Search results for: conflicting claim on credit of discovery of ridge regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4738

Search results for: conflicting claim on credit of discovery of ridge regression

3838 Challenges in Achieving Profitability for MRO Companies in the Aviation Industry: An Analytical Approach

Authors: Nur Sahver Uslu, Ali̇ Hakan Büyüklü

Abstract:

Maintenance, Repair, and Overhaul (MRO) costs are significant in the aviation industry. On the other hand, companies that provide MRO services to the aviation industry but are not dominant in the sector, need to determine the right strategies for sustainable profitability in a competitive environment. This study examined the operational real data of a small medium enterprise (SME) MRO company where analytical methods are not widely applied. The company's customers were divided into two categories: airline companies and non-airline companies, and the variables that best explained profitability were analyzed with Logistic Regression for each category and the results were compared. First, data reduction was applied to the transformed variables that went through the data cleaning and preparation stages, and the variables to be included in the model were decided. The misclassification rates for the logistic regression results concerning both customer categories are similar, indicating consistent model performance across different segments. Less profit margin is obtained from airline customers, which can be explained by the variables part description, time to quotation (TTQ), turnaround time (TAT), manager, part cost, and labour cost. The higher profit margin obtained from non-airline customers is explained only by the variables part description, part cost, and labour cost. Based on the two models, it can be stated that it is significantly more challenging for the MRO company, which is the subject of our study, to achieve profitability from Airline customers. While operational processes and organizational structure also affect the profit from airline customers, only the type of parts and costs determine the profit for non-airlines.

Keywords: aircraft, aircraft components, aviation, data analytics, data science, gini index, maintenance, repair, and overhaul, MRO, logistic regression, profit, variable clustering, variable reduction

Procedia PDF Downloads 31
3837 Data Privacy: Stakeholders’ Conflicts in Medical Internet of Things

Authors: Benny Sand, Yotam Lurie, Shlomo Mark

Abstract:

Medical Internet of Things (MIoT), AI, and data privacy are linked forever in a gordian knot. This paper explores the conflicts of interests between the stakeholders regarding data privacy in the MIoT arena. While patients are at home during healthcare hospitalization, MIoT can play a significant role in improving the health of large parts of the population by providing medical teams with tools for collecting data, monitoring patients’ health parameters, and even enabling remote treatment. While the amount of data handled by MIoT devices grows exponentially, different stakeholders have conflicting understandings and concerns regarding this data. The findings of the research indicate that medical teams are not concerned by the violation of data privacy rights of the patients' in-home healthcare, while patients are more troubled and, in many cases, are unaware that their data is being used without their consent. MIoT technology is in its early phases, and hence a mixed qualitative and quantitative research approach will be used, which will include case studies and questionnaires in order to explore this issue and provide alternative solutions.

Keywords: MIoT, data privacy, stakeholders, home healthcare, information privacy, AI

Procedia PDF Downloads 100
3836 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control

Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza

Abstract:

In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.

Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing

Procedia PDF Downloads 145
3835 The Effect of Second Victim-Related Distress on Work-Related Outcomes in Tertiary Care, Kelantan, Malaysia

Authors: Ahmad Zulfahmi Mohd Kamaruzaman, Mohd Ismail Ibrahim, Ariffin Marzuki Mokhtar, Maizun Mohd Zain, Saiful Nazri Satiman, Mohd Najib Majdi Yaacob

Abstract:

Background: Aftermath any patient safety incidents, the involved healthcare providers possibly sustained second victim-related distress (second victim distress and reduced their professional efficacy), with subsequent negative work-related outcomes or vice versa cultivating resilience. This study aimed to investigate the factors affecting negative work-related outcomes and resilience, with the triad of support; colleague, supervisor, and institutional support as the hypothetical mediators. Methods: This was a cross sectional study recruiting a total of 733 healthcare providers from three tertiary care in Kelantan, Malaysia. Three steps of hierarchical linear regression were developed for each outcome; negative work-related outcomes and resilience. Then, four multiple mediator models of support triad were analyzed. Results: Second victim distress, professional efficacy, and the support triad contributed significantly for each regression model. In the pathway of professional efficacy on each negative work-related outcomes and resilience, colleague support partially mediated the relationship. As for second victim distress on negative work related outcomes, colleague and supervisor support were the partial mediator, and on resilience; all support triad also produced a similar effect. Conclusion: Second victim distress, professional efficacy, and the support triad influenced the relationship with the negative work-related outcomes and resilience. Support triad as the mediators ameliorated the effect in between and explained the urgency of having good support for recovery post encountering patient safety incidents.

Keywords: second victims, patient safety incidents, hierarchical linear regression, mediation, support

Procedia PDF Downloads 106
3834 Kant on Lying to God: The Intention to Deceive

Authors: James E. Mahon

Abstract:

This paper addresses the important question in the philosophy of lies and deception of whether all lying requires an intention to deceive. It does by examining a recent attempt by two philosophers to argue that Immanuel Kant abandoned the view that all lying requires an intention to deceive, in order to be able to claim that lying to God was possible. Ian Proops and Roy Sorensen have recently argued that although Kant always held that it was impossible for anyone to intend to deceive God, late in his life he came to believe that it was possible to lie to God. Kant came to believe that this was possible, they argue, because Kant came to believe that lying is not always deceptive, and that it was possible to tell non-deceptive lies, including non-deceptive lies to God. In this paper their arguments will be broken down and analyzed. Based on a close textual reading of the published works and the Kant’s lectures on ethics, it will be argued that Proops and Sorensen are wrong about what Kant believed about lying in general and lying to God in particular. This paper concludes that Kant never did abandon the Deceptionist position that all lying requires an intention to deceive.

Keywords: Kant, lie, deception, intention, God, ethics, belief, assertion

Procedia PDF Downloads 40
3833 A New Reliability based Channel Allocation Model in Mobile Networks

Authors: Anujendra, Parag Kumar Guha Thakurta

Abstract:

The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. Thus, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non-dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.

Keywords: base station, channel, GA, pareto-optimal, reliability

Procedia PDF Downloads 408
3832 The Interrelationship between Formal and Informal Institutions and Its Impacts on the Autonomy of Public Service Delivery Units: The Case of Vietnam

Authors: Minh Thi Hai Vo

Abstract:

This article draws on in-depth interviews with state employees at public hospitals and universities in its institutional analysis of the autonomy practices of public service delivery units in Vietnam. Unlike many empirical and theoretical studies that view formal and informal institutions as complements or substitutes, this article finds no evidence of complementary or substitutive relationships. Instead, the article finds that formal institutions accommodate informal ones and that informal institutions tend to compete and interfere, with the existing and ineffective formal institutions. The result of such conflicting relationship is that the actual autonomy of public service delivery units is, in most cases, perceived to be greater than the formal autonomy they are given. In the condition of poor regulation, the informal autonomy may result in unethical practices including rent-seeking and corruption. The implication of the study finding is policy-makers need to redesign and reorganize the autonomisation of public service delivery units to make informal institutions support and reinforce formal ones in a complementary manner.

Keywords: autonomy, formal institutions, informal institutions, public service delivery units, Vietnam

Procedia PDF Downloads 204
3831 Relation between Pavement Roughness and Distress Parameters for Highways

Authors: Suryapeta Harini

Abstract:

Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.

Keywords: roughness index, network survey vehicle, regression, correlation

Procedia PDF Downloads 175
3830 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia

Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza

Abstract:

In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.

Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant

Procedia PDF Downloads 466
3829 The Case of Plagiarism and Its Presence in Classical Arabic Poetry

Authors: Yusuf Seller

Abstract:

Classical Arabic poetry was narrated by the followers of poets, who were memorizing and repeating all the couplets of their master constantly. Although the students established their own styles, it was very natural for them to reflect the style and expression of their masters. This reflection was discussed in classical Arabic literary criticism and rhetoric (al-‘ilm al-balagha), as “al-Sariqah al-shiriyyah”, plagiarism in poetry. This study tests the claim that the reflection of the master's style and expressions in the student's poetry cannot be considered plagiarism. In addition, one of the goals of this essay is also to investigate the methodological emergence of plagiarism phenomena in classical Arabic poetry. The investigation of the methodological origins of plagiarism helps us see the relationship of plagiarism with literary property and the extent of the property`s authenticity. Therefore, the focus is directed towards uncovering the underlying ethical principles governing literary works and academic research in classical Arabic poetry.

Keywords: Arabic literary criticism, classical Arabic poetry, plagiarism, al-Sariqah al-shiriyyah

Procedia PDF Downloads 42
3828 Membrane Permeability of Middle Molecules: A Computational Chemistry Approach

Authors: Sundaram Arulmozhiraja, Kanade Shimizu, Yuta Yamamoto, Satoshi Ichikawa, Maenaka Katsumi, Hiroaki Tokiwa

Abstract:

Drug discovery is shifting from small molecule based drugs targeting local active site to middle molecules (MM) targeting large, flat, and groove-shaped binding sites, for example, protein-protein interface because at least half of all targets assumed to be involved in human disease have been classified as “difficult to drug” with traditional small molecules. Hence, MMs such as peptides, natural products, glycans, nucleic acids with various high potent bioactivities become important targets for drug discovery programs in the recent years as they could be used for ‘undruggable” intracellular targets. Cell membrane permeability is one of the key properties of pharmacodynamically active MM drug compounds and so evaluating this property for the potential MMs is crucial. Computational prediction for cell membrane permeability of molecules is very challenging; however, recent advancement in the molecular dynamics simulations help to solve this issue partially. It is expected that MMs with high membrane permeability will enable drug discovery research to expand its borders towards intracellular targets. Further to understand the chemistry behind the permeability of MMs, it is necessary to investigate their conformational changes during the permeation through membrane and for that their interactions with the membrane field should be studied reliably because these interactions involve various non-bonding interactions such as hydrogen bonding, -stacking, charge-transfer, polarization dispersion, and non-classical weak hydrogen bonding. Therefore, parameters-based classical mechanics calculations are hardly sufficient to investigate these interactions rather, quantum mechanical (QM) calculations are essential. Fragment molecular orbital (FMO) method could be used for such purpose as it performs ab initio QM calculations by dividing the system into fragments. The present work is aimed to study the cell permeability of middle molecules using molecular dynamics simulations and FMO-QM calculations. For this purpose, a natural compound syringolin and its analogues were considered in this study. Molecular simulations were performed using NAMD and Gromacs programs with CHARMM force field. FMO calculations were performed using the PAICS program at the correlated Resolution-of-Identity second-order Moller Plesset (RI-MP2) level with the cc-pVDZ basis set. The simulations clearly show that while syringolin could not permeate the membrane, its selected analogues go through the medium in nano second scale. These correlates well with the existing experimental evidences that these syringolin analogues are membrane-permeable compounds. Further analyses indicate that intramolecular -stacking interactions in the syringolin analogues influenced their permeability positively. These intramolecular interactions reduce the polarity of these analogues so that they could permeate the lipophilic cell membrane. Conclusively, the cell membrane permeability of various middle molecules with potent bioactivities is efficiently studied using molecular dynamics simulations. Insight of this behavior is thoroughly investigated using FMO-QM calculations. Results obtained in the present study indicate that non-bonding intramolecular interactions such as hydrogen-bonding and -stacking along with the conformational flexibility of MMs are essential for amicable membrane permeation. These results are interesting and are nice example for this theoretical calculation approach that could be used to study the permeability of other middle molecules. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 18ae0101047.

Keywords: fragment molecular orbital theory, membrane permeability, middle molecules, molecular dynamics simulation

Procedia PDF Downloads 185
3827 The Impact of Simulation-based Learning on the Clinical Self-efficacy and Adherence to Infection Control Practices of Nursing Students

Authors: Raeed Alanazi

Abstract:

Introduction: Nursing students have a crucial role to play in the inhibition of infectious diseases and, therefore, must be trained in infection control and prevention modules prior to entering clinical settings. Simulations have been found to have a positive impact on infection control skills and the use of standard precautions. Aim: The purpose of this study was to use the four sources of self-efficacy in explaining the level of clinical self-efficacy and adherence to infection control practices in Saudi nursing students during simulation practice. Method: A cross-sectional design with convenience sampling was used. This study was conducted in all Saudi nursing schools, with a total number of 197 students participated in this study. Three scales were used simulation self- efficacy Scale (SSES), the four sources of self-efficacy scale (SSES), and Compliance with Standard Precautions Scale (CSPS). Multiple linear regression was used to test the use of the four sources of self-efficacy (SSES) in explaining level of clinical self-efficacy and adherence to infection control in nursing students. Results: The vicarious experience subscale (p =.044) was statistically significant. The regression model indicated that for every one unit increase in vicarious experience (observation and reflection in simulation), the participants’ adherence to infection control increased by .13 units (β =.22, t = 2.03, p =.044). In addition, the regression model indicated that for every one unit increase in education level, the participants’ adherence to infection control increased by 1.82 units (beta=.34= 3.64, p <.001). Also, the mastery experience subscale (p <.001) and vicarious experience subscale (p = .020) were shared significant associations with clinical self-efficacy. Conclusion: The findings of this research support the idea that simulation-based learning can be a valuable teaching-learning method to help nursing students develop clinical competence, which is essential in providing quality and safe nursing care.

Keywords: simulation-based learning, clinical self-efficacy, infection control, nursing students

Procedia PDF Downloads 70
3826 Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity

Authors: Müzeyyen Balçikanli, Erdoğan Özbay, Hakan Tacettin Türker, Okan Karahan, Cengiz Duran Atiş

Abstract:

In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration.

Keywords: alkali activation, slag, rapid chloride permeability, water absorption capacity

Procedia PDF Downloads 309
3825 Modification of Fick’s First Law by Introducing the Time Delay

Authors: H. Namazi, H. T. N. Kuan

Abstract:

Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results.

Keywords: Fick's first law, flux, diffusion, time delay, modified Fick’s first law

Procedia PDF Downloads 404
3824 Domestic Violence Against Women (With Special Reference to India): A Human Rights Issue

Authors: N. B. Chandrakala

Abstract:

Domestic violence is one of the most under-reported crimes. Problem with domestic violence is that it is not even considered as abuse in many parts of the world especially certain parts of Asia, Africa and Middle East. It is viewed as “doing the needful”. Domestic violence could be in form of emotional harassment, physical injury or psychological abuse perpetrated by one of the family members to another. It is a worldwide phenomenon mainly targeting women. The acts of violence have terrible negative impact on women. It is also an infringement of women’s rights and can be safely termed as human rights abuse. In cases pertaining to domestic violence, male adults often misuses his authority and power to control another using physical or psychological means. Violence and other forms of abuse are common in domestic violence. Sexual assaults, molestation and battering are common in these cases. Domestic violence is a human rights issue and a serious deterrent to development. Domestic violence could also take place in subtle forms like making the person feel worthless or not giving the victims any personal space or freedom. The problematic aspect is cases of domestic violence are very rarely reported. The majority of the victims are women but children are also made to suffer silently. They are abused and neglected. Their innocent minds are adversely affected with the incidents of domestic violence. According to a report by World Health Organization (WHO), sexual trafficking, female feticide, dowry death, public humiliation and physical torture are some of the most common forms of domestic violence against Indian women. Such acts belie our growth and claim as an economic superpower. It is ironic that we claim to be one of the most rapidly advancing countries in the world and yet we have done hardly anything of note against social hazards like domestic violence. Laws are not that stringent when it comes to reporting acts of domestic violence. Even if the report is filed it turns out to be a long drawn process and not every victim has that much resource to fight till the end. It is also a social taboo to make your family matters public. The big challenge in front now is to enforce it in true sense. Steps that are actually needed; tough laws against domestic violence, speedy execution and change in the mindset of society only then we can expect to have some improvement in such inhuman cases. An effective response to violence must be multi-sectoral; addressing the immediate practical needs of women experiencing abuse; providing long-term follow up and assistance; and focusing on changing those cultural norms, attitudes and legal provisions that promote the acceptance of and even encourage violence against women, and undermine women's enjoyment of their full human rights and freedoms. Hence the responses to the problem must be based on integrated approach. The effectiveness of measures and initiatives will depend on coherence and coordination associated with their design and implementation.

Keywords: domestic violence, human rights, sexual assaults, World Health Organization

Procedia PDF Downloads 542
3823 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System

Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii

Abstract:

Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.

Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression

Procedia PDF Downloads 156
3822 Using Artificial Intelligence Method to Explore the Important Factors in the Reuse of Telecare by the Elderly

Authors: Jui-Chen Huang

Abstract:

This research used artificial intelligence method to explore elderly’s opinions on the reuse of telecare, its effect on their service quality, satisfaction and the relationship between customer perceived value and intention to reuse. This study conducted a questionnaire survey on the elderly. A total of 124 valid copies of a questionnaire were obtained. It adopted Backpropagation Network (BPN) to propose an effective and feasible analysis method, which is different from the traditional method. Two third of the total samples (82 samples) were taken as the training data, and the one third of the samples (42 samples) were taken as the testing data. The training and testing data RMSE (root mean square error) are 0.022 and 0.009 in the BPN, respectively. As shown, the errors are acceptable. On the other hand, the training and testing data RMSE are 0.100 and 0.099 in the regression model, respectively. In addition, the results showed the service quality has the greatest effects on the intention to reuse, followed by the satisfaction, and perceived value. This result of the Backpropagation Network method is better than the regression analysis. This result can be used as a reference for future research.

Keywords: artificial intelligence, backpropagation network (BPN), elderly, reuse, telecare

Procedia PDF Downloads 210
3821 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 92
3820 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 139
3819 The Role of Social Enterprise in Supporting Economic Development in Nigeria

Authors: Susan P. Teru, Jerome Nyameh

Abstract:

Many contemporary organizations are placing a greater emphasis on business enterprise systems as a means of generating higher levels of economic development. Many business research and literature has also concur that enterprise drive economic development, giving little or no credit to social enterprise, whose profit is reinvest to the community development compare to the business enterprise that share their profit to shareholders. Economic development includes economic policies that affect the beneficiaries of the economic entity. We suggest that producing social enterprise increments may be best achieved by orienting social enterprise entrepreneurs system to promote economic development. To this end, we describe a new approach to the social enterprise process that includes social entrepreneur and the key drivers of economic development at each stage. We present a model of social enterprise that incorporates the main ideas of the paper and suggests a new perspective for thinking about how to foster and manage social enterprise to achieve high levels of economic development.

Keywords: social enterprise, economic development, Nigeria, business and management

Procedia PDF Downloads 509
3818 Appraisal of Shipping Trade Influence on Economic Growth in Nigeria

Authors: Ikpechukwu Njoku

Abstract:

The study examined appraisal of shipping trade influence on the economic growth in Nigeria from 1981-2016 by the use of secondary data collected from the Central Bank of Nigeria. The main objectives are to examine the trend of shipping trade in Nigeria as well as determine the influence of economic growth on gross domestic product (GDP). The study employed both descriptive and influential tools. The study adopted cointegration regression method for the analysis of each of the variables (shipping trade, external reserves and external debts). The results show that there is a statistically significant relationship between GDP and external reserves with p-value 0.0190. Also the result revealed that there is a statistically significant relationship between GDP and shipping trade with p-value 0.000. However, shipping trade and external reserves contributed positively at 1% and 5% level of significance respectively while external debts impacted negatively to GDP at 5% level of significance with a long run variance of cointegration regression. Therefore, the study suggests that government should do all it can to curtail foreign dominance and repatriation of profit for a more sustainable economy as well as upgrade port facilities, prevent unnecessary delays and encourage exportable goods for maximum deployment of ships.

Keywords: external debts, external reserve, GDP, shipping trade

Procedia PDF Downloads 148
3817 Neuroblastoma in Children and the Potential Involvement of Viruses in Its Pathogenesis

Authors: Ugo Rovigatti

Abstract:

Neuroblastoma (NBL) has epitomized for at least 40 years our understanding of cancer cellular and molecular biology and its potential applications to novel therapeutic strategies. This includes the discovery of the very first oncogene aberrations and tumorigenesis suppression by differentiation in the 80s; the potential role of suppressor genes in the 90s; the relevance of immunotherapy in the millennium first, and the discovery of additional mutations by NGS technology in the millennium second decade. Similar discoveries were achieved in the majority of human cancers, and similar therapeutic interventions were obtained subsequently to NBL discoveries. Unfortunately, targeted therapies suggested by specific mutations (such as MYCN amplification –MNA- present in ¼ or 1/5 of cases) have not elicited therapeutic successes in aggressive NBL, where the prognosis is still dismal. The reasons appear to be linked to Tumor Heterogeneity, which is particularly evident in NBL but also a clear hallmark of aggressive human cancers generally. The new avenue of cancer immunotherapy (CIT) provided new hopes for cancer patients, but we still ignore the cellular or molecular targets. CIT is emblematic of high-risk disease (HR-NBL) since the mentioned GD2 passive immunotherapy is still providing better survival. We recently critically reviewed and evaluated the literature depicting the genomic landscapes of HR-NBL, coming to the qualified conclusion that among hundreds of affected genes, potential targets, or chromosomal sites, none correlated with anti-GD2 sensitivity. A better explanation is provided by the Micro-Foci inducing Virus (MFV) model, which predicts that neuroblasts infection with the MFV, an RNA virus isolated from a cancer-cluster (space-time association) of HR-NBL cases, elicits the appearance of MNA and additional genomic aberrations with mechanisms resembling chromothripsis. Neuroblasts infected with low titers of MFV amplified MYCN up to 100 folds and became highly transformed and malignant, thus causing neuroblastoma in young rat pups of strains SD and Fisher-344 and larger tumor masses in nu/nu mice. An association was discovered with GD2 since this glycosphingolipid is also the receptor for the family of MFV virus (dsRNA viruses). It is concluded that a dsRNA virus, MFV, appears to provide better explicatory mechanisms for the genesis of i) specific genomic aberrations such as MNA; ii) extensive tumor heterogeneity and chromothripsis; iii) the effects of passive immunotherapy with anti-GD2 monoclonals and that this and similar models should be further investigated in both pediatric and adult cancers.

Keywords: neuroblastoma, MYCN, amplification, viruses, GD2

Procedia PDF Downloads 99
3816 Student Loan Debt among Students with Disabilities

Authors: Kaycee Bills

Abstract:

This study will determine if students with disabilities have higher student loan debt payments than other student populations. The hypothesis was that students with disabilities would have significantly higher student loan debt payments than other students due to the length of time they spend in school. Using the Bachelorette and Beyond Study Wave 2015/017 dataset, quantitative methods were employed. These data analysis methods included linear regression and a correlation matrix. Due to the exploratory nature of the study, the significance levels for the overall model and each variable were set at .05. The correlation matrix demonstrated that students with certain types of disabilities are more likely to fall under higher student loan payment brackets than students without disabilities. These results also varied among the different types of disabilities. The result of the overall linear regression model was statistically significant (p = .04). Despite the overall model being statistically significant, the majority of the significance values for the different types of disabilities were null. However, several other variables had statistically significant results, such as veterans, people of minority races, and people who attended private schools. Implications for how this impacts the economy, capitalism, and financial wellbeing of various students are discussed.

Keywords: disability, student loan debt, higher education, social work

Procedia PDF Downloads 168
3815 Use of Social Media Among University Student and Its Effect on the Achievement of Students

Authors: Saba Latif

Abstract:

The use of social media among university students is a topic of ongoing debate, with conflicting views on its impact on academic achievement. This study aimed to explore the relationship between social media use and academic achievement among university students and to identify factors that may contribute to positive or negative effects. The study used a mixed-methods design, including a survey of 500 university students and qualitative interviews with a subset of participants. The survey results showed that social media use was prevalent among students, with Facebook and Instagram are the most commonly used platforms. The findings also indicated a positive relationship between social media use and academic achievement, with students who reported higher levels of social media use also reporting higher GPAs. However, the qualitative interviews revealed that excessive use of social media could be a distraction that hinders academic performance, especially when students use it to procrastinate or to stay up late at night. Overall, the findings suggest that social media use can have both positive and negative effects on academic achievement among university students. Responsible and balanced use of social media, such as setting limits on usage and avoiding procrastination, may help students maximize the benefits while minimizing the risks.

Keywords: social media, university, achievement, effective, learning

Procedia PDF Downloads 81
3814 A Computational Investigation of Potential Drugs for Cholesterol Regulation to Treat Alzheimer’s Disease

Authors: Marina Passero, Tianhua Zhai, Zuyi (Jacky) Huang

Abstract:

Alzheimer’s disease has become a major public health issue, as indicated by the increasing populations of Americans living with Alzheimer’s disease. After decades of extensive research in Alzheimer’s disease, only seven drugs have been approved by Food and Drug Administration (FDA) to treat Alzheimer’s disease. Five of these drugs were designed to treat the dementia symptoms, and only two drugs (i.e., Aducanumab and Lecanemab) target the progression of Alzheimer’s disease, especially the accumulation of amyloid-b plaques. However, controversial comments were raised for the accelerated approvals of either Aducanumab or Lecanemab, especially with concerns on safety and side effects of these two drugs. There is still an urgent need for further drug discovery to target the biological processes involved in the progression of Alzheimer’s disease. Excessive cholesterol has been found to accumulate in the brain of those with Alzheimer’s disease. Cholesterol can be synthesized in both the blood and the brain, but the majority of biosynthesis in the adult brain takes place in astrocytes and is then transported to the neurons via ApoE. The blood brain barrier separates cholesterol metabolism in the brain from the rest of the body. Various proteins contribute to the metabolism of cholesterol in the brain, which offer potential targets for Alzheimer’s treatment. In the astrocytes, SREBP cleavage-activating protein (SCAP) binds to Sterol Regulatory Element-binding Protein 2 (SREBP2) in order to transport the complex from the endoplasmic reticulum to the Golgi apparatus. Cholesterol is secreted out of the astrocytes by ATP-Binding Cassette A1 (ABCA1) transporter. Lipoprotein receptors such as triggering receptor expressed on myeloid cells 2 (TREM2) internalize cholesterol into the microglia, while lipoprotein receptors such as Low-density lipoprotein receptor-related protein 1 (LRP1) internalize cholesterol into the neuron. Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1) converts excess cholesterol to 24S-hydroxycholesterol (24S-OHC). Cholesterol has been approved for its direct effect on the production of amyloid-beta and tau proteins. The addition of cholesterol to the brain promotes the activity of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), secretase, and amyloid precursor protein (APP), which all aid in amyloid-beta production. The reduction of cholesterol esters in the brain have been found to reduce phosphorylated tau levels in mice. In this work, a computational pipeline was developed to identify the protein targets involved in cholesterol regulation in brain and further to identify chemical compounds as the inhibitors of a selected protein target. Since extensive evidence shows the strong correlation between brain cholesterol regulation and Alzheimer’s disease, a detailed literature review on genes or pathways related to the brain cholesterol synthesis and regulation was first conducted in this work. An interaction network was then built for those genes so that the top gene targets were identified. The involvement of these genes in Alzheimer’s disease progression was discussed, which was followed by the investigation of existing clinical trials for those targets. A ligand-protein docking program was finally developed to screen 1.5 million chemical compounds for the selected protein target. A machine learning program was developed to evaluate and predict the binding interaction between chemical compounds and the protein target. The results from this work pave the way for further drug discovery to regulate brain cholesterol to combat Alzheimer’s disease.

Keywords: Alzheimer’s disease, drug discovery, ligand-protein docking, gene-network analysis, cholesterol regulation

Procedia PDF Downloads 73
3813 Analysis of Active Compounds in Thai Herbs by near Infrared Spectroscopy

Authors: Chaluntorn Vichasilp, Sutee Wangtueai

Abstract:

This study aims to develop a new method to detect active compounds in Thai herbs (1-deoxynojirimycin (DNJ) in mulberry leave, anthocyanin in Mao and curcumin in turmeric) using near infrared spectroscopy (NIRs). NIRs is non-destructive technique that rapid, non-chemical involved and low-cost determination. By NIRs and chemometrics technique, it was found that the DNJ prediction equation conducted with partial least square regression with cross-validation had low accuracy R2 (0.42) and SEP (31.87 mg/100g). On the other hand, the anthocyanin prediction equation showed moderate good results (R2 and SEP of 0.78 and 0.51 mg/g) with Multiplication scattering correction at wavelength of 2000-2200 nm. The high absorption could be observed at wavelength of 2047 nm and this model could be used as screening level. For curcumin prediction, the good result was obtained when applied original spectra with smoothing technique. The wavelength of 1400-2500 nm was created regression model with R2 (0.68) and SEP (0.17 mg/g). This model had high NIRs absorption at a wavelength of 1476, 1665, 1986 and 2395 nm, respectively. NIRs showed prospective technique for detection of some active compounds in Thai herbs.

Keywords: anthocyanin, curcumin, 1-deoxynojirimycin (DNJ), near infrared spectroscopy (NIRs)

Procedia PDF Downloads 380
3812 Probability Model Accidents of Motorcyclist Based on Driver's Personality

Authors: Margareth E. Bolla, Ludfi Djakfar, Achmad Wicaksono

Abstract:

The increase in the number of motorcycle users in Indonesia is in line with the increase in accidents involving motorcycles. Several previous studies have shown that humans are the biggest factor causing accidents, and the driver's personality factor will affect his behavior on the road. This study was conducted to see how a person's personality traits will affect the probability of having an accident while driving. The Big Five Inventory (BFI) questionnaire and the Honda Riding Trainer (HRT) simulator were used as measuring tools, while the analysis carried out was logistic regression analysis. The results of the descriptive analysis of the respondent's personality based on the BFI show that the majority of drivers have the dominant character of neuroticism (34%), while the smallest group is the driver with the dominant type of openness character (6%). The percentage of motorists who were not involved in an accident was 54%. The results of the logistic regression analysis form a mathematical model as follows Y = -3.852 - 0.288 X1 + 0.596 X2 + 0.429 X3 - 0.386 X4 - 0.094 X5 + 0.436 X6 + 0.162 X7, where the results of hypothesis testing indicate that the variables openness, conscientiousness, extraversion, agreeableness, neuroticism, history of traffic accidents and age at starting driving did not have a significant effect on the probability of a motorcyclist being involved in an accident.

Keywords: accidents, BFI, probability, simulator

Procedia PDF Downloads 145
3811 Growth Pattern and Condition Factor of Oreochromis niloticus and Sarotherodon galilaeus in Epe Lagoon, Lagos State, Nigeria

Authors: Ahmed Bolaji Alarape, Oluwatobi Damilola Aba

Abstract:

The growth pattern of Oreochromis niloticus and Sarotherodon galilaeus in Epe Lagoon Lagos State was investigated. One hundred (100) samples of each species were collected from fishermen at the landing site. They were transported to the Fisheries Laboratory of National Institute of Oceanography for identification, sexing morphometric measurement. The results showed that 58.0% and 56.0 % of the O.niloticus and S.galilaeus were female respectively while 42.0% and 44.0% were male respectively. The length-weight relationship of O.niloticus showed a strong regression coefficient (r = 0.944) (p<0.05) for the combined sex, (r =0.901) (p<0.05) for female and (r=0.985) (p<.05) for male with b-value of 2.5, 3.1 and 2.8 respectively. The S.galilaeus also showed a regression coefficient of r=0.970; p<0.05 for the combined sex, r=0.953; p<0.05 for the female and r= 0.979; p<0.05 for the male with b-value of 3.4, 3.1 and 3.6 respectively. O.niloticus showed an isometric growth pattern both in male and female. The condition factor in O.niloticus are 1.93 and 1.95 for male and female respectively while that of S.galilaeus is 1.95 for both sexes. Positive allometric was observed in both species except the male O.niloticus that showed negative allometric growth pattern. From the results of this study, the growth pattern of the two species indicated a good healthy environment.

Keywords: Epe Lagoon, length-weight relationship, Oreochromis niloticus, Sarotherodon galilaeus

Procedia PDF Downloads 144
3810 Cognitive Function and Coping Behavior in the Elderly: A Population-Based Cross-Sectional Study

Authors: Ryo Shikimoto, Hidehito Niimura, Hisashi Kida, Kota Suzuki, Yukiko Miyasaka, Masaru Mimura

Abstract:

Introduction: In Japan, the most aged country in the world, it is important to explore predictive factors of cognitive function among the elderly. Coping behavior relieves chronic stress and improves lifestyle, and consequently may reduce the risk of cognitive impairment. One of the most widely investigated frameworks evaluated in previous studies is approach-oriented and avoidance-oriented coping strategies. The purpose of this study is to investigate the relationship between cognitive function and coping strategies among elderly residents in urban areas of Japan. Method: This is a part of the cross-sectional Arakawa geriatric cohort study for 1,099 residents (aged 65 to 86 years; mean [SD] = 72.9 [5.2]). Participants were assessed for cognitive function using the Mini-Mental State Examination (MMSE) and diagnosed by psychiatrists in face-to-face interviews. They were then investigated for their each coping behaviors and coping strategies (approach- and avoidance-oriented coping) using stress and coping inventory. A multiple regression analysis was used to investigate the relationship between MMSE score and each coping strategy. Results: Of the 1,099 patients, the mean MMSE score of the study participants was 27.2 (SD = 2.7), and the numbers of the diagnosis of normal, mild cognitive impairment (MCI), and dementia were 815 (74.2%), 248 (22.6%), and 14 (1.3%), respectively. Approach-oriented coping score was significantly associated with MMSE score (B [partial regression coefficient] = 0.12, 95% confidence interval = 0.05 to 0.19) after adjusting for confounding factors including age, sex, and education. Avoidance-oriented coping did not show a significant association with MMSE score (B [partial regression coefficient] = -0.02, 95% confidence interval = -0.09 to 0.06). Conclusion: Approach-oriented coping was clearly associated with neurocognitive function in the Japanese population. A future longitudinal trial is warranted to investigate the protective effects of coping behavior on cognitive function.

Keywords: approach-oriented coping, cognitive impairment, coping behavior, dementia

Procedia PDF Downloads 128
3809 Deconstructing Reintegration Services for Survivors of Human Trafficking: A Feminist Analysis of Australian and Thai Government and Non-Government Responses

Authors: Jessica J. Gillies

Abstract:

Awareness of the tragedy that is human trafficking has increased exponentially over the past two decades. The four pillars widely recognised as global solutions to the problem are prevention, prosecution, protection, and partnership between government and non-government organisations. While ‘sex-trafficking’ initially received major attention, this focus has shifted to other industries that conceal broader experiences of exploitation. However, within the regions of focus for this study, namely Australia and Thailand, trafficking for the purpose of sexual exploitation remains the commonly uncovered narrative of criminal justice investigations. In these regions anti-trafficking action is characterised by government-led prevention and prosecution efforts; whereas protection and reintegration practices have received criticism. Typically, non-government organisations straddle the critical chasm between policy and practice; therefore, they are perfectly positioned to contribute valuable experiential knowledge toward understanding how both sectors can support survivors in the post-trafficking experience. The aim of this research is to inform improved partnerships throughout government and non-government post-trafficking services by illuminating gaps in protection and reintegration initiatives. This research will explore government and non-government responses to human trafficking in Thailand and Australia, in order to understand how meaning is constructed in this context and how the construction of meaning effects survivors in the post-trafficking experience. A qualitative, three-stage methodology was adopted for this study. The initial stage of enquiry consisted of a discursive analysis, in order to deconstruct the broader discourses surrounding human trafficking. The data included empirical papers, grey literature such as publicly available government and non-government reports, and anti-trafficking policy documents. The second and third stages of enquiry will attempt to further explore the findings of the discourse analysis and will focus more specifically on protection and reintegration in Australia and Thailand. Stages two and three will incorporate process observations in government and non-government survivor support services, and semi-structured interviews with employees and volunteers within these settings. Two key findings emerged from the discursive analysis. The first exposed conflicting feminist arguments embedded throughout anti-trafficking discourse. Informed by conflicting feminist discourses on sex-work, a discursive relationship has been constructed between sex-industry policy and anti-trafficking policy. In response to this finding, data emerging from the process observations and semi-structured interviews will be interpreted using a feminist theoretical framework. The second finding progresses from the construction in the first. The discursive construction of sex-trafficking appears to have had influence over perceptions of the legitimacy of survivors, and therefore the support they receive in the post-trafficking experience. For example; women who willingly migrate for employment in the sex-industry, and on arrival are faced with exploitative conditions, are not perceived to be deserving of the same support as a woman who is not coerced, but rather physically forced, into such circumstances, yet both meet the criteria for a victim of human trafficking. The forthcoming study is intended to contribute toward building knowledge and understanding around the implications of the construction of legitimacy; and contextualise this in reference to government led protection and reintegration support services for survivors in the post-trafficking experience.

Keywords: Australia, government, human trafficking, non-government, reintegration, Thailand

Procedia PDF Downloads 111