (L.) L’Her., Using Petiole and Leaf Explants

Authors: Mohammad Ali Aazami Mavaloo, Mohammad Bagher Hassanpouraghdam

Abstract:

Intact leaves, leaf segments and petiole sections derived from nodal explants in vitro were employed for the optimization of Pelargonium odoratissimum micropropagation. MS and ½ MS media enriched with BAP (1, 1.5, 2 and 4.5 mg/l) and NAA (0.1, 1 and 1.5 mg/l) were the treatment combinations used for. With leaf segments, the lowest browning incidence, the greatest callogenesis and the highest number of shoots were obtained with the media containing 1.5 mg/L BAP and 1 mg/L NAA. Two mg/L BAP + 0.1 mg/L NAA hold the same results for petiole explants. Intact leaves showed the best results for the three before-mentioned traits with 1 mg/L BAP + 1 mg/L NAA. 0.2 mg/L NAA caused the highest rooting percentage and the greatest mean data for the number and length of the roots. Rooted plantlets were transferred to the pots containing 1:1 peat-moss and perlite. Acclimatization of the plantlets was followed by 90 percent of survival rate in the greenhouse.

Keywords: Pelargonium odoratissimum, micropropagation, BAP, NAA

Procedia PDF Downloads 400
1329 Evaluation of Antidiabetic Activity of a Combination Extract of Nigella Sativa & Cinnamomum Cassia in Streptozotocin Induced Type-I Diabetic Rats

Authors: Ginpreet Kaur, Mohammad Yasir Usmani, Mohammed Kamil Khan

Abstract:

Diabetes mellitus is a disease with a high global burden and results in significant morbidity and mortality. In India, the number of people suffering with diabetes is expected to rise from 19 to 57 million in 2025. At present, interest in herbal remedies is growing to reduce the side effects associated with conventional dosage form like oral hypoglycemic agents and insulin for the treatment of diabetes mellitus. Our aim was to investigate the antidiabetic activities of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats. Thus, the present study was undertaken to screen postprandial glucose excursion potential through α- glucosidase inhibitory activity (In Vitro) and effect of combinatorial extract of N. sativa & C. cassia in Streptozotocin induced type-I Diabetic Rats (In Vivo). In addition changes in body weight, plasma glucose, lipid profile and kidney profile were also determined. The IC50 values for both extract and Acarbose was calculated by extrapolation method. Combinatorial extract of N. sativa & C. cassia at different dosages (100 and 200 mg/kg orally) and Metformin (50 mg/kg orally) as the standard drug was administered for 28 days and then biochemical estimation, body weights and OGTT (Oral glucose tolerance test) were determined. Histopathological studies were also performed on kidney and pancreatic tissue. In In-Vitro the combinatorial extract shows much more inhibiting effect than the individual extracts. The results reveals that combinatorial extract of N. sativa & C. cassia has shown significant decrease in plasma glucose (p<0.0001), total cholesterol and LDL levels when compared with the STZ group The decreasing level of BUN and creatinine revealed the protection of N. sativa & C. cassia extracts against nephropathy associated with diabetes. Combination of N. sativa & C. cassia significantly improved glucose tolerance to exogenously administered glucose (2 g/kg) after 60, 90 and 120 min interval on OGTT in high dose streptozotocin induced diabetic rats compared with the untreated control group. Histopathological studies shown that treatment with N. sativa & C. cassia extract alone and in combination restored pancreatic tissue integrity and was able to regenerate the STZ damaged pancreatic β cells. Thus, the present study reveals that combination of N. sativa & C. cassia extract has significant α- glucosidase inhibitory activity and thus has great potential as a new source for diabetes treatment.

Keywords: lipid levels, OGTT, diabetes, herbs, glucosidase

Procedia PDF Downloads 432
1328 Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)

Authors: Anupalli Roja Rani, Pavithra Dasari

Abstract:

Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future.

Keywords: coleus barbatus, HPLC, MPLC, NMR, MCF7, flash chromatograph, ESI-MS, FACS, ELISA.

Procedia PDF Downloads 114
1327 Efficacy of Preimplantation Genetic Screening in Women with a Spontaneous Abortion History with Eukaryotic or Aneuploidy Abortus

Authors: Jayeon Kim, Eunjung Yu, Taeki Yoon

Abstract:

Most spontaneous miscarriage is believed to be a consequence of embryo aneuploidies. Transferring eukaryotic embryos selected by PGS is expected to decrease the miscarriage rate. Current PGS indications include advanced maternal age, recurrent pregnancy loss, repeated implantation failure. Recently, use of PGS for healthy women without above indications for the purpose of improving in vitro fertilization (IVF) outcomes is on the rise. However, it is still controversy about the beneficial effect of PGS in this population, especially, in women with a history of no more than 2 miscarriages or miscarriage of eukaryotic abortus. This study aimed to investigate if karyotyping result of abortus is a good indicator of preimplantation genetic screening (PGS) in subsequent IVF cycle in women with a history of spontaneous abortion. A single-center retrospective cohort study was performed. Women who had spontaneous abortion(s) (less than 3) and dilatation and evacuation, and subsequent IVF from January 2016 to November 2016 were included. Their medical information was extracted from the charts. Clinical pregnancy was defined as presence of a gestational sac with fetal heart beat detected on ultrasound in week 7. Statistical analysis was performed using SPSS software. Total 234 women were included. 121 out of 234 (51.7%) underwent karyotyping of the abortus, and 113 did not have the abortus karyotyped. Embryo biopsy was performed on 3 or 5 days after oocyte retrieval, followed by embryo transfer (ET) on a fresh or frozen cycle. The biopsied materials were subjected to microarray comparative genomic hybridization. Clinical pregnancy rate per ET was compared between PGS and non-PGS group in each study group. Patients were grouped by two criteria: karyotype of the abortus from previous miscarriage (unknown fetal karyotype (n=89, Group 1), eukaryotic abortus (n=36, Group 2) or aneuploidy abortus (n=67, Group 3)), and pursuing PGS in subsequent IVF cycle (pursuing PGS (PGS group, n=105) or not pursuing PGS (non-PGS group, n=87)). The PGS group was significantly older and had higher number of retrieved oocytes and prior miscarriages compared to non-PGS group. There were no differences in BMI and AMH level between those two groups. In PGS group, the mean number of transferable embryos (eukaryotic embryo) was 1.3 ± 0.7, 1.5 ± 0.5 and 1.4 ± 0.5, respectively (p = 0.049). In 42 cases, ET was cancelled because all embryos biopsied turned out to be abnormal. In all three groups (group 1, 2, and 3), clinical pregnancy rates were not statistically different between PGS and non-PGS group (Group 1: 48.8% vs. 52.2% (p=0.858), Group 2: 70% vs. 73.1% (p=0.730), Group 3: 42.3% vs. 46.7% (p=0.640), in PGS and non-PGS group, respectively). In both groups who had miscarriage with eukaryotic and aneuploidy abortus, the clinical pregnancy rate between IVF cycles with and without PGS was not different. When we compare miscarriage and ongoing pregnancy rate, there were no significant differences between PGS and non-PGS group in all three groups. Our results show that the routine application of PGS in women who had less than 3 miscarriages would not be beneficial, even in cases that previous miscarriage had been caused by fetal aneuploidy.

Keywords: preimplantation genetic diagnosis, miscarriage, kpryotyping, in vitro fertilization

Procedia PDF Downloads 183